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Abstract: High entropy amorphous alloys (HEAAs) are materials that have received much attention
in recent years. They exhibit many unique properties; however, research on their composition design
method has not been deep enough. In this paper, we summarized some effective composition
design strategies for HEAAs. By adjusting the atomic ratio from quinary bulk metallic glasses,
Ti20Zr20Cu20Ni20Be20 HEAA with a high fracture strength of 2315 MPa was designed. By similar
element addition/substitution, a series of Ti–(Zr, Hf, Nb)–Cu–Ni–Be HEAAs was developed. They
possess good glass-forming ability with a maximum critical diameter of 30 mm. Combining elements
from those ternary/quaternary bulk metallic glasses has also proved to be an effective method for
designing new HEAAs. The effect of high entropy on the property of the alloy, possible composition
design methods, and potential applications were also discussed. This paper may provide helpful
inspiration for future development of HEAAs.

Keywords: high entropy alloy; amorphous alloy; bulk metallic glass; glass-forming ability; composi-
tion design strategy

1. Introduction

Material innovation has become one of the most important driving forces for pro-
moting human civilization progress, as well as promoting the development of technology
and industrial upgrading. Amorphous alloys and high entropy alloys are two types of
high-performance materials that have developed rapidly in the past several decades. Since
its first report in 1960 [1], amorphous alloys have undergone significant development and
have now expanded to dozens of material systems. Inoue et al. developed a copper mold
casting method that greatly reduced fabrication costs [2,3]. Peker and Johnson designed a
very famous amorphous alloy, Zr41.2Ti13.8Cu12.5Ni10Be22.5, which was also called Vit1 since
it possesses very good glass-forming ability (GFA) [4]. Vit1 played an important role in
promoting the industrialization of amorphous alloys. Inoue presented a long review of
amorphous alloys, and it got more than 5600 citations [5]. After entering the 21st century,
more and more amorphous alloys were developed, such as Cu–Zr–Ti–Sn [6], Ni–Nb–Sn [7],
Pt–Co–Ni–Cu–P [8], Zr–Al–Co [9], Zr–Cu–Al [10], Cu–Zr–Ag [11], etc.

One of the main challenges in developing amorphous alloys is how to improve its
GFA. Li et al. found that similar atom substitution may be an effective way [12,13]. Santos
et al. proposed a topological instability (λ) criterion to evaluate GFA in an Ni–Nb–Zr
system [14]. Zhang et al. developed the Ti32.8Zr30.2Ni5.3Cu9Be22.7 quinary bulk amorphous
alloy; it possesses good GFA and its critical diameter exceeds 50 mm [15]. Nishiyama
et al. prepared the world’s biggest glassy alloy, namely the Pd42.5Cu30Ni7.5P20 cylindrical
glassy alloy sample. Its diameter was 80 mm and it was obtained by fluxing and water
quenching method [16]. Apart from experiments, several parameters were proposed for
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evaluating the GFA of an alloy, such as Trg [17], ∆Tx [18], γ [19], etc. The atomic simulation
method was also applied to enhance the GFA of Ni–Nb–Ti amorphous alloys by Li et al. [20].
Amorphous alloys possess outstanding performance, such as high strength, high hardness,
good corrosion resistance, and wear resistance, etc. As a result, amorphous alloys are used
as low-loss power transformers, precise forming parts, micro-electro-mechanical system
components, etc.

The concept of a high entropy alloy (HEA) has received widespread attention from
the material research community since its first report in 2004 [21]. High entropy alloys
usually contain five or more elements while the concentration of each element was in
the range between 5% and 35%. In other words, the configurational entropy of high
entropy alloy should be greater than 1.5 R, in which R represents the ideal gas constant
(8.314 J/(mol·K)). For alloys containing five elements with equal atomic concentration, the
configurational entropy reaches 1.61 R. In this sense, they are called high entropy alloys. In
thermodynamics, entropy is a parameter characterizing the degree of disorder in a system.
The degree of disorder increases as the number of constituent elements increases. Unlike
traditional alloys that are based on one or two principle elements with other elements as
minor additions, high entropy alloys belong to multicomponent, non-principle element
alloy systems. Due to its breakthrough in traditional alloy design concepts, a new door for
material research has opened up, making thousands of material combinations possible. As
indicated by calculation, an array choice including 13 mutually miscible metallic elements
enables 7099 high entropy alloy systems with 5 to 13 elements in equal molar ratios [21]. It
provides a wide range of space and possibilities for developing new alloys.

Cantor et al. developed a series of multicomponent alloys. It was found that the
total number of phases is always well below the maximum equilibrium number allowed
by the Gibbs phase rule. Among them, a Fe20Cr20Mn20Ni20Co20 alloy possesses an FCC
structure [22]. This alloy was called “Cantor alloy”, and it was intensively studied by
other researchers. For example, Gludovatz et al. found that the Cantor alloy possesses
exceptional damage tolerance with tensile strengths above 1 GPa and fracture toughness
values exceeding 200 MPa·m1/2; it is fracture resistant for cryogenic application [23].
Shahmir et al. provided an overview on microstructural engineering of the Cantor alloy
in the past twenty years [24]. Zhang et al. proposed that phase formation of HEA can be
separated by mixing enthalpy ∆Hmix and atomic-size difference δ, it provides important
guidance in designing HEAs with desired phases and microstructure [25]. Yamabe-Mitarai
et al. studied the stability of Ti-containing high-entropy alloys, it was found that strengths
of the BCC HEAs were greater than those of the HCP HEAs at 873 K, they were also
greater than that of the commercial Ti alloy TIMETAL 834, indicating that BCC HEAs
may be applied at elevated temperatures [26]. Uporov et al. found that ScGdTbDyHo
HEA possesses good magnetocaloric properties and it can be influenced by the synthesis
route [27]. Most HEAs were prepared by casting method; recently it was found that
additive manufacturing characterized by net-shape processing is suitable for elevating the
properties of HEAs [28–30]. Overall, great progress has been made in phase forming rules,
composition design, processing, and application of HEA under various circumstances; they
may be potential materials applied in many fields, such as heat-resistant and wear-resistant
coatings, magnetic materials, and extreme high/low-temperature materials, etc.

Many factors could affect the phase formation of HEAs. In most cases, HEAs form
solid solutions (especially BCC, FCC, and HCP) or intermetallics. However, under certain
conditions, an amorphous structure could also be formed; this is high entropy amorphous
alloy (HEAA). HEAAs possess both the long-range disordered atomic structure stacking
characteristics of amorphous alloys and compositional complex characteristics in high
entropy alloys. They are a new type of multiple component-disordered alloy. In other
words, HEAA comprises five or more elements with an atomic ratio of each element
between 5% and 35%, while it possesses an amorphous structure at room temperature. From
a scientific research perspective, HEAAs provide a model material connecting amorphous
alloys and high entropy alloys; it is helpful for intensive research on the amorphous forming
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rule of amorphous alloys and the phase evolution mechanism of high entropy alloys. From
an industrial application perspective, due to complicated composition and structural
characteristics, HEAAs exhibit a series of unique physical, chemical, and mechanical
properties; they may be applied on certain specific occasions.

So far, positive progress has been achieved and dozens of HEAAs have been developed.
The first batch of HEAAs was reported in 2002 by Ma et al., namely Ti20Zr20Hf20Cu20M20
(M = Fe, Co, Ni) alloys. Among them, the Ti20Zr20Hf20Cu20Ni20 alloy can form bulk metal-
lic glass (BMG) with a critical diameter of 1.5 mm. They were called multicomponent
glassy alloys or non-base glassy alloys at that time [31]. Later in 2011, the research work
continued. Zhao et al. prepared a Zn20Ca20Sr20Yb20(Li0.55Mg0.45)20 BMG and it possesses
homogeneous flow behavior at room temperature [32]. Takeuchi et al. developed the
Pd20Pt20Cu20Ni20P20 alloy, its critical diameter reaches 10 mm and the concept of high
entropy bulk metallic glass (HE-BMG) was proposed [33]. Li et al. developed CaMgZnSrYb
HE-BMG with good biodegradable properties [34]. Later, Yao’s group developed a series of
Ti–Zr–(Hf)–Cu–Ni–Be HE-BMGs with good GFA [35–38]; the composition design method
will be discussed in detail later. Kim et al. developed Er–Gd–Y–Al–Co HE-BMGs and found
that the relation between the fragility and elastic properties of these alloys is quite different
from traditional BMGs [39]. Xu et al. developed Fe25Co25Ni25 (P, C, B, Si)25 HE-BMGs with
good magnetic properties [40]. Huo et al. developed a denary HE-BMG with a large magne-
tocaloric effect [41]. Bizhanova et al. developed quinary Zr31Ti27Be26Cu10M6 (M = Ag, Al,
Ni, V, Cr, and Fe) and senary Zr28Ti24Be23Cu9Ni10N6 (N = V, Cr, Fe, Ag, and Al) alloys with
critical diameters of 6–15 mm [42]. Inoue et al. found that Fe43Cr16Mo16C15B10 HE-BMG
and Zr–Al–(TM1, TM2) pseudo-HE-BMG can confer useful heat resistance at elevated tem-
peratures [43]. Wada et al. developed septenary Zr–Hf–Ti–Al–Co–Ni–Cu high-entropy bulk
metallic glasses with centimeter-scale glass-forming ability [44]. Panahi et al. studied the
glass forming range of (FeCoCrNi)–(B,Si) HEAAs, the crystallization process, and the influ-
ence of Si element on the microstructure was elucidated [45]. Szyba et al. studied structural
and electrochemical properties of resorbable Ca32Mg12Zn38Yb18–xBx (x = 1, 2, 3) metallic
glasses in Ringer’s solution; it was found that the HEAA had significantly higher corrosion
resistance than CaMgZn alloys [46]. Law et al. compared the magnetocaloric properties of
amorphous and crystalline HEAs; it was found that the magneto-entropy change of HEAAs
was generally larger than its crystalline counterpart, while the transition temperature was
relatively lower [47]. Calin et al. found that Ti–Zr–Nb–Hf–Si HEAAs exhibit excellent
corrosion properties in simulated body fluids. Moreover, its weak paramagnetic nature
and superior radiopacity offer compatibility with medical diagnostic imaging systems [48].
Jalali et al. studied the thermal and deformation behavior of Zr33Hf8Ti6Cu32Ni10Co5Al6
HE-BMG; the correlation between fragility, structural relaxation enthalpy, diffusion, free
volume and deformation behavior was discussed compared with the Cu–Zr–Al prototype
BMG [49,50]. Jia et al. created a nanosponge-like architecture from PdPtCuNiP HEAA; it
possesses outstanding hydrogen evolution reaction activity [51]. Makarov et al. studied
temperature dependencies of enthalpy change in the initial (as-quenched) and relaxed
(aged) HE-BMGs; the calculated results agreed with interstitialcy theory [52]. Alvi et al.
reported that a thin film of HfMoNbTaTiVWZr HEAA showed thermal stability up to
750 ◦C, and it can resist Ar-ion irradiation [53]. Ding et al. developed HE-BMG by similar
element substitution/addition [54]. Moreover, quinary HEAAs can also be designed from
the existing three kinds of ternary BMGs [55]. Cemin et al. designed NbTaTiVZr(O) HEAA
coating by magnetron sputtering deposition; the surface was completely passivated. More-
over, corrosion resistance and hydrophilicity were also increased compared with crystalline
samples [56]. Ohashi et al. designed a new Zr35Hf13Al11Ag8Ni8Cu25 HE-BMG based on
a high-entropy strategy, and its critical diameter reaches 20 mm [57]. Li et al. prepared a
TiNiSiCrCoAl high-entropy alloy coating on the Ti-6Al-4V surface; the matrix phase was
an amorphous structure, and the σ phase with an FCC structure precipitated. The coating
possesses good oxidation resistance at high temperatures [58]. Hussain et al. welded Cu–
Hf–Ni–Ti–Zr HE-BMG and Ti-22Al-27Nb alloys together to improve the tensile ductility of
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the latter alloy [59]. Ding prepared Ti–Zr–Cu–Ni–Al–Co HEAA/nanocrystalline coating on
Ti-6Al-4V surface to improve its wear resistance [60]. Ding et al. suggested that combining
elements from existing quartenary BMGs can also be an effective way of designing quinary
HEAAs [61]. Bazlov et al. found that the replacement of Mo by V in Fe–Co–Ni–Cr–(Mo,
V)–B HEA leads to thermal stability enhancement of the amorphous phase [62]. These
works established foundations for subsequent research on HEAAs.

In general, the HEAA family is still very small in thousands of high entropy alloys,
as well as in amorphous alloys. Most high entropy alloys do not form amorphous phases.
Meanwhile, lots of amorphous alloys contain three to 4fourelements instead of more than
five elements. The comprehensive theory/method for high entropy amorphous alloy
design was rarely seen. The technical difficulty in designing the composition of HEAAs lies
in the type and proportion of elements; there is a high probability that the designed high
entropy alloy may not obtain an amorphous structure by randomly choosing a combination
of elements. At present, research on the composition design strategy of HEAAs has not
been reported or discussed in-depth enough. This review attempts to summarize some
effective methods and strategies for the composition design of HEAAs (including HE-
BMGs), discuss the effect of high entropy on the property of the alloy, possible composition
design methods, and potential applications in the future. This work would be beneficial for
promoting the development and applications of HEAAs.

2. Composition Design of HEAAs
2.1. Designing HEAA Based on Quinary Bulk Metallic Glasses

It is well known that the key point for preparing amorphous alloys is avoiding crystal-
lization of high-temperature alloy melt during the cooling process. When an amorphous
alloy could be obtained at a low cooling rate, or the critical size for obtaining an amorphous
metallic sample is large, the alloy is recognized as possessing good or large glass-forming
ability (GFA). Among traditional amorphous alloys, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) [4]
and Ti32.8Zr30.2Ni5.3Cu9Be22.7 [15] quinary bulk amorphous alloys possess good GFA and a
critical diameter over 50 mm. It implies that the five elements, Ti, Zr, Cu, Ni, and Be, are
structural and chemically compatible to form bulk metallic glasses. So it is reasonable to
suppose that the Ti20Zr20Cu20Ni20Be20 high entropy alloy may possess good glass-forming
ability and a big glassy sample might be made.

Figure 1 shows the composition design approach of the Ti20Zr20Cu20Ni20Be20 HEAA.
An equal-atomic Ti20Zr20Cu20Ni20Be20 high entropy alloy was designed from quinary
BMGs with good GFA. The Ø3 mm Ti20Zr20Cu20Ni20Be20 rod sample was prepared by the
copper mold casting technique. Its XRD spectra was shown in Figure 2a. No sharp
diffraction peak corresponding to the crystalline phase was observed in the Ø3 mm
Ti20Zr20Cu20Ni20Be20 sample, indicating that this alloy possesses a fully amorphous struc-
ture. However, the critical diameter of the Ti20Zr20Cu20Ni20Be20 BMG sample is only 3 mm,
much smaller than that of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) and Ti32.8Zr30.2Ni5.3Cu9Be22.7
BMGs. The glass transition temperature (Tg), initial crystallization temperature (Tx), melt-
ing temperature (Tm), and liquidus temperature (Tl) are marked with arrows in Figure 3.
Tg, Tx, Tm, and Tl are measured to be 683 K, 729 K, 1076 K, and 1161 K, respectively.
This high-entropy BMG possesses a high compressive fracture strength of 2315 MPa for
Ø3 mm × 6 mm sample, higher than that of Vit1 alloy, which is attributed to high entropy
effect as well as high Ni content (Figure 4) [35]. In a uniaxial compressive experiment,
it breaks in a brittle manner without plasticity. The present result provides a successful
example of HEAA composition design by selecting five elements from quinary BMG with
good GFA, despite the fact that the GFA of the designed high-entropy BMG is not large
enough. Then, further study for improving the GFA of the high-entropy amorphous alloys
is important and necessary.
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2.2. Designing HEAAs by Similar Element Substitution/Addition

Similar element substitution/addition was proved to be an effective composition
design method in traditional bulk metallic glasses [12,13], so it is reasonable to suppose
that it may still work in HEAA. Hf and Zr are members of the same group in the pe-
riodic table of elements; they also possess similar atomic radii and chemical properties.
Then Hf was used to replace the Zr element in Ti20Zr20Cu20Ni20Be20 HE-BMG. There-
fore, a Ti20Hf20Cu20Ni20Be20 alloy was designed. It possesses an amorphous structure
and its critical diameter is 2 mm, as shown in Figure 5 [54]. Moreover, Nb and Zr
are also very close in the periodic table of elements, so Hf and Nb were added to the
Ti20Zr20Cu20Ni20Be20 HE-BMG as a sixth alloying element, respectively. Accordingly,
Ti16.7Zr16.7Nb16.7Cu16.7Ni16.7Be16.7 with a critical diameter of 1.5 mm (Figure 5) [54] and
Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 with a critical diameter of 15 mm (Figure 6a,b) [36]
were designed and developed. Surprisingly, the Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 senary
HE-BMG possesses a critical size 10 times that of Ti16.7Zr16.7Nb16.7Cu16.7Ni16.7Be16.7 HE-
BMG, and it refreshes our cognition about GFA in an equal-atomic high entropy alloy
system. Before this alloy, the largest HE-BMG with an equal-atomic concentration is the
Pd20Pt20Cu20Ni20P20 alloy, and its critical diameter is 10 mm by fluxing method [33]. The
composition design approach for the Ti20Hf20Cu20Ni20Be20 alloy, Ti16.7Zr16.7Nb16.7Cu16.7
Ni16.7Be16.7 alloy and Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 alloy is also demonstrated in
Figure 1.
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For Ti20Hf20Cu20Ni20Be20 alloy, Tg, Tx, Tm, and Tl are measured to be 717 K, 760 K,
1095 K, and 1220 K, respectively (Figure 7). Its compressive fracture strength is 2425 MPa
for Ø2 mm × 4 mm sample, and it also breaks without plasticity (Figure 8) [54]. For
Ti16.7Zr16.7Nb16.7Cu16.7Ni16.7Be16.7 alloy, Tg, Tx, Tm, and Tl are measured to be 684 K, 739 K,
1066 K, and 1218 K, respectively (Figure 7). Its yield strength, fracture strength, and
plasticity are 2330 MPa, 2450 MPa, and 0.5% for the Ø1.5 mm × 3 mm sample, respectively
(Figure 8) [54]. For the Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 alloy, Tg, Tx, Tm, and Tl are
measured to be 681 K, 751 K, 1019 K, and 1100 K, respectively (Figure 6c). Its yield strength,
fracture strength, and plasticity are 1943 MPa, 2064 MPa, and 0.6% for the Ø3 mm × 6 mm
sample, respectively (Figure 6d) [36]. These alloys possess high thermal stability and
high strength; the relationship between the high entropy effect and properties will be
discussed later.

The fracture surface morphology of Ti20Zr20Cu20Ni20Be20 was shown as an inset in
Figure 4. The nanowave structure is observed on the fracture surface. This is consistent
with its brittle failure feature. In contrast, a typical vein pattern has been observed for the
Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 alloy (inset in Figure 6d); it also coincides with its plastic
deformation behavior. The fracture surface morphology is in agreement with compression
experiment results [35,36].
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Figure 8. Stress–strain curves of Ø2 mm × 4 mm Ti20Hf20Cu20Ni20Be20 and Ø1.5 mm × 3 mm
Ti16.7Zr16.7Nb16.7Cu16.7Ni16.7Be16.7 sample [54].

Stimulated by the Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 alloy with good GFA (critical
diameter reaches 15 mm), the Ti–Zr–Hf–Cu–Ni–Be alloys with varied Cu/Ni ratio have
been studied since Cu and Ni are also very close in the periodic table of elements, and
the atomic radius difference is very small. Experimental results show that a series of
Ti20Zr20Hf20Be20(Cu(Cu20–xNix) (x = 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20) HE-BMGs with
critical diameters of 12–30 mm were designed and developed (Figure 9) [37,38]. The
composition design approach was also demonstrated in Figure 1. This series of high-
entropy alloys exhibit good glass-forming ability; all of them possess a critical diameter
larger than 12 mm and the best glass former, namely the Ti20Zr20Hf20Cu7.5Ni12.5Be20 alloy,
reaches a critical diameter of 30 mm, larger than most reported HE-BMGs. It indicates that
high entropy alloys can also possess good glass-forming ability.
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This progress indicates that similar element substitution/addition is an effective
composition design method in exploring HEAAs, just as in traditional BMGs. The present
results greatly enlarged the family of HEAAs with high GFA and inspired the researcher’s
interest in this field.

2.3. Designing HEAAs Based on Existing Ternary/Quaternary Bulk Metallic Glasses

After more than sixty years of research, lots of results were accumulated on bulk
metallic glasses, especially on ternary and quaternary amorphous alloys. Naturally, it
is supposed to mix five elements or more from these glass-forming alloys together to
form a high entropy alloy; maybe it is still very advantageous for amorphous structure
formation in terms of dense atomic packing (adequate atomic radius difference) and strong
elemental affinity (large negative mixing enthalpy). For example, the critical diameter of
Pd40Cu30Ni10P20 [5], Pd42.5Cu30Ni7.5P20 [16], and Pt47.5Cu27Ni9.5P21 [8] alloys are ≥75 mm,
80 mm, and 20 mm, respectively. Accordingly, the Pd20Pt20Cu20Ni20P20 HE-BMG with a
critical diameter of 10 mm [33] can be made.

Guided by the idea mentioned above, the authors applied for two patents for HEAA
composition design, and they were authorized. That is CN112981279B, “Designing quinary
high entropy amorphous alloys based on element combinations from three ternary amor-
phous alloys and its preparation method” [55], and CN112466409B, “Composition design
method for quinary high entropy amorphous alloys based on element combinations from
two quaternary amorphous alloys” [61], respectively. The main procedure can be divided
into three steps. (1) Find out several alloy compositions with good glass-forming ability re-
ported in literature; (2) Select elements from these alloys to form quinary high entropy alloy;
(3) Verify the structure of the newly developed alloy through experiments. It may possess
an amorphous structure with high probability, at least in a ribbon form, prepared by the
melt-spinning method. Some of them may also form bulk metallic glasses by copper mold
casting. For example, based on Zr60Al20Ni20 [2], Zr65Al7.5Cu27.5 [3] and Zr53Al23.5Co23.5 [9]
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amorphous alloys, a Zr30Al15Ni25Cu10Co20 HEAA ribbon was designed and fabricated
(Figure 10a). Based on Cu60Zr30Ti10 [6], Cu49Zr45Al6 [10], and Cu54Zr36Ag10 [11] alloys,
a Cu35Zr30Ti15Al5Ag15 HEAA was designed (Figure 10b). Based on Ni60Nb35Sn5 [7],
Ni50Nb28Zr22 [14], and Ni60Nb25Ti15 [20] alloys, a Ni35Nb25Sn5Zr10Ti25 HEAA was ob-
tained (Figure 10c) [55]. Quinary HEAAs can be designed from two kinds of quaternary
amorphous alloys in a similar way [61]. The current method is based on existing experi-
mental results, and it conforms to theoretical analysis; multiple high entropy amorphous
alloy components can be developed quickly. In this way, it can reduce the workload of trial
and error, resulting in high composition design efficiency.
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3. Correlation between Entropy and Property of High Entropy Amorphous Alloys

The most prominent feature of HEAA, as compared with traditional alloys, lies in its
high entropy. Then, the correlation between entropy and the properties of high-entropy
amorphous alloys becomes an interesting topic. For comparison, the thermal property (as
indicated by Tg, Tx, Tm, and Tl), mechanical property (as indicated by fracture strength
σmax), glass-forming ability (as indicated by critical diameter Dc), and mixing entropy
(∆Smix) of five typical alloys were listed in Table 1. It is very clear that the mixing en-
tropy of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) [4] and Ti32.8Zr30.2Ni5.3Cu9Be22.7 alloys [15]
is relatively lower compared with Ti20Zr20Cu20Ni20Be20, Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7
and Ti20Zr20Hf20Cu7.5Ni12.5Be20 alloys. In contrast, the former two alloys (No. 1–No. 2)
possess lower thermal stability (smaller Tg, Tl) and smaller fracture strength σmax than the
latter three alloys (No. 3–No. 5) in general. In fact, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) and
Ti32.8Zr30.2Ni5.3Cu9Be22.7 alloys can also be classified as HEAAs in a broad sense, while the
mixing entropy is slightly lower than equal-atomic or near equal-atomic alloys. Higher mix-
ing entropy leads to larger lattice distortion and sluggish atomic diffusion; consequently it
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obtained stronger ability against thermal/mechanical load. Therefore, high entropy exerts
a positive effect on the thermal stability and mechanical property of HEAAs.

Table 1. Thermal and mechanical properties of several Ti–Zr–(Hf)–Cu–Ni–Be HEAAs.

Alloy
No. Composition Tg

(K)
Tx
(K)

Tm
(K)

Tl
(K)

σmax
(MPa)

Dc
(mm)

∆Smix
(J/(mol·K)) Year

1 Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) 625 705 937 993 (<2000) >50 12.17 1993 [4]
2 Ti32.8Zr30.2Ni5.3Cu9Be22.7 611 655 - 961 1831 >50 11.94 2010 [15]
3 Ti20Zr20Cu20Ni20Be20 683 729 1076 1161 2315 3 13.38 2013 [35]
4 Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 681 751 1019 1100 2064 15 14.90 2014 [36]
5 Ti20Zr20Hf20Cu7.5Ni12.5Be20 632 684 951 1040 2124 30 14.53 2015 [38]

The factors influencing GFA are very complicated. On the one hand, as entropy
increased, the melt tends to be very stable especially under high temperature, which is
beneficial for glass formation (see comparison of Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 and
Ti20Zr20Cu20Ni20Be20 in Table 1). On the other hand, the higher liquidus temperature is
harmful to glass formation. Overall, the glass-forming ability of the latter three alloys
(No. 3–No. 5) in Table 1 possess poorer glass-forming ability (smaller Dc) than the former
two alloys (No. 1–No. 2). Reducing the melting point of an alloy (closer to the eutectic
composition point) may be beneficial for amorphous formation. The liquidus temperature
of No. 1–No. 2 is lower than No. 3–No. 5 alloys in Table 1; they possess larger GFA despite
their lower mixing entropy. This can also be verified in the Ti20Zr20Hf20Be20Cu20−xNix
(x = 0–20) alloy system [37,38]. That is to say, the Ti20Zr20Hf20Cu7.5Ni12.5Be20 sample
demonstrates the lowest liquidus temperature (1040 K) while the largest critical diam-
eter (30 mm) in the Ti20Zr20Hf20Be20Cu20−xNix (x = 0–20) alloy system [37,38]. Its en-
tropy is very high, but not the highest compared with Ti20Zr20Hf20Cu10Ni10Be20 [38] and
Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 alloys [36]. The glass-forming ability is somewhat a
competition between the high entropy effect and eutectic point effect in the current Ti–Zr–
Hf–Cu–Ni–Be alloy system. However, the amorphous formation mechanism needs more
in-depth investigation.

4. Potential Composition Design Method for HEAAs

HEAA is an intersection of amorphous alloys and high entropy alloys. Therefore,
research results on the theory of amorphous formation and phase formation rules of high
entropy alloy phases can provide useful inspiration. For example, Takeuchi et al. proposed
that the composition–configurational entropy (C–CE) diagram is helpful in designing
Pd20Pt20(TM1)20(TM2)20P20 alloys (TM1, TM2 = Fe, Co, Ni, Cu) [63]. They also pointed out
that Sσ/kB − ∆Hmix and a phase diagram can play an important role in HEAA composition
design [64]. Moreover, Li et al. proposed a simplified combinatorial approach to design
high-strength, high-temperature Ir–Ni–Ta–(B) bulk metallic glass; the key points lie in the
relationship between glass-forming ability and electrical resistivity. By high-throughput
methods, the efficiency of the experiment was enhanced greatly [65]. Wu et al. report
a rapid design of superior high-entropy alloys based on existing eutectic high-entropy
alloys [66]. Eutectic point criteria are very important for amorphous alloy formation. These
research progress in amorphous alloys and high entropy alloys will play an important role
in the future development of HEAAs.

Although several methods have been mentioned above, most of them are still based
on individual experience and trial-and-error methods. It is very time-consuming. In
recent years, with the development of big data and its close integration with various
disciplines, the application of artificial intelligence technology has become increasingly
common. Machine learning (ML) especially was applied in the development of amorphous
alloys and high entropy alloys. For example, Ren et al. trained an ML model to find new
metallic glass in the Co–V–Zr alloys; accuracy was improved after refinement, and it can
provide guidance to the rapid discovery of three new glass-forming systems [67]. Huang
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et al. employed ML algorithms to explore phase selection rules efficiently; it was found that
the trained ANN model performs better than SVM and KNN in accuracy [68]. Mastropietro
et al. used multiple linear regression and tree boosting to predict the maximum amorphous
diameter of Fe-based BMGs; the R2 value was increased from 0.71 to 0.90 after training [69].
Reddy et al. predicted the glass-forming ability of a BMG by ML based on elemental
composition alone [70]. Schultz et al. tried to link characteristic temperature and glass-
forming ability in BMGs by ML; it was found that the critical cooling rate (Rc) might
be a better target for machine learning model prediction than critical casting diameter
(Dc) [71]. Rao et al. identified two high-entropy Invar alloys with extremely low thermal
expansion coefficients via ML [72]. Vazquez et al. assessed the elastic properties of Nb–Ta–
Mo–W–V-based HEAs via descriptor-based ML framework models [73]. Wieczerzak et al.
investigated the mechanical properties of the CuAgZr metallic glass system assisted by
ML. It was found that leveraging the fine-tuned MLP algorithm enabled the prediction of
the hardness of untested alloys in the virtual space, and can serve as a valuable guide for
further exploration [74]. Dewangan et al. presented a review of applications of artificial
neural network (ANN) modeling in predicting phase formation, microstructures, and
mechanical properties of HEAs [75]. In general, intelligent technologies represented by
machine learning may promote the development of HEAAs in the near future.

5. Potential Applications for HEAAs in Future

The ultimate goal of developing new materials is to search for industrial applications
and promote social development. Due to their complicated composition and structural
characteristics, high entropy amorphous alloys exhibit a series of unique physical, chemical,
and mechanical properties, and they may be applied in many fields.

Biomedical application. For example, the Ca20Mg20Zn20Sr20Yb20 HEAA as a biomate-
rial for orthopedic applications was investigated in both in vitro and in vivo environments.
Results showed that it could stimulate the proliferation and differentiation of cultured
osteoblasts. Moreover, they did not show any obvious degradation after 4 weeks of implan-
tation, they can promote osteogenesis and new bone formation after 2 weeks of implantation
(Figure 11) [34]. The Ti–Zr–Nb–Hf–Si HEAA possesses high thermal stability and excellent
corrosion properties in simulated body fluid. Moreover, the weak paramagnetic nature
and superior radiopacity offer compatibility with medical diagnostic imaging systems [48].
The NbTaTiVZr(O) HEAA was also reported to possess enhanced surface protection and
superior biocompatibility [56]. It means that HEAA may become a potential candidate for
biomedical applications.

Ferromagnetic application. For example, Fe25Co25Ni25(P, C, B, Si)25 alloys possess
high strength (~3000 MPa), high saturation magnetization (>0.80 T), low coercive force
(~1 A/m), and high effective permeability (Figure 12) [40]. They may be applied as soft
magnetic materials.

Magnetic refrigerant. For example, Gd10Tb10Dy10Ho10Er10Y10Ni10Co10Ag10Al10 HEAA
showed large magnetic entropy changes as the temperature changed. The reason can be
attributed to a combination of spin glass behavior and complicated compositions. Moreover,
the magnetocaloric properties of HEAAs can be easily adjusted by changing elements or
configurational entropy (Figure 13) [41]. The large refrigerant capacity means that HEAAs
are promising candidate materials for use as magnetic refrigerants.
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Catalytic performance. For example, PdPtCuNiP high entropy metallic glass ribbon
with a nanosponge-like surface morphology displays outstanding hydrogen evolution
reaction activity in both alkaline and acidic conditions, outperforming most currently
available electro-catalysts (Figure 14). Moreover, the process is very stable even after 100 h,
indicating great potential for commercialization [51].
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Wear-resistant material. For example, Ti–Zr–Cu–Ni–Al–Co high entropy amorphous/
nanocrystalline coatings processed by laser cladding possess characteristics of high hard-
ness, fine microstructure, and good wear resistance. Its microstructure is demonstrated in
Figure 15. The Vickers hardness exceeds 790 HV, and its wear loss amount was reduced to
half of the TC4 matrix, demonstrating excellent wear resistance properties. It indicates that
HEAA may be a suitable material for wear-resistant applications [60].
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6. Summary 

In general, the high entropy amorphous alloy (HEAA) is a kind of material with a 
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for designing HEAAs; it provides possibilities for utilizing existing research data to 

develop more new HEAAs. 

(2) The glass-forming ability of HEAAs was affected by many factors; both the high-

entropy effect and eutectic point criteria could impose positive influences. 

(3) Due to their unique properties, HEAAs possess potential applications as biomedical 
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