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Abstract: The effects of finishing rolling temperature on the microstructure and mechanical properties
of a direct quenched and partitioned (DQ&P) steel were investigated by a thermal simulation machine,
a field emission scanning electron microscope (FE-SEM), electron backscattering diffraction (EBSD),
and a transmission electron microscope (TEM). The results show that the original austenite grain size
was refined by 31% as the finishing rolling temperature decreased from 920 ◦C to 840 ◦C, leading to
the formation of the finest martensite lath at 840 ◦C. At the same time, the lower finishing rolling
temperature resulted in a higher dislocation density, and consequently improved the stability of
the retained austenite. Moreover, compared to the conventional Q&P process, the comprehensive
mechanical properties of a steel with similar chemical composition can be enhanced by DQ&P
processing. With the decrease of finishing rolling temperature from 920 ◦C to 840 ◦C, the strength
and total elongation increases. The yield strength, tensile strength, and total elongation reach the
maximum values of 1121 MPa, 1134 MPa, and 11.7%, respectively, at 840 ◦C.

Keywords: finishing rolling temperature; direct quenched and partitioned steel; residual austenite;
grain size; lath martensite

1. Introduction

Quenching and partitioning (Q&P) steel is one of the new-generation advanced high-
strength steels with excellent comprehensive properties. Its microstructure usually consists
of martensite and retained austenite (RA) [1–3]. Normally, Q&P steel is quenched to a
quench stop temperature between martensite starting temperature (Ms) and finishing
temperature (Mf) after full or partial austenitizing, and then held isothermally in that
temperature (one-step) or reheated to a somewhat higher temperature (two-step) for carbon
partitioning [4,5]. Recently, a modified approach to conventional Q&P processing is the
direct quenching and partitioning (DQ&P) route, in which thermomechanical rolling is
followed by direct quenching to a pre-determined temperature between Ms and Mf and
subsequently proceeding to a carbon partitioning process. This approach has attracted
much attention [6,7]. Compared to conventional Q&P processing, the DQ&P process
involves no additional reheating, but rather quenching and partitioning directly after
hot rolling [8,9]. On the basis of Q&P steel, Thomas et al. proposed a non-isothermal
partitioning process to directly produce a Q&P microstructure by hot rolling, which proves
that the DQ&P process is a feasible processing method for fabricating high-strength steel [8].
Jirková et al. adopted a direct Q&P process after hot deformation to refine grains and
improve mechanical properties [9].

In other words, the DQ&P process is more practical in industrial production. The
DQ&P processing is not only intended to make the process more environmentally friendly,
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i.e., more energy efficient, but also more technically feasible in industrial practice. [10–12].
Liu et al. used the direct quenching and partitioning process after hot forming to generate
a two-way structure composing of ultrafine-grained retained austenite and martensite,
leading to an increase of the total elongation from 6.6% to 14.8% and the improvement
of the mechanical properties, i.e., the product of strength and elongation is reached at
22.4 GPa·% [13]. The formation of equiaxed fine grains caused by deformation at 1000 ◦C
improves the stability of austenite during partitioning [6]. Mahesh et al. obtained a
structural steel with a yield strength larger than 1100 MPa through the direct Q&P process,
which also presents better ductility and impact properties than that of low carbon steel at
the same strength grade [14].

Thermomechanical controlled processing (TMCP) typically involves a two-stage
rolling process: first a recrystallizing rough roll above the recrystallization temperature,
followed by a finishing roll in the non-recrystallizing zone below the recrystallization stop
temperature to achieve fine, lumpy grains in the structure. The Q&P process together
with the thermomechanical control process (TMCP) could effectively improve the overall
mechanical properties of steels by refined martensite [15]. The martensite transformation
is diffusionless and mainly influenced by chemical compositions and a state of austenite.
When the austenite grain size is small, the matrix strength is higher, and the martensite
transformation would start at a lower temperature, resulting in less martensite during
quenching. In this case, the available carbon atoms are reduced during partitioning, and
the secondary martensite transformation during the final cooling stage tends to occur due
to the less stable metastable austenite. Therefore, the control of austenite grain size is
critical. The finishing rolling temperature can directly determine the austenite grain size
of the parent phase, and thus it can affect the volume fraction and stability of RA in the
microstructure, which in turn influences the overall performance of the high-strength steels.
Therefore, it is of interest to study microstructure evolution and mechanical behavior at
different finishing rolling temperatures of a DQ&P steel, which provides the reference for
designing TMCP parameters in industrial production.

2. Experimental Material and Method

The experimental material was taken from the steel cast slab produced in a steel plant
with the chemical composition shown in Table 1. Firstly, the experimental material was cut
into 250 × 100 × 60 mm3 billets. The samples were heated to 1200 ◦C and in isothermal
holding for 4 h at nitrogen atmosphere to ensure the homogenous distribution of microal-
loying elements in the steel, then followed by water-cooling to room temperature. The
specimens of Φ8× 16 mm for hot simulation were prepared from the austenitized rectangle
samples. The simulation experiments were conducted on a Gleeble-1500D thermal simula-
tion tester (DSI, Nashville, TN, USA). The Ms and Mf of the tested steel were calculated
by JMatPro 7.0 software (Sente Software Ltd., Guildford, UK) to be 349.4 ◦C and 234.1 ◦C,
respectively. Hence, the quenching temperature of 310 ◦C was selected during DQ&P
treatment. The processing routes are shown in Figure 1. Firstly, the specimens were heated
to 1200 ◦C at 20 ◦C/s and kept for 5 min for austenitization followed by cooling to 1100 ◦C
at a cooling rate of 10 ◦C/s. For the simulated roughing rolling process, the 50% strain
with a strain rate of 10 s−1 was applied after holding for 2 s at 1100 ◦C. Then, specimens
were all cooled to the pre-determined simulated finishing rolling temperature at a cooling
rate of 10 ◦C/s. The 30% strain at a strain rate of 10 s−1 after holding for 2 s at simulated
finishing rolling temperatures of 920 ◦C, 880 ◦C, and 840 ◦C was utilized. The strain of 50%
at 1100 ◦C and 30% at finishing rolling process were utilized to reach the maximum defor-
mation range of the two-step deformation in thermal simulation experiment. Afterwards,
the deformed specimens were cooled to 310 ◦C at a cooling rate of 50 ◦C/s and held for
10 min followed by final air-cooling to room temperature [16]. During the actual production
process, laminar cooling was carried out after finishing the rolling process, and the cooling
speed was close to 50 ◦C/s. Thus, the cooling rate of 50 ◦C/s was selected in this work.
The critical partitioning time to finish carbon partitioning was calculated according to the
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kinetics model of carbon partitioning proposed in the literature [17]. The result indicates
that it took about 6 min to finish carbon partitioning at 310 ◦C for the tested steel. Therefore,
the longer isothermal holding time of 10 min was designed for completed partitioning.

Table 1. The chemical composition of the tested steel (wt.%).

C Si Mn Ti N Al S P

0.21 1.8 2.03 0.017 0.004 0.04 0.002 0.015
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Figure 1. Schematic of thermal simulation experimental process.

After the thermal simulation experiments, the specimens were sampled along the
central section perpendicular to the deformation direction. Firstly, the volume fraction
and carbon concentration of RA after different treatments were measured by X-ray diffrac-
tometer (XRD, SmartLab SE, Tokyo, Japan) at a scanning speed of 1~2◦/min under 40 KV,
40 mA, and Cu-Kα modes. The volume fraction of RA was obtained using the following
Equation (1) [18]:

VA =
1

1 + G(Iα / Iγ)
(1)

where VA represents the volume fraction of RA, Iα represents the cumulative strength of
the ferrite peak, Iγ represents the cumulative strength of the austenite peak, and the
corresponding G value for each peak pair was used as follows: 2.46, 1.32, and 1.78
for Iα(200)/Iγ(200), Iα(200)/Iγ(220), and Iα(200)/Iγ(311), respectively; 1.21, 0.65, and 0.87 for
Iα(211)/Iγ(200), Iα(211)/Iγ(220), and Iα(220)/Iγ(311), respectively.

The carbon concentration in austenite was calculated by Equation (2) [19]:

Cγ = (αγ − 3.547)− 0.046 (2)

where Cγ is the carbon concentration expressed as a percentage, and αγ is the lattice
parameter of austenite in Angstroms, estimated by Equation (3).

αγ =
λ
√

h2 + k2 + l2

2 sin θ
(3)

where λ is the radiation wavelength of the X-ray, (hkl) is the Miller indices, and θ is the
Bragg angle.
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According to the Williamson–Hall method [20,21], the dislocation density of martensite
was measured by analyzing the (200) and (211) X-ray diffraction peaks, as expressed by
Equation (4) [21]:

ρ =
14.4ε2

b2 (4)

where ρ is the dislocation density, ε is the micro strain, and b is the Burgers vector (0.247 nm).
Considering the (200)α and (221)α peaks, the microstrain was calculated by Equation (5) [22]:

δhkl
cos θhkl

λ
=

1
D

+ 2ε
sin θhkl

λ
(5)

where δhkl is the physical broadening of the full width at half maximum (FWHM) of the
diffraction peak, and D is the microcrystal size parameter.

The microstructure of the samples was observed by a field emission scanning electron
microscope (FE-SEM, Nano 400, Stanford, CA, USA) after mechanical polishing and etching
in 4% nital solution (Chemical Reagent Co., Ltd., Shanghai, China). The grain size and grain
boundaries were measured by electron backscatter diffraction (EBSD, Oxford Symmetry,
thermo Fisher Ltd., Waltham, MA, USA) with a scanning step of 0.1 µm at a voltage of
20 kV. A field emission transmission electron microscope (TEM, JEM-F200, Tokyo, Japan)
was utilized to characterize the RA and other substructures. The mechanical properties
were tested at room temperature using an Instron-3382 tensile tester (Instron Ltd. Instron,
Norwood, MA, USA) with a strain rate of 0.001 s−1. The sub-size specimens with a thickness
of 1.2 mm, gauge length of 8 mm, and gauge width of 1.3 mm were utilized in tensile tests.

3. Results and Discussion
3.1. Mechanical Properties

In order to highlight the performance superiority of the DQ&P processing route,
the mechanical properties of a Q&P steel with similar chemical compositions in the lit-
erature [23] are shown in Figure 2 for comparison. The regular Q&P process in the ref-
erence is one-step isothermal holding between Ms and Mf after austenitizing at 960 ◦C
(QP−960) without deformation, and finally, the Q&P steel with a yield strength of 879 MPa,
a tensile strength of 1017 MPa, as well as the total elongation of 8.0% were prepared.
It was known that the product of ultimate tensile strength (UTS) and total elongation
(TE) i.e., UTS × TE [24,25], which is an index of formability, is often used to compare
the strength-ductility balance for different microstructures [25,26]. The formability in-
dex (UTS × TE) of DQ&P specimens (8.8~13.9 GPa·%) is better than that of regular Q&P
steel (8.1 GPa·%). The results show that DQ&P steel can obtain higher comprehensive
mechanical properties with respect to Q&P steel at similar compositions.
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In addition, compared with the finishing rolling temperature of 920 ◦C (DQP−920),
the yield strength increased by 194 MPa, the tensile strength increased by 156 MPa at the
finishing rolling temperature of 880 ◦C (DQP−880), and the total elongation was basically
unchanged. When the finishing rolling temperature is 840 ◦C (DQP−840), the yield strength
increased by 340 MPa, the tensile strength increased by 252 MPa, and the total elongation
increased by 1.4%. Therefore, with a decrease of finishing rolling temperature, the strength
and total elongation increases.

3.2. Flow Behavior under Double-Passes Hot Deformation

The stress-strain curve at different deformation temperatures during the hot defor-
mation in the double-pass method is shown in Figure 3. The stress-strain curve of the
first-pass deformation of rough rolling contains a work-hardening region and a stress
peak, showing typical dynamic recrystallization behavior. When the strain reaches 0.7,
compressive stress is unloaded. As the specimen was placed horizontally between two
clamps, the stress of 31 MPa was maintained for fixed specimens. Then the flow behavior in
the second-pass deformation of finish rolling exhibits apparent work hardening and strain
softening at different deformation temperatures, which causes another peak stress [27].
The second non-recrystallization zone in Figure 3 is consistent with the characteristics of
the industrial TMCP process. The result shows that the deformation resistance increases
as the finishing temperature decreases, which can further refine the original austenite
grains. The original austenite grain size was counted using the intercept method with Nano
Measurer 1.2 software (Fuh Tan University, China). The original austenite microstructure
at different finishing rolling temperatures is shown in Figure 4. To ensure the accuracy of
the results, the average of several different regions of the microstructure was taken as the
final result. The statistical results show that the average grain size of the original austenite
was 12.18 µm, 10.89 µm, and 8.40 µm at 920 ◦C, 880 ◦C, and 840 ◦C, respectively. Therefore,
it is seen from Figure 4 that the average grain size of the original austenite decreased by
decreasing finishing rolling temperature. It is well known that the deformation applied
in the single austenite region plays an important role in grain refinement [28]. As the
finishing rolling temperature decreases, the thermal activation energy of the deformation
of material increases, and the driving force of partial recrystallization decreases. At the
same time, due to the density of defects, such as a large number of dislocations is greatly
increased, the dynamic recovery effect is obviously weakened with decreasing finishing
rolling temperature; that is, the grain deformation is obviously thinner [29]. Therefore, it
can be concluded that enhancing the deformation work-hardening effect and decreasing
both the dynamic recovery and recrystallization rate by decreasing the finishing rolling
temperature, results in the obvious refinement of the original austenite grains of DQ&P
steel at 840 ◦C [29,30].

3.3. Microstructure Characteristics

The SEM images in the central section along the deformation direction of the tested
steel at different finishing rolling temperatures are shown in Figure 5. It is observed that
the microstructure of all deformed specimens is mainly composed of martensite (M) and
RA. The martensite presents a typical lath morphology. Compared with Q&P steel, the
lath martensite (LM) is discontinuous, and the edges are serrated by applying deformation
in the finishing rolling temperature region of austenite during the DQ&P process [15,31].
This is attributed to the high dislocation density in austenite caused by grain refinement
due to austenite deformation, which together inhibits the growth of the martensite laths,
resulting in the distortion or rupture of the martensite laths and jagged edges during the
DQ&P process. In addition, some fresh martensite (FM) with smooth surfaces and white
boundaries can be observed in the deformed specimens, which are formed by the shear
transformation of unstable, untransformed austenite in the final cooling process [32].
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Further characterization of RA was observed using TEM. The microscopic morphology
of the specimen at 840 ◦C is shown in Figure 6. It is seen from Figure 6a that the microstruc-
ture mainly consists of LM and RA, and the RA exists in the form of film and block between
the martensite laths. Furthermore, the LM has a high dislocation density, and the corre-
sponding yield strength would be high, which will inhibit the further secondary martensite
transformation during the final cooling process. Because the surrounding matrix needs
to be deformed to adapt to the volume expansion caused by martensite transformation,
martensite with high-yield stresses can “shield” austenite from external loads during the
deformation process [33]. In addition, Figure 6b–d shows the bright and dark field images
and selected area electron diffraction patterns of martensite and RA after finishing rolling
at 840 ◦C. It can be seen from the selected area electron diffraction pattern in Figure 6d that
the diffraction spots include both the bcc structure of martensite and the fcc structure of
austenite, which further confirms the existence of RA.
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EBSD inverse pole figures (IPFs) of the specimens are shown in Figure 7. It indicates
that most of the bcc structure is aggregated in the {101} and{111} orientations, indicating that
most of the martensite grains exist in the same orientation laths. The IPF and pole figures
of the specimens are shown in Figure 8. It can be seen that the martensite variation of the
specimens exhibits obvious differences compared with the regular Q&P process, by which
the martensite and austenite keep the typical Kurdjumov–Sachs (K–S) relationship [34]. As
the finishing rolling temperature increases, the deviation of the K–S orientation relationship
between the matrix bcc phase and the parent phase austenite gradually increases [35].
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The grain boundary maps in Figure 9 shown the high-angle grain boundaries (HAGBs, >15◦)
in blue and the low-angle grain boundaries (LAGBs, 2−15◦) in red. As a result, the length of
the HAGB increases from 7.46 mm at 920 ◦C to 8.46 mm at 880 ◦C, and then further increases to
9.06 mm at 840 ◦C as the finishing rolling temperature decreases.
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Figure 10 shows the distribution of misorientation angles of the specimens. It can be
seen that the misorientation angles of the samples at different finishing rolling temperatures
are mainly less than 10◦ and greater than 50◦, and three peak values of misorientation
in different directions are detected, i.e., 16.5◦, 52.5◦, and 58.5◦ [19]. These peaks are the
result of different variants of the K–S orientation relationship [36]. There are ten possible
orientations between the two martensitic substructures, i.e., 10.5◦, 14.9◦, 20.6◦, 21.1◦, 47.1◦,
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49.5◦, 50.5◦, 51.7◦, 57.2◦, and 60◦ [37]. Therefore, there is a deviation between the actual
orientation and the ideal orientation of martensite, and the three orientation peaks of 16.5◦,
52.5◦, and 58.5◦ correspond to the boundaries of blocks and packets [36–38], which is
consistent with the microstructure of the specimens at all finishing rolling temperatures
consisting of the mixture of LM and RA [19,36]. In addition, the absence of a misorientation
boundary between 20◦ and 45◦ coincides well with the ideal misorientation between the
K–S variants [36–38].
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According to the average equivalent circle diameter, the crystallographic unit sizes
of 15◦ misorientation were measured by EBSD. The number of grains in the samples
are sufficiently large (approx. 3000) to guarantee the measurement results are accurate.
According to the statistical results in Figure 11, based on the 15◦ misorientation standard,
the average equivalent circle diameters are 1.2 µm, 1.3 µm, and 1.4 µm, respectively. The
statistical results show that the average equivalent circle diameter at 840 ◦C is below that at
880 ◦C and 920 ◦C. Due to many martensite laths, blocks and packets are high-angle grain
boundaries [39]; it is confirmed that a refined microstructure can be obtained by finishing
rolling at 840 ◦C.
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In summary, the refined original austenite grains promote the refinement of the LM
structure at room temperature. This is due to the fact that the martensitic transformation
occurring in fine-grained austenite requires a large driving force and nucleation energy after
quenching. Compared to the nucleation of relative coarse-grained austenite at 920 ◦C and
880 ◦C, finishing rolling at 840 ◦C provides more chemical-free energy to drive fine-grained
martensitic transformation [40]. Therefore, the deformation inhibits the grain growth,
resulting in a decrease in the supercooling degree and limiting the growth of LM, thereby
refining the lath martensite at 840 ◦C. Therefore, the finer LM improved the strength of the
tested steel. Early studies have shown that the {111} oriented grains have high stability and
gradually transfer to the {101} oriented polar axis during the tensile deformation process,
which is beneficial to the plastic properties [41]. According to the statistical results, the
{111} orientation increases with temperature, accounting for about 12.2%, 12.8%, and 17.1%,
respectively. In addition, the HAGB length at 840 ◦C is higher than that at 880 and 920 ◦C,
which is beneficial to inhibit crack propagation and improve ductility [4,42]. Therefore, the
tensile properties after final rolling at 840 ◦C are better than at 880 ◦C and 920 ◦C.

3.4. RA Analysis

The RA content was detected by X-ray diffractometer (XRD). The experimental results
are shown in Figure 12. It can be judged that the room-temperature phase is mainly
bcc crystal structure and fcc crystal structure, corresponding to ferrite or martensite and
RA, respectively.
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According to Formulas (1)–(5), it is calculated that the volume fraction of RA, carbon
concentration, and the dislocation density in martensite are shown in Table 2.

It is seen from Table 2 that the volume fraction of RA and dislocation density in
martensite increase as finishing rolling temperature decreases. The dislocation density can
also be represented by kernel average misorientation (KAM) maps, as given in Figure 13 [43].
It is well known that the higher the KAM value, the higher the dislocation density in the
microstructure. It is seen that the average KAM value increases as the finishing rolling
temperature decreases, indicting the same change tendency of dislocation density as the
XRD results. As mentioned above, the finer original austenite grain is formed at 840 ◦C,
which may significantly reduce the undercooling degree [44], resulting in a decrease in
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the nucleation driving force of the martensitic transformation [45], thereby reducing the
martensite amount and increasing the fraction of untransformed austenite. In addition,
decreasing the austenite grain size is one of the main reasons for improving austenite
stability [35]. The size of the austenite grain is smaller, the interfacial area between the
grain and its surrounding martensitic phase is larger per unit austenite volume fraction [31].
This provides more diffusion channels to absorb carbon atoms from martensite in unit
volume. At the same time, the energy stored in the austenite during deformation has a more
significant effect on the martensitic transformation and influences the carbon partitioning
during the partitioning process. The applied deformation reduces the original austenite
grain size while generating a large number of high-density dislocations, which also provide
favorable diffusion channels for carbon distribution. Obviously, finer grain size and higher
dislocation density generated by deformation improve the stability of RA.

Table 2. The volume fraction of RA, carbon concentration, and the dislocation density in martensite
at different finishing rolling temperatures.

Temperature (◦C) 840 880 920

Volume fraction of
retained austenite (%) 5.90 4.30 3.01

Carbon content (%) 1.51 1.48 1.41
Dislocation density

(m−2) 2.06 × 1016 1.41 × 1016 1.23 × 1016
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In summary, the tensile test results show that deformation at a finishing rolling
temperature lower than 880 ◦C can improve the tensile properties. RA can significantly
improve the mechanical properties of the specimens through the TRIP effect [8]. In addition
to the TRIP effect, the finer lath martensite microstructure in the 840 ◦C samples also
increase the tensile strength. Early studies have shown that the RA content and its stability
have a substantial influence on the formability of the evolved structure [35,46]. The thermal
stability of RA is influenced by several factors such as grain size, carbon concentration, and
morphology of RA [35,47]. Therefore, the evolution of mechanical properties is discussed
according to the original austenite grain size, volume fraction, carbon concentration, and
morphology of RA. As mentioned above, the stability of RA can be improved by the
refinement of original austenite grains. RA was found to be present in the form of films
and blocks between the martensite laths by TEM analysis (Figure 6). It is documented
in the literature that the two morphologies have different stability during stretching to
provide a continuous TRIP effect [48]. The film-like RA has a higher phase transformation
stability due to its lower area and longer length, which are more easily enriched from
carbon atoms [49]. At the same time, blocky RA promotes work hardening through the
TRIP effect in the early stage of deformation, while a small part of blocky RA plays a role in
coordinating deformation during the whole deformation process. The carbon concentration



Materials 2023, 16, 3575 12 of 14

of RA at 840 ◦C final rolling is higher than that at 920 ◦C and 880 ◦C final rolling according
to the XRD results (Table 2), which can further indicate that RA has higher stability at
840 ◦C final rolling. In addition, according to the EBSD test results (Figure 11), the LM can
be refined by finishing rolling at 840 ◦C. The stable RA undergoes a TRIP effect during
plastic deformation, transforming into a high-strength martensite, inhibiting the instability
of plastic deformation and increasing uniform elongation (Figure 3), thereby increasing
both the strength and plasticity of the steels [12]. Therefore, it is reasonable to obtain the
better total elongation of 11.7% and the best tensile strength of 1134 MPa after finishing
rolling at 840 ◦C.

4. Conclusions

In this paper, the microstructure and properties of a DQ&P steel at different final rolling
temperatures are systematically investigated. The following conclusions can be drawn:

(1) Compared with Q&P steel with similar compositions, relatively excellent compre-
hensive mechanical properties can be obtained by DQ&P processes. The strength
and total elongation of a low-carbon DQ&P steel were significantly improved after
finishing rolling at 840 ◦C.

(2) With the decrease of finishing rolling temperature from 920 ◦C to 840 ◦C, the strength
and total elongation increased. High-yield strength of 1121 MPa, high tensile strength
of 1134 MPa, and 11.7% total elongation at 840 ◦C were achieved.

(3) With the decrease of finishing temperature, the lath martensite became finer, and the
RA fraction increased. Grain refinement and higher dislocation density contributed
to carbon partitioning, leading to the higher stability of RA at a lower finishing
temperature.
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