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Abstract: In the present work, the effects of aging treatment on the microstructures of a TC18 alloy
are studied. The influence of aging treatment on the tensile properties and failure mechanisms is
systematically analyzed. It is found that the size and morphology of the primary α (αp) phases are
insensitive to aging temperature and time. Furthermore, the aging temperature and time dramatically
influence the precipitation of the secondary α (αs) phases. Massive αs phases precipitate and
gradually coarsen, and finally weave together by increasing the aging temperature or extending
the aging time. The variations in αp and αs phases induced by aging parameters also affect the
mechanical properties. Both yield strength (YS) and ultimate tensile strength (UTS) first increase
and then decrease by increasing the aging temperature and time, while ductility first decreases
and then increases. There is an excellent balance between the strengths and ductility. When the
aging temperature is changed from 450 to 550 ◦C, YS varies from 1238.6 to 1381.6 MPa, UTS varies
from 1363.2 to 1516.8 MPa, and the moderate elongation ranges from 9.0% to 10.3%. These results
reveal that the thickness of αs phases is responsible for material strengths, while the content of α
phases can enhance material ductility. The ductile characteristics of the alloy with coarser αs phases
are more obvious than those with thinner αs phases. Therefore, the aging treatment is helpful for
the precipitation and homogeneous distribution of αs phases, which are essential for balancing the
strengths and ductility of the studied Ti alloy.

Keywords: TC18 alloy; aging treatment; microstructures; mechanical properties; fracture mechanisms

1. Introduction

Near-β-Ti alloys such as Ti-10V-2Fe-3Al, Ti-5Al-5V-5Mo-3Cr, and Ti-5Al-5Mo-5V-1Cr-
1Fe (TC18) have been widely used in the aeronautical industry due to their excellent
performance in strength, toughness, and corrosion resistance [1,2]. In general, the relation-
ship between the desired microstructures and excellent mechanical properties of Ti alloys
is inextricable, and the properties can be adjusted by tailoring the proportions or morpholo-
gies of α or β phases using heat treatment [3–5]. Hence, the diversity of microstructures
and the complex influence of microstructure on properties in Ti alloys have stimulated
ever-increasing research interests [6–9].

Usually, α phases are crucial to balance the mechanical properties, such as the strength
and ductility of Ti alloys [10–14]. Duplex microstructures possess both good ductility and
high strengths compared with other typical microstructures (equiaxed, widmannstatten,
and basket-weave microstructures) [15–19]. The duplex microstructures can be induced by
typical thermo-mechanical paths [20–27], in particular the aging conditions. Therefore, in
recent decades, some studies have contributed to obtaining these considerable microstruc-
tures of Ti alloys by solution plus aging treatment [17,22,26]. Solution plus single aging was
usually used by some researchers who found that the αp phases are highly sensitive to the
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solution temperature, while the αs phases are greatly affected by aging conditions [16,22].
Moreover, the precipitation of αs phases could significantly enhance the properties of
Ti alloys [28–30]. Shaha et al. [31] reported fine α phases and low residual stress in the
Ti55511 alloy, resulting in improved mechanical properties. Qiu [32] provided a rapid heat
treatment (RHT) and subsequent aging for a Ti55511 alloy and avoided the formation of
the ω phase, which results in refined αs precipitations. Also, the uniform and ultra-fine
αs phases were obtained by solution plus duplex aging [33]. Liu et al. [34] also reported
a two-step aging treatment for a Ti55511 alloy and obtained the uniformly distributed αp
and αs phases. In recent years, multi-stage treatment methods have been employed to
optimize the mechanical properties of Ti alloys [35]. It is indicated that the content of the
αp phase is relatively stable after the multi-stage treatment, while the size of the αs phase
becomes non-uniform and the content of the αs phase increases with an increasing cooling
rate. Additionally, the influence of aged microstructures on mechanical properties was in-
vestigated. Guo et al. [16] demonstrated that the strength of the damage-tolerant Ti-6Al-4V
(TC4-DT) alloy with duplex microstructures is minimally impacted by the αp phase, while
ductility significantly increases as the content of the αp phase increases. In other words,
αs phases are vital for improving strength and ductility. Also, the αp phase can improve
the fracture toughness by changing the crack propagation paths and augmenting energy
consumption [36]. Shi et al. [37] found that the presence of weaved lamellar α phases is
beneficial for improving the fracture toughness of a Ti-55511 alloy. Aeby-Gautier et al. [38]
examined that the formation of the αs phase during aging can increase tensile strength.
Hence, the tailoring of αp and αs phases is the key to obtaining excellent properties of Ti
alloys with duplex microstructures.

Nevertheless, previous researchers have devoted themselves to elaborating on the
influence of heating paths on the morphologies and properties of phases. But, less attention
was paid to the interactions between heat treatment, phases, mechanical properties, and the
quantitative characterization of αp and αs phases in aged near-β-Ti alloys. Furthermore,
the relationship between the content/size of phase and tensile properties is also inexplicit.
The quantitative relation has also not been directly testified by experimental evidence
under different aging conditions. Especially, the evolution law of αs phases and mechanical
properties under different aging conditions are less involved. Therefore, the influences
of aging conditions on the content and morphologies of αp and αs phases in a near-β-Ti
alloy (TC18) are analyzed. The effects of crucial microstructure features on mechanical
properties are also discussed. Subsequently, the tensile failure mechanisms are revealed.
These experimental findings and understandings are useful for improving the performance
of the TC18 alloy.

2. Material and Experiment Procedures

The chemical compositions (wt.%) of the studied TC18 alloy are presented as follows:
5.16 Al, 4.92 Mo, 4.94 V, 1.10 Cr, 0.98 Fe, and balance Ti. The transition temperature of the
full β phase is 875 ± 5 ◦C [1,5]. The original microstructures are presented in Figure 1a,b.
There are some discontinuous grain boundary α phases (αGB), αp phases, αs phases, and a β

matrix (βm). The solid solution combined with aging treatment remains a crucial approach
for enhancing the mechanical properties of Ti alloys. According to the current national
standards of the People’s Republic of China (GB/T 37584-2019 [39]), the temperature and
time parameters are specified for the heat treatment process of the studied alloy. Specifically,
for the solution treatment, the recommended upper limit of temperature is 780 ◦C at a
duration is 3 h. Similarly, for the aging treatment, the recommended upper limit is 600 ◦C
for 10 h. Consequently, all specimens were pretreated at 780 ◦C for 1 h and then cooled
by water quenching (WQ) before aging. The pretreated microstructure is displayed in
Figure 1c, and Figure 1d shows the size distribution of αp phases. Several aging treatment
paths were designed, and an air cooling (AC) method was performed after aging treatment,
as presented in Table 1.



Materials 2024, 17, 570 3 of 15

Materials 2024, 17, x FOR PEER REVIEW 3 of 15 
 

 

in Figure 1c, and Figure 1d shows the size distribution of αp phases. Several aging treat-
ment paths were designed, and an air cooling (AC) method was performed after aging 
treatment, as presented in Table 1. 

  
(a) (b) 

  
(c) (d) 

Figure 1. Microstructures of the as-received alloy: (a) SEM observation; (b) TEM observation (bright 
field); (c) SEM observation (pretreated); (d) particle size distribution of αp phases (pretreated). 

Table 1. Experimental schemes for heat treatment. 

Route No. Pretreatment 
Aging Condition 

Temperature (°C) Hold Time (h) Cooling Method 
1 

780 °C/1 h/WQ 

400 

4 

AC 

2 450 
3 500 
4 550 
5 600  

2–1 450 1 
2–2 450 2 
2–3 450 8 

The specimens for metallographic examination were cut into slices using electrical 
discharge machining. The section of each specimen was prepared using standard metal-
lurgical procedures. The specimens were first abraded by SiC paper from grid 400# to 
2000# and polished with Al2O3 suspension liquid and then etched in a solution mixed with 
2% HF, 5% HNO3, and 93% H2O [5]. In order to carry out transmission electron micros-
copy (TEM) observation, the thin foils were first ground by SiC paper and polished using 
twin jet electrochemical polishing in a solution of 5% perchloric acid, 35% normal butanol, 
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Figure 1. Microstructures of the as-received alloy: (a) SEM observation; (b) TEM observation (bright
field); (c) SEM observation (pretreated); (d) particle size distribution of αp phases (pretreated).

Table 1. Experimental schemes for heat treatment.

Route No. Pretreatment
Aging Condition

Temperature (◦C) Hold Time (h) Cooling Method

1

780 ◦C/1 h/WQ

400

4

AC

2 450
3 500
4 550
5 600

2–1 450 1
2–2 450 2
2–3 450 8

The specimens for metallographic examination were cut into slices using electrical
discharge machining. The section of each specimen was prepared using standard metallur-
gical procedures. The specimens were first abraded by SiC paper from grid 400# to 2000#
and polished with Al2O3 suspension liquid and then etched in a solution mixed with 2%
HF, 5% HNO3, and 93% H2O [5]. In order to carry out transmission electron microscopy
(TEM) observation, the thin foils were first ground by SiC paper and polished using twin
jet electrochemical polishing in a solution of 5% perchloric acid, 35% normal butanol, and
60% methanol. The microstructure and fracture morphologies were characterized by the
scanning electron microscopy (SEM) (FEI Electron Optics B.V; Prague, Czech Republic).
The TEM (Tecnai G2 F20, FEI Company, Hillsboro, OR, USA) figures were captured by
a Tecnai G2-20 microscope. Subsequently, Image-pro plus 6.0 software was employed to
measure the content, grain diameters, and thickness of the phases based on three images
from distinct areas. Tensile specimens with a gauge length of 30 mm and a diameter of
6 mm were prepared and then polished with 400-1000# grid SiC paper. The tensile tests
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were performed in an MTS-GWT2105 test machine (MTS System Corporation, Eden Prairie,
MN, USA). With a tensile rate of 1.8 mm/min, three samples were tested under each
tested condition. The reported results represent the average values obtained from these
replicate tests.

3. Results and Discussion
3.1. Effects of Aging Conditions on Microstructures
3.1.1. Effects of Aging Temperature

Figure 2 illustrates the influence of aging temperature on the microstructures and
the size distribution of αp phases. The αp phases mainly distribute at β grain boundaries,
and the size of the β grain is only a few tens of microns. This indicates that there is
a pinning effect induced by αp phases on the growth of the β grain during aging treatment
(Figure 2a,c,e,g). By increasing the temperature, the size uniformity of αp phase gradually
decreases but the average size slightly increases. The average sizes of the αp phase have
been estimated to be 3.11 µm, 3.13 µm, 3.18 µm, and 3.24 µm (Figure 2b,d,f,h), respectively,
when the alloy was aged at 450 ◦C, 500 ◦C, 550 ◦C, and 600 ◦C. The average size of the
αp phase is less than 3.3 µm, and the growth of the αp phase is restricted during aging
treatment. The morphology, size, and volume fraction of αp phases exhibit overall stability
or slight variations with the aging temperature (Table 2). This trend aligns with observations
commonly reported in the literature [30]. There are two potential reasons. First, the onset
temperature for the transformation from α phase to β phase in α + β titanium alloys is
typically around 700 ◦C [30]. Given that the aging temperature is lower than this threshold,
there is no transformation from the α phase to β phase. Second, the metastable β phase,
following the solid solution, undergoes solute redistribution in the aging process. This leads
to the precipitation of the metastable ω phase, facilitating the formation of the αs phase.
The morphology of the precipitated αs phase is primarily lamellar, exhibiting a distinct
difference from the morphology of the αp phase. In the aging process, the transformation
of metastable β phases to α phases is dominated by element diffusion. Therefore, the
precipitation of αs phases is slow, owing to the low driving force at lower temperatures.
The αs phases precipitate not only at the α/β interface but also within βm. The precipitation
is dominated by increasing the diffusion driving force as the temperature is increased [40].
In summary, the effects of temperature on αp phases are negligible because the metastable
β phases mainly transform into αs phases during the aging treatment.
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Figure 2. Microstructures and the size distribution of αp phases of the TC18 alloy aged at (a,b) 450 ◦C;
(c,d) 500 ◦C; (e,f) 550 ◦C; (g,h) 600 ◦C.

Table 2. Content and size of phases with different aging conditions.

Aging Condition a The Content of α
Phases (%)

The Content of αp
Phases (%)

The Diameter of
αp Phases (µm)

The Content of αs
Phases (%)

The Thickness of
αs Phases (µm)

450 ◦C 27.61 ± 2.12 18.34 ± 0.82 3.11 ± 0.09 9.27 ± 0.58 0.30 ± 0.027
500 ◦C 23.79 ± 2.78 16.87 ± 1.17 3.13 ± 0.07 6.92 ± 0.87 0.35 ± 0.016
550 ◦C 27.01 ± 1.05 18.56 ± 1.03 3.18 ± 0.14 8.45 ± 0.69 0.45 ± 0.021
600 ◦C 25.89 ± 1.53 18.57 ± 0.69 3.24 ± 0.12 7.32 ± 0.53 0.47 ± 0.017

a Aging time of 4 h and subsequent AC.

Figure 3 shows the influence of aging temperature on the formation of αs phases.
A few dislocations and substructures are found. The precipitated αs phases are cross-
distributed irregularly, and their thickness varies from 0.2 to 0.6 µm. Also, the orientations
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of the precipitated αs phases are random [41]. As illustrated in Figure 3a, αs phases with
a fine acicular shape precipitate, and several unaged areas appear in the βm at an aging
temperature of 400 ◦C. Meanwhile, distinguishing αs phases from βm is tricky because
the boundaries of αs phases are blurred. Due to the high content of β-stable elements in
βm and a smaller driving force for solute atom diffusion at lower aging temperatures, the
transformation for βm to αs phases is insufficient (Figure 3a). Therefore, the content of αs
phases is extremely low, and the average thickness is small at lower aging temperatures. As
the temperature increases, the massive αs phases precipitate in a complete aging process
(Figure 3b–d). Moreover, the αs phases coarsen and tightly weave together. The αs/β
interfaces are visible, especially at high aging temperatures, such as 600 ◦C, and the average
thickness of αs phases increases to about 0.47 µm (Table 2). So, αs phases are sensitive
to the variations in aging temperature, and the coarsening rate of αs phases is obviously
affected by the diffusivity of solute atoms [42].
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(e) 600 ◦C.

3.1.2. Effects of Aging Time

Figure 4 illustrates the influence of aging time on the microstructures and the par-
ticle size distribution of the αp phase when the alloy was aged at 450 ◦C. As shown in
Figure 4a–c, there are spherical α phases, αGB, and β transition phases. By prolonging the
aging time, the variations of αp phases are inconspicuous. The particle size distribution and
average size of αp phases at different aging times are shown in Figure 4d–f. The average
size and content of αp phases fluctuate only slightly by increasing time, and the average
sizes are 3.15, 3.11, and 3.04 µm, respectively, when the aging times are 1, 4, and 8 h. The
content of αp phases shows an opposite pattern, which first decreases and then increases,
and the corresponding contents of αp phases are 16.35%, 18.34%, and 16.53%, respectively.
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Figure 4. Microstructures and size distributions of αp phases after being aged at 450 ◦C and the aging
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Figure 5 shows the influence of aging time on the αs phases at different aging temper-
atures. At 450 ◦C, the fine acicular αs phases appear in βm when aged for 2 h (Figure 5a).
When the aging time is 4 h, the morphologies of αs phases change significantly and display
a typical coarsening behavior (Figure 5b). At 500 ◦C, the same experimental results are
obtained by increasing the aging time (Figure 5c,d). At both 450 ◦C and 500 ◦C, αs phases
become coarser, and the spaces between adjacent αs phases become narrow by increasing
the aging time. Actually, the thickness and interlamellar space of αs phases are a little
varied compared with the results shown in Figure 3. So, it can be concluded that the
influence of aging time on the microstructures is weaker than aging temperature.

Materials 2024, 17, x FOR PEER REVIEW 7 of 15 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Microstructures and size distributions of αp phases after being aged at 450 °C and the 
aging times of (a,d) 1 h; (b,e) 4 h; (c,f) 8 h. 

Figure 5 shows the influence of aging time on the αs phases at different aging tem-
peratures. At 450 °C, the fine acicular αs phases appear in βm when aged for 2 h (Figure 
5a). When the aging time is 4 h, the morphologies of αs phases change significantly and 
display a typical coarsening behavior (Figure 5b). At 500 °C, the same experimental results 
are obtained by increasing the aging time (Figure 5c,d). At both 450 °C and 500 °C, αs 
phases become coarser, and the spaces between adjacent αs phases become narrow by in-
creasing the aging time. Actually, the thickness and interlamellar space of αs phases are a 
little varied compared with the results shown in Figure 3. So, it can be concluded that the 
influence of aging time on the microstructures is weaker than aging temperature. 

  
(a) (b) 

Figure 5. Cont.



Materials 2024, 17, 570 8 of 15Materials 2024, 17, x FOR PEER REVIEW 8 of 15 
 

 

  
(c) (d) 

Figure 5. TEM micrographs of the TC18 alloy aged at (a) 450 °C/2 h/AC; (b) 450 °C/4 h/AC; (c) 500 
°C/4 h/AC; (d) 500 °C/8 h/AC. 

3.2. Effects of Aging Conditions on Tensile Properties 
3.2.1. Tensile Properties of the Aged TC18 Alloy 

Table 3 gives the tensile properties of the TC18 alloy aged at different aging condi-
tions. It is apparent that both aging temperature and time are responsible for the strength 
and ductility of the aged alloy. Compared with the alloy without aging treatment, the 
strength or ductility of the aged alloy has been improved. As the aging temperature in-
creases, the strength increases first and then decreases. An excellent balance exists be-
tween the strength and ductility of the alloy aged at 450–550 °C. The yield strength (YS) 
ranges from 1238.6 to 1381.6 MPa, and the ultimate tensile strength (UTS) ranges from 
1363.2 to 1516.8 MPa. Also, the moderate elongation (δ) ranges from 9.0% to 10.3%. When 
aged at 600 °C, UTS and YS are almost equal to those at 400 °C, while ductility is obviously 
different. There is a sharp increase in ductility (~15.1%). Yin et al. [43] reported that the 
highest acceptable YS and UTS are 1023 and 1122 MPa in an aged TC18 alloy, respectively, 
with an excellent ductility of 13.8%. They asserted that the excellent ductility is attributed 
to the large-size and high-volume fraction of the αp phase. Recently, Li et al. [44] obtained 
a high YS and UTS of 1456 MPa and 1504 MPa, respectively, in a TC18 alloy. However, 
this improvement in strength is accompanied by a poor ductility of 1.5%. The higher 
strength and poor ductility can be ascribed to the smaller interlamellar spacing between 
αs phases following a three-step heat treatment approach. Indeed, it is evident that the 
trade-off for excellent strength is poor ductility. Unlike common understandings, only a 
0.9% loss of UTS (~12 MPa) can result in a ~34% increase in the elongation of the alloy. To 
further reveal the influences of aging time on the properties, the specimens were aged at 
450 °C for 2, 4, and 8 h. UTS and YS are still relatively high (1263.4–1516.9 MPa), while 
ductility shows a concave parabolic tendency. In addition, the influence of aging temper-
ature on tensile properties is more obvious than aging time, which is consistent with the 
analyses in Section 3.1. So, the αs phases induced by aging treatment can optimize the 
properties of the TC18 alloy. 

Table 3. Tensile properties of the alloy aged for different conditions. 

Pretreatment Aging Conditions YS/MPa UTS/MPa Elongation (δ)/% 

780 °C/1 h/WQ 

/ 1220.2 1359.9 9.1 
400 °C/4 h/AC 1157.9 1248.2 11.3 
450 °C/2 h/AC 1263.4 1406.9 12.5 
450 °C/4 h/AC 1381.6 1516.8 9.3 
450 °C/8 h/AC 1353.7 1516.9 11.2 
500 °C/4 h/AC 1358.3 1463.5 9.0 
550 °C/4 h/AC 1238.6 1363.2 10.3 

Figure 5. TEM micrographs of the TC18 alloy aged at (a) 450 ◦C/2 h/AC; (b) 450 ◦C/4 h/AC;
(c) 500 ◦C/4 h/AC; (d) 500 ◦C/8 h/AC.

3.2. Effects of Aging Conditions on Tensile Properties
3.2.1. Tensile Properties of the Aged TC18 Alloy

Table 3 gives the tensile properties of the TC18 alloy aged at different aging conditions.
It is apparent that both aging temperature and time are responsible for the strength and
ductility of the aged alloy. Compared with the alloy without aging treatment, the strength
or ductility of the aged alloy has been improved. As the aging temperature increases,
the strength increases first and then decreases. An excellent balance exists between the
strength and ductility of the alloy aged at 450–550 ◦C. The yield strength (YS) ranges
from 1238.6 to 1381.6 MPa, and the ultimate tensile strength (UTS) ranges from 1363.2 to
1516.8 MPa. Also, the moderate elongation (δ) ranges from 9.0% to 10.3%. When aged
at 600 ◦C, UTS and YS are almost equal to those at 400 ◦C, while ductility is obviously
different. There is a sharp increase in ductility (~15.1%). Yin et al. [43] reported that the
highest acceptable YS and UTS are 1023 and 1122 MPa in an aged TC18 alloy, respectively,
with an excellent ductility of 13.8%. They asserted that the excellent ductility is attributed
to the large-size and high-volume fraction of the αp phase. Recently, Li et al. [44] obtained
a high YS and UTS of 1456 MPa and 1504 MPa, respectively, in a TC18 alloy. However, this
improvement in strength is accompanied by a poor ductility of 1.5%. The higher strength
and poor ductility can be ascribed to the smaller interlamellar spacing between αs phases
following a three-step heat treatment approach. Indeed, it is evident that the trade-off
for excellent strength is poor ductility. Unlike common understandings, only a 0.9% loss
of UTS (~12 MPa) can result in a ~34% increase in the elongation of the alloy. To further
reveal the influences of aging time on the properties, the specimens were aged at 450 ◦C
for 2, 4, and 8 h. UTS and YS are still relatively high (1263.4–1516.9 MPa), while ductility
shows a concave parabolic tendency. In addition, the influence of aging temperature on
tensile properties is more obvious than aging time, which is consistent with the analyses in
Section 3.1. So, the αs phases induced by aging treatment can optimize the properties of
the TC18 alloy.

Table 3. Tensile properties of the alloy aged for different conditions.

Pretreatment Aging Conditions YS/MPa UTS/MPa Elongation (δ)/%

780 ◦C/1 h/WQ

/ 1220.2 1359.9 9.1
400 ◦C/4 h/AC 1157.9 1248.2 11.3
450 ◦C/2 h/AC 1263.4 1406.9 12.5
450 ◦C/4 h/AC 1381.6 1516.8 9.3
450 ◦C/8 h/AC 1353.7 1516.9 11.2
500 ◦C/4 h/AC 1358.3 1463.5 9.0
550 ◦C/4 h/AC 1238.6 1363.2 10.3
600 ◦C/4 h/AC 1156.8 1236.7 15.1
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3.2.2. Effects of Microstructural Features on the Tensile Properties of the Aged TC18 Alloy

The experimental findings above reveal the effects of aging conditions on microstruc-
tures, which result in the difference in properties. In general, the morphologies of αs phases
mainly determine the strengths, and the content of the αp phase and the size of the β

grain mainly control the ductility of near-β-Ti alloys with duplex microstructures [45–47].
Due to the specimens being pretreated by the same method in this work, the size of the
β grain is insignificant in discussing the factors affecting the mechanical properties. As
a rule, the strength of the near-β-Ti alloy increases by decreasing the aging temperature
and time after the solution within the α + β region [28,41,46]. The trade-off for excellent
strength is poor ductility. In fact, some differences with the aforementioned standpoints
are presented in this work, e.g., both the strengths and ductility decrease (aged at 450 and
500 ◦C for 4 h). Such slightly contradictory phenomena might be a consequence of the
competitive effects of the content of the α phase and the thickness of the αs phase, i.e., the
content of the α phase dramatically decreases (27.61–23.79%) while the thickness of the αs
phase slightly increases (0.30 to 0.35 µm, as shown in Table 2). The detailed changing trend
of feature parameters is summarized in Table 4. The tensile strengths and ductility at an
aging temperature of 500 ◦C are slightly reduced compared to those at 450 ◦C. Furthermore,
the tensile strength continually decreases by increasing the content of the α phase or the
thickness of the αs phase when the aging temperature exceeds 500 ◦C (Table 4).

Table 4. The detailed changing trend of feature parameters.

Temperature The Content of α Phases The Thickness of αs Phases The Tensile Strength Ductility

450→500 ◦C ↓ ↑ ↓ ↓
500→550 ◦C ↑ ↑ ↓ ↑
550→600 ◦C ↓ ↑ ↓ ↑

Symbols “↑” and “↓” represent an increase and decrease, respectively.

As described above, the fine acicular αs phases precipitate in the βm during aging
treatment at low temperatures, such as 400 and 450 ◦C. These acicular αs phases can
create massive phase boundaries that act as dislocation barriers and effectively block the
dislocations at interfaces. Thus, the strength increases. Nevertheless, the strength of the
alloy aged at 450 ◦C is better than 400 ◦C. In fact, although the size of precipitated αs phases
is extremely fine when aged at 400 ◦C, its content is low due to the lower diffusion driving
force. Therefore, the strength is lower than 450 ◦C. It must be mentioned that αs phases
become coarse by increasing the temperature and time. These coarse αs phases increase
the slip distance of dislocations and decrease the number of α/β phase boundaries. So,
the strength decreases with increasing temperature and time. As indicated in the other
report [48], the cavities are formed at the α/β phase interfaces during plastic deformation.
Moreover, the cavities grow along with the α/β interfaces and coarsen or gather to form
microcracks. The free path of the cavities grew, and the microcracks were hindered by
α phases. Therefore, the more α phases there are, the shorter the free path is. These
cavities encounter more obstacles in the growing progress [16], which improves ductility.
In addition, the dislocations are activated at α/β interfaces and first slip in α phases with
a lower resolved shear stress [38]. An increasing content in the α phase can increase the
degree of uniform plastic deformation and thus improve ductility. Also, the mean-free path
of dislocations (or slip) increases by increasing the sizes of αs phases [22]. Especially at
600 ◦C, the content of the α phase tends to be stable (~26%), but ductility still is better than
at 550 ◦C. This is a result of the coarsening and homogenization of the αs phase. Therefore,
the coarse αs phases induced by increasing the temperature and time can contribute to the
improvement of ductility. In short, the thickness of the αs phase is responsible for strength,
while the content of the α phase can enhance ductility.
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3.2.3. Crucial Roles Affecting Tensile Strengths of the TC18 Alloy

The properties of Ti alloys are bound with the microstructural features [35,49,50], e.g.,
the content of the α phase, the size of the β grain, the diameter of the αp grain and the
thickness of the αs phase. In this work, the classical Hall–Petch formula is employed to
express YS or UTS [41,51]:

σi = σs + kA
i vβd−1/2

β + kB
i vαp d−1/2

αp + kC
i vαs l−1/2

αs (i = YS, UTS) (1)

where σi are the strengths (YS or UTS), σs represents the total resistance determined by the
crystalline structure and the dislocation density, and kA

i , kB
i , and kC

i are the pin constant of
the β grain and αp and αs phases, respectively. v denotes the content or volume fraction of
the β grain and αp or αs phases, d represents the diameter of the grain, and l is the thickness
of the lamellar αs phase.

In the present work, all specimens undergo the same solution treatment. Synthesizing
the previous analysis, the involved eigenvalue of β grains and αp phases are regarded as
constants. So, σi can be rewritten as:

σi = f
(

vαs l−1/2
αs

)
+ C (2)

where f is a linear function of the eigenvalues vαs and l−1/2
αs , and C represents a constant.

In Equation (2), it is apparently manifest that the suitable approach for improving the
strength is increasing the volume fraction of the αs phase or decreasing the thickness of the
αs phase. Figure 6 depicts the relationship between the strengths and key factors involving
αs phases. When the volume fraction of the αs phase is not considered, a good linear
correlation exists between the strengths and the reciprocal square root of the thickness of
the αs phase (Figure 6a). Meanwhile, a non-linear relation exists between the strengths,
the product of vαs , and the reciprocal square root of the αs thickness l (Figure 6b). The
results indicate that decreasing the thickness of the αs phase can improve the strength, and
the thickness of the αs phase is a key factor affecting the strength of the TC18 alloy with
duplex microstructures. The conclusions are also consistent with the experimental findings
of Mora [47].
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In summary, the thin αs phases with large aspect ratios precipitate at low aging
temperatures, which results in a high interface energy and external energy for plastic
deformation [41]. The tensile strengths are excellent, and poor ductility appears. The
αs phases are coarse and shorter, which reduce the required external energy for plastic
deformation. Thus, strength decreases and ductility increases at high aging temperatures.
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3.3. Fractographies and Fracture Mechanisms
3.3.1. Fractographies of TC18 Alloy

The macroscopic fractures of the alloy at aging temperatures from 450 to 600 ◦C
are illustrated in Figure 7. It can be noted that the surface roughness of fractures is
quite different at the four aging paths. The surface morphologies vary from flatness
to roughness by increasing the temperature. In particular, there are large undulating
ravines on the fracture surface at 600 ◦C (Figure 7d), which indicate excellent ductility
(~15.1%). The tensile fracture surfaces can be divided into two distinct zones: the fibrous
and shear lip zone [52,53]. Figure 8 shows the microscopic images of the fibrous zone.
Fracture surfaces under different aging conditions contain some dimples, but their sizes are
unhomogeneous. The diameters of unhomogeneous irregular dimples are approximately
0.2–6.0 µm. Furthermore, a great deal of tear ridges and some facets gather around dimples.
The proportion of unhomogeneous dimples is lower at lower temperatures (Figure 8a,b) but
increases at higher temperatures (Figure 8c,d). Moreover, these unhomogeneous dimples
in Figure 8a,b are shallower than those in Figure 8c,d.
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3.3.2. Fracture Mechanisms

Usually, the fracture behavior of the TC18 alloy is inextricable to microstructures.
Tensile fracture failures of the alloy aged at different conditions are mixed mode, including
quasi-cleavage and ductile failure. However, the fracture surface roughness and morpholo-
gies among the four aging routes are quite different. In addition, the degree of necking
also varies dramatically. The fracture surface at 450 ◦C is flat (Figure 7a), and the surfaces
become rougher by increasing the average thickness of the αs phase (Figure 7c,d). A lot of
unhomogeneous cavities that nucleate and coarsen along with the interface of the α phase
and βm induce the fracture failure of the studied alloy [54]. References [52,55] indicated that
the interfaces of the αp/βm phase are easy and can be the potential nucleation site of micro-
voids due to the difficulty in coordinating deformation. The bottom sizes of these large
dimples are approximately equal to the diameter of αp phases (~3 µm). Some equiaxed
αp phases are retained at the bottom of dimples after fracture (Figure 8a–c). Although the
retained αp phases are not visible in Figure 8d, these large dimples are still induced by nu-
cleation and coarsening at the αp/βm interfaces. Moreover, some fine dimples exist around
the large dimples (Figure 8a), and the size of the fine dimple is approximately equal to the
thickness of the αs phase. Because of the small thickness, αs phases hardly accommodate
plastic deformation. Thus, there are fewer dimples left after fracture (Figure 8a,b). However,
the sizes of dimples induced by αs phases gradually increase with increasing temperature
(Figure 8c,d), which indicates that the coarsening of αs phases makes a certain contribution
to enhancing ductility. The data shown in Table 3 also verify this conclusion. In addition,
αs phases weave tightly in βm by increasing temperature or time (Figures 3 and 5), and
the crack cannot avoid encountering coarse αs phases during propagation. Thus, a larger
plastic deformation zone will form nearer the crack tip of coarse αs phases than those with
no αs phases or finer αs phases in βm [36,41]. All aforementioned consequences result in
the phenomenon that the ductile failure characters of the alloy with coarser αs phases are
more obvious than those with thinner αs phases. Therefore, it is feasible to enhance the
ductility of the TC18 alloy by controlling the proper aging conditions to coarsen αs phases.

4. Conclusions

The influences of aging conditions on the microstructures and properties of the TC18
alloy were systematically investigated. The crucial conclusions are shown below.

1. αp phases are insensitive to the aging temperature and time. However, the tempera-
ture and time significantly affect αs phases. The fine acicular αs phases precipitate
in βm during aging treatments and become coarsened by increasing temperature
or time.

2. The thickness of αs phases is responsible for strength, while the content of α phases
can enhance ductility. Nevertheless, an excellent balance exists between strength and
ductility, particularly when aged at 450–550 ◦C. YS ranges from 1238.6 to 1381.6 MPa,
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UTS ranges from 1363.2 to 1516.8 MPa, and moderate elongations range from 9.0%
to 10.3%.

3. The failures of the alloy aged under different conditions are mixed mode, including
quasi-cleavage and ductile failure. The ductile fracture characteristics of the alloy with
coarser αs phases are more obvious than those with thinner αs phases. Consequently,
the coarsening of αs phases makes a certain contribution to improving the ductility of
the TC18 alloy with duplex microstructures.
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