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Abstract: A lattice-filled multicellular square tube features a regular cross-sectional shape, good
energy consumption, and good crashworthiness, which is suitable for the design of energy absorbers
in various protection fields such as automobiles, aerospace, bridges, etc. Based on the super folding
theory, two reference planes are set to refine the energy consumption zone of the super folding
element in this study. The energy consumption calculation of convex panel stretching is involved,
and the critical crushing force formula is introduced in this study. Meanwhile, the calculation method
from a single-cell square tube to a multicellular thin-walled square tube is extended and the structural
optimization is investigated, in which the NSGAII algorithm is used to obtain the Pareto front (PF)
of the crashworthiness performance index of the square multicellular tubes, the Normal Boundary
Intersection (NBI) method is adopted to select knee points, and the influence of different cross-
sectional widths on the number, as well as the thickness, of cells are discussed. This study’s results
indicate that the theoretical value is consistent with that obtained from the numerical simulation,
meaning that the improved theoretical model can be applied to predict the crashworthiness of
multicellular square cross-sectional tubes. Also, the optimization method and study results proposed
in this study can provide a reference for the design of square lattice multicellular tubes.

Keywords: square lattice multicellular tubes; crashworthiness; theoretical model; multi-objective
optimization

1. Introduction

The frequent use of transportation has led to a gradual increase in transportation speed
and distance requirements, as well as stricter energy efficiency and safety requirements
for energy-consuming buffers for transportation vehicles. Additionally, the increase in
traffic flow and transportation tonnage will greatly increase the probability and severity
of vehicle and ship collision accidents with bridge piers. Therefore, impact protectors in
bridge engineering also need to have higher energy consumption efficiency and impact re-
sistance performance. Thin-walled metal structures are often used for buffering and energy
consumption in various engineering fields. Due to their stable function, suitable buffering
strength, and high-quality specific energy absorption, thin-walled metal structures can not
only be used alone for simple engineering protection, but also can be used as a container or
peripheral structure combined with many buffering materials to form a composite energy
consumption system [1,2]. In civil engineering, thin-walled metal structures often play
an important role in impact buffering at critical locations of bridges and buildings. For
example, in the event of accidents like ship bridge collisions and vehicle column collisions,
metal tube sleeves can provide effective impact protection [3,4]. Due to the stable axial
force and good balance of the spatial shape of the tube, thin-walled metal structures are
commonly used in engineering [5].

The manifestation of axial crushing of thin-walled metal tubes is relatively complex,
wherein factors such as the shape of the tube section, the aspect ratio of the tube body, and
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the grid structure inside the tube can all have an impact on the bending mode and collision
resistance of thin-walled tubes. So far, researchers have conducted intensive research on
the crushing shapes and energy consumption of thin-walled tubes. The calculation of axial
crushing force and energy consumption formula for thin-walled tubes can be generally
divided into two aspects: an analytical method based on the law of energy conservation
and the principle of minimum potential energy [6,7], and a numerical method obtained by
fitting experimental conclusions and specifications with data [8]. In contrast, the folding
model theory obtained via the analytical method is more accurate and applicable. With
the widespread application of thin-walled metal tubes in engineering, researchers have
deepened their theoretical research on the analytical solutions of folding elements, resulting
in the improvement and perfection of the folding element model. The two common models
in relation to the analytical method are the two-dimensional progressive folding model and
the three-dimensional super folding element model. In a two-dimensional folding model,
the stacked sections are analyzed, and geometric relationships and bending positions are
highlighted [9]. Wierzbicki et al. [10] proposed a simplified folded-lobe model in their
study of cellular structure, believing that the tube walls can ultimately close together.
Mahmoudabadi et al. [11], who put forward a more accurate two-dimensional folding
model, consider that the actual folding lobe of the cell wall does not fit well with each other.
Yao et al. [12] proposed a three-hinge-line folding theory for thin plates based on static
compression and the study of two-dimensional folding of cellular structures. On account
of the folding deformation of thin-walled tube walls, which have a similar folding shape to
thin plates, the three-hinge-line models can serve as a reference for analyzing the folding
behavior of thin-walled tube walls in theoretical research, thereby simplifying theoretical
calculations. The three-dimensional super folding element theoretical model is more specific
and targeted at the crushing of square tubes in terms of calculation. Abramowicz [13] was
the earliest to summarize the crushing modes of square tubes through a large number
of experiments, which can be divided as follows: extended collapse mode, symmetric
collapse mode, and asymmetric mixed collapse modes A and B. Meanwhile, two types
of super folding elements (Type I and Type II) were proposed. In subsequent studies,
Abramowicz, along with Bhat [14] and Wlodek [15], modified the superposed element
theoretical model and applied it to the design of energy dissipators [16]. This folding model
provides direction and a reference for the subsequent research and development of element
folding theory. It can be found from the primary research that square tubes have many
forms of crushing, especially upon actual impact, where they present great randomness [4].
However, the folding modes are mainly symmetrical collapses, and the tube wall shows
concave and convex folding under the constraint of adjacent plates [17]. Early researchers
such as Von Karman and Winter [18] reckoned that the stress distribution of thin plate
sections in critical states is not uniform. They proposed the concept of an effective section
method based on the characteristics of section stress. Shafer et al. [19] proposed the direct
strength method based on the relationship between yield limit state and critical state, and
calculated the critical stress of the entire section by introducing a reduction coefficient. The
effective width method has also been adopted by relevant design codes for thin-walled
steel structures in various countries due to its simplicity and practicality. The more-detailed
calculation empirical formulas have been proposed in the specifications AISI in the United
States and GB50018-2002 in China.

In the study of the axial crushing mechanical properties of multicellular tubes,
Tran et al. [8,20] applied the super folding element theory into the crashworthiness de-
sign of multicellular thin-walled tubes and proposed a theoretical calculation formula for
multicellular square tubes based on multiple combinations of angular elements, thereby
enriching the calculation application of folding element theory in square multicellular
tube structures. Zhang et al. [21] predicted the average force of a multicellular square
thin-walled structure under axial compression with the number of cells, and verified the
effectiveness of the model through the finite-element method. In addition, the simulation
results show that when the number of cells is 3 × 3, the energy absorption efficiency can be
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increased by 50% compared to a single-cell tube. The above formula for the mean crushing
force (MCF) of multicellular tubes is based on a simplified calculation model using corner
elements, while Wang et al. [22] introduced the parameter of cell number based on the super
folding element theoretical model, in which the predicted results of multicellular tubes are
similar to the finite-element results, indicating that the super folding element theoretical
model is also suitable for the calculation of multicellular tubes. In conclusion, there is still
much room for improvement in the calculation of crushing force for multicellular square
cross-sectional tubes. At present, multicellular tubes have more diverse spatial folding
forms in terms of average force calculation, and the folding zones can be divided in detail.
In terms of the calculation of the axial initial crushing force of multicellular tubes, although
researchers pay less attention to it, it is equally important to obtain the critical formula for
further improving the axial compression mechanical properties of multicellular tubes.

Accordingly, based on the influence of convex panel stretching on the energy consump-
tion and axial collapse reaction of three-dimensional super folding elements, this study
considers the characteristics of the cell wall folding lobe shape in the two-dimensional
asymptotic model and proposes a two-reference-plane super folding element energy con-
sumption calculation method for calculating energy consumption, while deriving the
average force formulas. Meanwhile, the rationality of this folding theory is verified by
using quasi-static compression experiments and finite-element simulation techniques. In
terms of the peak crushing force, a peak force calculation formula based on the variation
in the width–thickness ratio is proposed by referring to the American AISI and Chinese
GB50018-2002 specifications. In addition, the expansion and optimization of the collapse
theory of square multicellular tubes are discussed in detail. Among them, the optimized ini-
tial crushing force (ICF) and specific energy absorption (SEA) indicators are often obtained
by constructing response surfaces. Additionally, the critical force expression for square
multicellular tubes is derived, and the average force calculation formula and effective
stroke simulation value are applied to the construction of the SEA response surface. Finally,
an analysis of the optimization adaptation parameters of the number of cell pores and
tube thickness from the perspective of maintaining the total cross-sectional width through
optimization algorithms is made in this study, which seeks the optimal solution for square
multicellular tubes of equal volume. As a result, this study can provide new optimization
directions and effective references for engineering designs.

2. Experiments on Axial Compression
2.1. Preparation of Specimen

To verify the accuracy of the finite-element model, this study provides a reasonable
reference for theoretical expansion. The single-cell square cross-sectional tubes were
selected for axial compression, and 304 stainless-steel square tubes were selected as the
experimental material. Moreover, considering that the material has no obvious yield stage,
the stress value at a residual strain of 0.2% during stretching was selected as the yield
strength. The relevant coefficients such as the Young’s modulus (E0), yield strength of the
material (σ0.2), ultimate strength (σu), and hardening coefficient (n) are listed in Table 1.
Tubes with two thicknesses of 1.5 mm and 2.0 mm were selected for crushing tests, with
cross-sectional sizes of 50 mm × 50 mm and 100 mm × 100 mm, respectively, and square
tube heights of 150 mm.

Table 1. Material parameters of the square tubes.

Material Young’s Modulus
E0 (MPa)

Yield Strength
σ0.2 (MPa)

Ultimate Strength
σu (MPa)

Hardening Coefficient
n

Poisson’s Ratio
ν

Density
(kg/mm3)

304 Austenitic
Stainless Steel 210,000 315 632.58 6 0.3 7.93 × 10−6
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2.2. Energy Consumption Indicators

(1) Initial crushing force (ICF) refers to the force that the tube bears under compression,
when plastic deformation begins to occur. In the entire load–displacement curve, ICF
generally manifests as the peak compressive force of the tube body.

(2) Mean crushing force (MCF) refers to the parameter that measures the average force
on the tube body during the collapse of the square tube, which is obtained by calculating
the rate of energy consumption before the square tube enters the compression-dense zone
to the compression stroke:

MCF =
Ee

δe
. (1)

In this equation, δe represents the effective compression stroke, and Ee refers to the
effective crushing energy consumption. To better distinguish the cut-off position between
the folded section and the dense section, the average value of the maximum and minimum
forces in the folding stage is selected as the reference point for the cut-off position, and
searches for the closest value near the final trough of the collapse curve as the cut-off point
to distinguish the folded section and the dense section, as shown in Figure 1.
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Figure 1. Schematic diagram of axial crushing load displacement of the tubes.

(3) Crushing force efficiency (CFE) represents the degree of difference between the
initial peak load and the average load during the compression process, which can be
expressed as follows:

CFE =
MCF
ICF

× 100%. (2)

(4) Specific energy absorption (SEA):

SEA =
Ee

m
. (3)

2.3. Quasi-Static Compression Tests

During the experimental process, an electro-hydraulic servo universal testing machine
is used to conduct quasi-static compression tests on the square tube specimens to deter-
mine the crushing force and displacement data, verifying the rationality of the improved
calculation method for energy consumption and crushing force of the tube folding element.
The compression rate is set to 0.5 mm/min. To ensure that the tube wall can rotate freely as
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much as possible, Vaseline is applied to the contact surface of the pressure head or support
of the tubes. In addition, square tubes with the height of 150 mm for the section sizes of
100 mm × 100 mm and 50 mm × 50 mm are selected, respectively. In addition, the relevant
test specimen size parameters and test results are presented in Table 2. According to the set
size of the square tube, for T1 and T2, an element width of c = 25 mm was selected, and for
T3 and T4, a width of c = 50 mm was selected. The data summary after comparing the ICF
and MCF obtained from the experiment with the theoretical calculation values is shown
in Table 2. For comparison, the experimental results and figures are shown in figure in
Section 3.2.

Table 2. Comparison of crushing force and average force.

Specimen
Number

Dimensions of
Square Tube
cross Section
(mm × mm)

Thickness of
Tube Surface

(mm)

ICF (kN) MCF (kN)

Value of the
Experiment FE Analysis Error Value of the

Experiment FE Analysis Error

T1 50 × 50 1.5 101.65 96.01 5.54% 40.22 39.86 0.90%
T2 50 × 50 2 128.32 122.49 4.54% 54.58 52.74 3.37%
T3 100 × 100 1.5 113.89 107.30 5.83% 46.16 44.61 3.35%
T4 100 × 100 2 195.79 186.87 4.56% 81.60 80.53 1.31%

According to the experiment, compared to the width of the square tube, the change in
wall thickness has a greater influence on the average folding force and initial peak folding
force, indicating that thin-walled structures have sensitivity to thickness.

3. Verification of the Finite-Element Model
3.1. Model Parameters

In order to further verify that the energy consumption and crushing force calculated
by using the improved folding element method were consistent with the results of the tube
collapse, finite-element software ABAQUS (Software version 6.14) was used to establish
the tube model and conduct a static loading simulation in this study. Quach [23] modi-
fied the Ramberg Osgood stainless-steel constitutive model [24], in which the improved
stainless-steel constitutive model was more consistent with the experimental results. In
this study, tensile specimens were cut from the stainless-steel square tube surface to reduce
experimental errors, with the dimensions of the specimens meeting the requirements of
ASTM E8M specification [25], as shown in Figure 2. The tensile stress–strain curve is
obtained by using a microcomputer-controlled electro-hydraulic servo universal testing
machine to conduct quasi-static tensile tests on the specimens. Comparing the Quach
constitutive curve with the experimental curve, as shown in Figure 2, it is obvious that the
yield strength and stress growth trend of the material show good agreement. Therefore, the
three-stage stress–strain model from Quach in this study was selected as the input for the
constitutive parameters of 304 stainless steel to the ABAQUS*Material_PLASTIC module.

The finite-element modeling and mesh division of the square tubes are shown in
Figure 3a, where the upper and lower ends of the tube are, respectively, loaded, and their
contact mode is defined as general contact with a contact friction coefficient of 0.15. The
lower bearing plate is defined as fully fixed, while the upper loading plate is a discrete
rigid body with only longitudinal displacement. Considering the loading condition of
the actual test, Smooth Step is adopted to control the displacement loading process. In
this study, three-dimensional shell element S4R was selected as the type of tube element.
The finite-element model should ensure the accuracy while improving the computational
efficiency. Rough meshes will bring the problem of calculation deviation, while over-dense
meshes will lead to excessive calculation time cost and calculation errors. After comparing
the size in the model and referring to the literature [7,26], the mesh sizes were defined to
be less than 2 mm × 2 mm and the number of meshes was controlled to be about 19,200.
To improve the calculation efficiency, the loading speed is amplified to 100 mm/s: at this
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time, the relationship between the overall kinetic energy and internal energy of the model
is shown in Figure 3b, and the ratio of kinetic energy to internal energy is not greater than
5%, indicating that the model ignores the influence of kinetic energy.
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Figure 3. Finite-element model of the square tubes: (a) schematic diagram of FE model; (b) relation-
ship between internal energy and kinetic energy.

3.2. Model Validation

To verify the correctness of the finite-element parameter values and the suitability of
the constitutive model and loading method, the axial compression experimental data of the
square cross-sectional tubes in Section 2.3 were compared with the compression data of the
corresponding finite-element model of the cross section parameters, which are shown in
Figure 4 and Table 2.
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The load–displacement curves in Figure 4 obtained from the test and FE simulation
have similar variation trends and can correspond to the folding position of the square
tubes. As can be seen in Table 2, the errors between the test results and the FE data are
within 6%, and the maximum difference is 8.92 kN. In general, the ICF obtained through the
experiment presents a larger value than that obtained from the finite-element model, which
means that the error fluctuation of the average value is relatively large. On the whole, the
FE simulation is more accurate in terms of ICF and MCF, so the basic parameters of the
finite-element model in this section are also used for the model setting in the numerical
simulation discussion process in the following sections.

4. Improved Folding Model for Corner Elements
4.1. Corner Element Theory Considering Convex Panel Stretching

The four angles of a square tube are typical corner elements. During the compression
process, when the axial load is relatively stable, the tube is prone to exhibit symmetrical
folding modes. It can be found from the literature that the folding mode of obtuse-angle
elements is mainly Type II, while the folding mode of acute-angle and right-angle elements
is mainly Type I [15]. The element angles discussed in this study are all right angles, so the
super folding element Type I model of thin-walled square tubes during axial compression
deformation is used as the calculation prototype to analyze and improve the axial com-
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pression mechanical behavior of the tubes under compression loads. This super folding
element consists of four trapezoidal surfaces and one toroidal shell element, with each
folding element representing 1/4 of the tube section at element height. The parameters of
the folding element are shown in Figure 5a.
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Figure 5. Folding element model from Abramowicz: (a) classic super folding element [6]; (b) expanded
super folding element [15].

The extended super folding element model proposed by Abramowicz [15] takes into
consideration the energy consumption effect of the conical surface area formed during the
folding process, which is considered to be obtained through the tensile deformation of the
tube wall during the folding process. The tube corner lines in this model are flattened,
forming an oblique traveling hinge line on the outer convex of the tube wall and causing
movement (Figure 5b). In fact, the element rotates in two directions during the folding
process. Furthermore, the convex trapezoidal panel of the element is not only formed
during the inclined hinge movement, but also exhibits local stretching during the folding
process in both directions. This stretching area is called the convex stretching area, and this
folding form of the element is shown in Figure 6. After the stretching of the convex surface,
new energy consumption zones and larger annular shell surfaces occur (Figure 6a,b).
Therefore, an intensive study of the folding energy consumption of the element is needed
in the future.
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Figure 6. Super folding element considering convex panel stretching: (a) changes in the migration
zone and oblique hinge line; (b) schematic diagram of element model. (Note: The slash lines represent
the folding positions).

From the comparison of the respective shapes before and after the axial compression
of the square tube, it is found that the super folding element forms a symmetrical curved
folded lobe after compression. The stretching of the convex plane is considered in the
improved folding element, and the movement of the folded lobe on the edge line of
the plane is shown in Figure 7a. Based on experiments and simulations, it can be seen



Materials 2024, 17, 1245 9 of 33

that when a single element is in a fully crushing state, the angle between the tube walls
changes from 2ψ0 = 90◦ to a fully unfolded angle of 180◦. Assuming that the tube angle is
symmetrically unfolded in both directions of the tube wall, the cross section of the tube
crushing is octagonal, with an angle of 45◦ between the oblique edge and the horizontal
line [7] (Figure 7b), in which the folded lobe forms a wedge-shaped structure with a
water droplet-shaped oblique section (Figure 7c). Generally, changes in the edge lines of
the element will affect the energy consumption calculation of the annular shell surface.
Given the computational requirements, the element model is divided into five categories of
zones in this study, and in the following sections, a comprehensive analysis of the energy
consumption calculation methods for these five improved deformation zones is made.
The five types of deformation regions are divided into sections based on the deformation
characteristics of the model, as shown in Table 3.
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Table 3. Reference plane for the calculation of folded areas.

Energy Consumption Zone of Folding Element Reference Plane I Reference Plane II

Area of inclined traveling hinge
√

—
Area of horizontal fixed hinge

√
—

Area of conical surface stretching
√

—
Area of convex panel stretching —

√

Area of the toroidal shell surface stretching —
√

(1) Reference plane I: The deformation of the folded lobe can be clearly observed
through the projection of the square tube on reference plane I. In the classical folding
element theory, the projection plane of the folded lobe on plane I is completely closed on
the wall of a single tube [6,8,12]. In fact, the folded lobe angle α is not strictly equal to 90◦,
and the deformation of the inner and outer tube walls during the folding process is slightly
different. Malekshahi et al. [7] proposed that there is a 1:2 rate relationship between the
bending radius of the concave valve and the convex valve in the box-shaped tubes, which
will result in a change in the calculation formula for the height and radius of the folded
element. From this model, it can be observed that the element height and deformation
amplitude are the same in the initial stage of the formation of the outer convex surface and
the inner concave surface (as shown in Figure 8a). Under axial load, the inner concave and
outer convex surfaces continue to compress with each other after contact, and the bending
radius of the inner concave lobe is reduced until the same compression segment as the outer
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convex lobe is formed. At this time, the bending radius of the outer convex lobe is exactly
twice that of the inner concave lobe (Figure 8b). Therefore, the outer folded lobe and the
inner folded lobe have the same element height, but the reason for their different bending
radii after complete collapse is due to differences in the degree of compression. From what
has been discussed above, the folding theory based on the oblique traveling-hinge region
and the horizontal fixed-hinge zone of reference plane I are divided into two parts for
discussion: the inner folded lobe and the outer folded lobe.
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Figure 8. Spatial folded-lobe model: (a) initial buckling of square tubes; (b) complete formation of
folded lobe.

(2) Reference plane II: For the convenience of model calculation, the cellular thin-
walled folded-lobe model proposed by Mahmoudabadi [11] is used as a reference in this
study, and the water droplet-shaped folded line on the reference plane II is equated to a
double-hinged line. Additionally, the simplified diagram is shown in Figure 9a,b, in which
the hinge lines of 1⃝ and 2⃝ in the Figure 9b model exhibit deflection, while the hinge line

3⃝ shows arc-shaped bending. Considering that the folding line on the inclined plane II is
formed from the edge of the outer folded lobe, the radius of the circular arc in the model is
the same as the bending radius of the folded lobe. Moreover, θ is the angle between the
trapezoidal panel and the horizontal direction after the element is folded, and α2 is the final
inclined angle of the folded lobe in Figure 8. In addition, the length of the double-hinged
line is changed into 2

√
2H because of the concave deformation occurring inside the tube.
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Figure 9. Schematic diagram of reference plane II and deformation of double-hinged-line model:
(a) space stacking; (b) model of the double-hinged line.
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4.2. Folded-Lobe Model on Reference Plane I

The energy consumption calculation of the horizontal fixed hinge, oblique traveling
hinge, and conical surface stretching on reference plane I is the same as the calculation
method of the classical super folding element. However, separate discussions are needed
during calculation due to the difference in bending radius between the concave and convex
lobes. The rotation of the horizontal fixed-hinge element is related to the rotation angle of
the longitudinal element. Furthermore, the radius of the inner folding is set as b, the radius
of the outer folding is set as 2b, and the final rotation angle is set as α1. Meanwhile, the
flow stress σ0 of the material is taken as the equivalent stress during element deformation.

For metal materials with a hardening index of n, and σ0 =
√

σyσu
1+n , then M0 = σ0h2

4 can

be obtained. The average value of element width is set as cm = (c1+c2)
2 , and the energy

consumption calculation of the horizontal fixed hinge can be written as follows:

WH =
i=1

∑
2

∫ α1

0
ci M0dα = 2M0cmα1. (4)

The length of the oblique traveling hinge is set as L; then, L = 2H
sin γ . From movement

characteristics of the oblique traveling hinge, it can be inferred that the folding degree
changes with the distance from the moving point to the horizontal fixed hinge. Additionally,
the bending radius of the hinge is set as b. According to the energy consumption calculation
method of the traveling hinge, the energy consumption rate of the oblique traveling hinge is

•
WL = 2M0L

vt

b
. (5)

Integral calculations are performed in α on both sides of Equation (5), and the energy
consumption calculation of the oblique traveling hinge can be written as follows:

WL =
4M0H2

b tan ψ0

∫ cos α

sin γ
dα. (6)

From the geometric relationships in the folding element model, tan γ = tan ψ0
sin α , for α ∈

[0, α1], making IL = 1
tan ψ0

∫ α1
0

cos α
sin γ dα, we finally can obtain the following:

WL =
4M0H2 IL(ψ0)

b
. (7)

The conical zone changes with the folding angle, and according to Abramowicz’s
research [16], the energy consumption calculation of the conical surface stretching can be
written as follows:

WC =
∫

A

2M0

b
dA =

4M0H2 IC(ψ0)

h
, (8)

where IC =
∫ α1

0
cos α tan(ψ0)

1+tan2(ψ0) sin α
dα, and A is the total area under the oblique traveling hinge

of the super folding element.

4.3. Double-Hinged-Line Model on Reference Plane II

On reference plane II, the stretching of the convex panel and the toroidal shell surface
is related to the movement features of the oblique traveling hinge and the folding angle of
the trapezoidal plate. The traveling hinge moves from the concave to the convex surfaces,
and a sweeping concave shape occurs in the tube along the corners of both ends of the
element. In this way, an arched area is formed, as shown in Figure 10a. The folding process
of the movement zone includes two steps, in which Step I is the angle α1 that occurs on
reference plane I (Figure 10c,d), and Step II is the angle α2 that occurs on reference plane II.
Finally, the traveling hinge is fixed at a position with an angle of 45◦ to the edge of the panel
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(Figure 10e,f). According to the simplified model of the double-hinged line, the arch curve
is equated to an equilateral trapezoidal curve, as shown in Figure 10b, and the folded zone
forms a trapezoidal zone after being fully unfolded, as shown in Figure 10f. In order to
compensate for the area differences between the equivalent zone and the arched zone, the
equivalent trapezoidal zone of the double-hinged-line model is expanded into a triangular
zone in this study.
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Figure 10. Movement process and equivalent schematic diagram of the traveling hinge of the folding
element: (a) the initial tube angle and the zone to be moved; (b) equivalent zone to be moved;
(c) folding diagram of Step I; (d) equivalent movement zone of Step I; (e) folding diagram of Step II;
(f) equivalent movement zone of Step II.

4.3.1. Stretching of Convex Panels

Although both Step I and Step II occur simultaneously during the folding process,
there is considered to be no coupling effect between Step I and Step II. Therefore, it is
assumed that the stretching of the trapezoidal plate surface only occurs in Step II during
analysis. In addition, the angle between the sweeping stopping line of Step I and the
horizontal edge of the element is set to be γ1, in which the convex panel is assumed to
exhibit local deformation in the triangular area enclosed by the sharp angle γ1, the oblique
traveling hinge line A′D′, as well as the right-angle edge E′D′, as shown in Figure 11a.
Since γ1 is a determined value of α1, and the horizontal strain changes linearly with the
change in H, the energy consumption calculation can be simplified by area. Additionally,
the triangular area on the convex surface is equated to the area, as shown in Figure 11b;
then, the total energy consumption of the convex panel stretching based on geometric
relationships can be written as follows:

∆S =
H2

2
(1 − 1

tan γ1
), (9)

Wp1 = σ0h∆S. (10)
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Based on Equations (9) and (10), the total energy consumption of two convex panels
stretching on an element can be written as

Wp =
4M0H2 Ip(ψ0)

h
, (11)

where Ip(ψ0) =
sin α1−tan ψ0

sin α1
.

4.3.2. Stretching of Toroidal Shell Surface

The formation of creases on a curved surface and the movement of oblique traveling
hinges occur simultaneously in time and interact with each other. The folding element
exhibits concavity in the surface, resulting in the generation of traveling hinges, and
the surface of the toroidal shell also changes with the change in traveling hinges. In
super folding theory, the formation of a toroidal shell surface can be considered as the
plastic deformation generated when a toroidal surface passes through the thin plate [27].
For square thin-walled tubes, the crushing of the tube will ultimately form deformation
outside the surface with the tube corner line as the axis of symmetry. When calculating
the stretching energy consumption of the toroidal shell surface, the shape of the toroidal
shell surface is simplified to a symmetrical extension with an oblique traveling hinge as
the central axis. In this study, the calculation method for stretching energy consumption of
the toroidal shell surface in the super folding element is adopted, and great importance
is attached to the variation in the stretching surface. The shell surface is regarded as two
identical circular bodies diagonally passing through the upper and lower trapezoidal tube
surfaces of the folding element, as shown in Figure 12a. The stretching area of the toroidal
shell is approximate to the area of the quadrilateral-shaped arrow in Figure 12b. For
calculation, the arrow shape is further equivalent to a diamond shape. According to the
super folding theory, the equivalent area needs to meet the following requirements: (1) If
the central axis of the approximate graph develops along a 45◦ angle with the edge of the
element, the height of the equivalent diamond is 2

√
2H; (2) The stretching width of the

toroidal shell surface increases linearly with the change in the contact arc ϕ of the circular
segment; (3) Tensile strain occurs on the toroidal shell surface, which ignores the bending
strain generated during the formation of creases.
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Figure 12. Schematic diagram of a circular segment passing diagonally through the tube wall:
(a) through the element surface; (b) equivalent area of toroidal shell; (c) circular segment; (d) contact
between element surface and circular segment cross section.

The schematic diagram of the circular segment and the parameters of the circular
segment are shown in Figure 12c,d, where the ring width of the circular segment is 2b. The
distance between the center of the circular section and the axis of rotation of the ring body
is
√

2a. The distance from the point on the shell surface to the center of the circular segment
is r′. Based on the folding theory and the requirement (1), satisfied by the equivalent zone,
the maximum value of the contact arc ϕ of the equivalent circular segment is

√
2β, namely,

ϕ ∈ [−
√

2β,
√

2β]. The contact arc θ between the cross section of the circular segment
and the tube surface needs to meet the requirement of θ = [π

2 − ψ0, π
2 + ψ0], in which the

tangential velocity of the circular segment passing through the tube surface is vt =
H cos αdα

tan ψ0
,

and the circumferential strain rate is
•

εϕ = v2 sin θ
r′ . From the geometric relationship, the

following expressions can be obtained as follows:

r′ = b cos θ +
√

2a, (12)

β = arctan
tan α

sin ψ0
. (13)

Given the requirements satisfied by the equivalent zone, the curvature of the toroidal
shell surface stretching varies linearly with the change in ϕ; then, ψ = ψ0 +

π−2ψ0
π ϕ can be

obtained. During the formation process of the ring shell surface, the energy consumption
of bending microstrain is the infinitesimal of higher order of energy consumption of tensile
strain, which can be ignored in calculation [6]. The ultimate membrane force at the yield of
the tube wall is set as N0, and the expression for the plastic energy consumption rate of the
improved toroidal shell surface element when considering tensile strain can be written as

•
WS = 2

∫ √
2β

0

∫ π
2 +ψ

π
2 −ψ

N0
•
εϕbdθr′dϕ. (14)
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Specifically, combined with Equations (13) and (14), integral calculations are performed
in θ and ϕ on both sides of the equation, respectively; then, the relationship between the
plastic energy consumption rate of the toroidal shell surface and the longitudinal tube
surface rotation angle is obtained, which can be detailed as

•
WS =

4N0bHπ cos α
•
α

(π − 2ψ0) tan ψ0
[cos ψ0 − cos(ψ0 +

√
2β

π − 2ψ0

π
)]. (15)

where both
•

WS and
•
α are differentials with respect to time t. Combined with Equation (15),

integral calculation is performed in α on both sides of the equation, and the energy dissipa-
tion can be obtained by the following:

WS(α) =
16M0bHIS(ψ0)

h
, (16)

where IS(ψ0) =
π

(π−2ψ0) tan ψ0

∫ α2
0 cos α{cos ψ0 − cos[ψ0 +

√
2(π−2ψ0)

π arctan tan α
sin ψ0

]}dα.

5. Formula for Folding of Square Lattice Multicellular Tubes
5.1. Calculation Model

Unlike single-cell square tubes, the internal folding form of square lattice multicellular
tubes (Figure 13) is more complex. The elements can be divided into three types based
on the number of folded lobes formed by the same connection points and the differences
in folded deformation: namely, L-shaped, T-shaped, and crisscross elements [8,28]. The
folding elements of simple single-cell square tubes pertain to the L-shaped element, which
has large outer folded lobes and small inner folded lobes. The folded-lobe model under
L-shaped elements is defined as Mode A. From these three types of folding lobes (Figure 14),
it is apparent that the folded lobes on both sides of the T-shaped and crisscross elements,
which are compressed by adjacent invaginated tube walls, occur in regular and compact
stacking shapes. Moreover, the folding amplitude and radius of two types of folded
lobes on both ends are the same, which is similar to the inner folded lobe in Mode A and
was mentioned in Malekshahi’s research [28]. But this mode has not been applied to the
calculation of multiple-shaped element types in multicellular tubes. Consequently, the
folded-lobe model that is different from the L-shaped element is defined as Mode B.
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The size of the two lobes in Mode B is equal, so the folding angle changes to α1B = 90◦,
which is the same as the folding calculation angle of the classical super folding model,
indicating that the folding angle in the classical model is relatively large for the calculation
of L-shaped elements. The respective energy consumption of the horizontal fixed hinge
and the oblique traveling hinge corresponding to the model after being compressed at both
ends are demonstrated as follows:

WHB = 2πM0cm, (17)

WLB =
4M0H2

b tan ψ0

∫ α1B

0

cos α

sin γ
dα =

4M0H2 ILB(ψ0)

b
. (18)
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Figure 14. Inner and outer folded lobes of L-shaped, T-shaped, and crisscross-shaped elements
(Mode A; Mode B).

5.2. Number of Quantitative Parameters on Areas Divided by Element Type

In a square lattice multicellular cross-sectional tube, the proportion of energy consump-
tion in the L-shaped, T-shaped, and crisscross elements for the five energy consumption
zones is not entirely the same. Zhou [29] quantitatively classified each type of folding and
described their respective energy consumption calculation formulas, and suggested that
the constraint coupling effect of adjacent tube walls can be ignored when calculating energy
consumption and average force. The energy consumption areas of T-shaped and crisscross
tube walls can be overlapped. For the improved folding element, the quantitative descrip-
tion of the five models is shown in Table 4. In Sections 4 and 5.1, the energy consumption
formulas for the L-shaped, T-shaped, and crisscross elements are discussed, respectively.

Table 4. Number of energy consumption zones for the L-shaped, T-shaped, and crisscross elements.

Type

Number of Zones

Horizontal Fixed
Hinge Line mH

Oblique Traveling
Hinge Line mL

Stretch Zone of
Conical Surface mC

Stretch Zone of
Convex Panel mP

Toroidal Shell
Surface mS

L-shaped element 2 2 1 1 1
T-shaped element 3 2 2 1 2

Cross-shaped element 4 4 2 2 2

For square tubes with a square cross section, the spacing and number of cells on
adjacent tube walls are equal. Assuming that each edge contains N cells, the number of
L-shaped, T-shaped, and crisscross elements in the tube can be expressed as follows:

NL = 4;

NT = 4(N − 1)

NC = (N − 1)2.

The L-shaped element is the most basic element in a square cross-sectional tube,
occurring only at the four corners of the tube, which pertains to the folded lobe of Mode A,
and can be directly calculated by using the folded-lobe model in Section 4. The T-shaped
element occurs in the middle of the tube wall, which is the connecting part between the
tube wall and the internal lattice. The flange part of the T-shaped element pertains to the
folded lobe of Mode A. However, the inner wall of the T-shaped element is compressed
by the flanges on both sides during crushing, so the inner wall of the T-shaped element
pertains to the folded lobe of Mode B. The crisscross element occurs at the intersection
of the square lattice inside, and the edges of each element are compressed against the
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lattice walls on both sides, so the crisscross element belongs to the folded lobe of Mode B.
Supposing that each folded lobe corresponds to a model, the number of folded-lobe models
and double-hinged-line models in the N × N lattice-filled multicellular cross-sectional
square tubes are summarized in Table 5.

Table 5. Total number of models in N × N square cell tubes.

Type
Folded-Lobe Model

Double-Hinged-Line Model
Type A Type B

L-shaped element 8 0 4
T-shaped element 8(N − 1) 4(N − 1) 4(N − 1)

Crisscross-shaped element 0 4(N − 1)2 2(N − 1)2

5.3. Integration of Element Energy Consumption

The energy consumption formulas are discussed separately based on the number of
zones and the number of folded-lobe models for the three types of elements, in which
the L-shaped element is applicable to the right-angle folding elements in Section 4. To
distinguish the angles, the angles of the folded lobes of Mode A and Mode B on reference
plane I are set to α1A and α1B, respectively. In view of Equations (5), (6), and (18), as well as
Table 5, it is obvious that only four L-shaped elements occur in any multicellular square
tube. Therefore, the calculation formula of energy consumption for the L-shaped super
folding element of the multicellular square tube can be detailed as

EL−shape = 16M0

[
cmα1A +

H2

b
ILA(

π

4
) +

H2

h

(
ICA(

π

4
) + Ip(

π

4
)
)
+

4Hb
h

IS(
π

4
)

]
. (19)

where ILA(
π
4 ) =

∫ α1A
0

cos α
sin γ dα is the relevant energy consumption coefficient of the oblique

traveling hinge under Mode B, and cm is the average width of the cell.
The T-shaped element has the characteristics of both the folded lobes of Mode A and

Mode B, in which the energy calculations for two modes are distinguished and integrated
separately from the folding angle and mode. Specifically, the oblique traveling hinge is
related to the flange of the T-shaped element and occurs in the middle of the two lobes, so
the oblique traveling hinge follows the folding angle of α1A in Mode B when moving in the
axial direction, with the quantity of 4(N − 1). From Tables 4 and 5, the calculation formula
of energy consumption for the T-shaped element can be demonstrated as follows:

ET−shape = 8M0(N − 1)

[
2cmα1A + cmα1B + 2H2

b
(

ILA(
π
4 ) + ILB(

π
4 )
)

+ 2H2

h
(

ICA(
π
4 ) + ICB(

π
4 ) + Ip(

π
4 )
)
+ 16Hb

h IS(
π
4 )

]
. (20)

The crisscross element can be divided into two right-angle elements for energy con-
sumption calculation, but the folded lobes of the crisscross element only contain the
characteristics of Mode B. From Tables 4 and 5, this calculation formula can be written as

Ecrisscross= 8M0(N − 1)2
[

cmα1B +
H2

b
ILB(

π

4
) +

H2

h

(
ICB(

π

4
) + Ip(

π

4
)
)
+

4Hb
h

IS(
π

4
)

]
. (21)

5.4. Solution of Folding Angle and Average Force

Due to the symmetry of a double-hinged-line model at the tube corner line, the folding
angle is not affected by factors such as c and h (Figure 15b). Mahmoudabadi et al. [11]
simplified the relation of α2 and H/b, specified the value of H/b, and obtained the value of
α2 to be 1.7233. α1A is greatly affected by the changes in H/b, which is set to α1A = π

2 + θA.
The plane view of the folded-lobe model obtained with reference plane I as the cross section
is shown in Figure 15a, which ignores the thickness of the tube wall. The relationships
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between effective length and H, effective length and b, angle and H, as well as angle and b
are obtained from geometric relationships, which can be detailed as follows:

Le1 = Le2 + bα1 = 2H − bα1. (22)

Le2 sin θA =
Le2

Le1 + Le2
b. (23)
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From Equations (22) and (23), the relation of θA and H/b can be expressed as

sin θA(2
H
b
− 3π

2
+ 3θA)− 1 = 0. (24)

The relation curve of θA − H
b is shown in Figure 16. As can be seen in Figure 16, the

value of θA is relatively small and the value of H/b in previous studies, such as in [7,11,18,30],
is within the range of [4,5], so the corresponding range of θA is [0.172, 0.248], and the change
range in α1A is within 4.34%. Malekshahi [7] defined the value of θA as 0.21, which is within
the range mentioned above. Considering that the values of θA, H, and b are all unknown,
it is more complex to solve for accurate values, while the range of θA values is narrow
and the deviation has little impact on α1A. Therefore, the value of θA is set as 0.21, and
then α1A = 1.781. ψ0 = π

4 and three angles are put into IL(ψ0), IC(ψ0), and IS(ψ0) to
obtain the value of ILA(

π
4 ) = 1.1168, ILB(

π
4 ) = 1.1478, ICA(

π
4 ) = 0.6821, ICB(

π
4 ) = 0.6931,

Ip(
π
4 ) = 0.022, IS(

π
4 ) = 0.8557, in which ILA < ILB; ICA < ICB. Thus, it is clear and well

demonstrated that the Mode B folded lobe consumes more energy than the folded lobe of
Mode A.

Three folding angles are integrated into Equations (19)–(21), and the calculation for-
mulas of energy consumption for each element in the square tube are obtained as follows:

EL−shape = 16M0

[
1.781cm +

1.117H2

b
+

0.704H2

h
+

3.403Hb
h

]
, (25)

ET−shape = 8M0(N − 1)
[

5.133cm +
5.656H2

b
+

2.794H2

h
+ 13.691

Hb
h

]
, (26)

Ecrisscross= 8M0(N − 1)2
[

1.571cm +
1.148H2

b
+

0.715H2

h
+

3.423Hb
h

]
. (27)
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The plates in the tube are an orderly connected whole, where the folding heights of
the crisscross, T-shaped, and L-shaped elements affect each other. When the cell width
is the same, the element heights between them are also the same. According to the law
of conservation of energy, the relation between the average force and the total energy

consumption of the square tube (EtotalI) is Pm = Etotal
2H =

EL−shape+ET−shape+Ecrisscross
2H , which can

be obtained by combining Equations (25)–(27):

Pm = M0

(
q1

cm

H
+ q2

H
b
+ q3

H
h
+ q4

b
h

)
, (28)

where
q1 = 3.142N2 + 3.982N;
q2 = 4.592N2 + 13.44N − 9.096;
q3 = 2.86N2 + 5.456N − 2.684;
q4 = 13.691N2 + 27.308N − 13.848

According to the least action principle, the variation in the mean crushing force is
taken as 0, that is, for any δH and δb, the following conditions need to be met:

∂Pm

∂H
=

∂Pm

∂b
= 0. (29)

The total width of the square tube is set to be Ctotal. θ = 0.21 is substituted into
Equation (29), and then H

b = 4.4221. Combined with Equation (28), we can calculate the
following:

b =

√
q1hcm

q3 + 0.226q4
= Ib(N)

√
hCtotal

2N
, (30)

H = 4.4221Ib(N)

√
hCtotal

2N
, (31)
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Pm = M0

(
4.4221q2 +

(
4.648

√
(q3 + 0.226q4)q1

)√
Ctotal
2Nh

)
, (32)

where Ib(N) =
√

3.142N2+3.982N
5.954N2+11.628N−5.814 ; hence, it is evident that the number of cells exerts

an influence on the values and of H and b, as well as the mean crushing force.

6. Formula for Peak Initial Crushing Force
6.1. Specification of Critical Force

The initial crushing force can reflect the ultimate bearing capacity of tubes in the
critical state, and is equally important for evaluating the crashworthiness. According to the
theory of thin plate bending, the expression for the axial critical stress of an independent
thin-walled plate can be obtained as follows:

σcr =
kπ2E0

12(1 − ν2)
(

h
C
)

2
, (33)

where k is the constraint coefficient at the end or the stability coefficient of the plate
after compression, C is the width of the thin plate, and ν is the Poisson’s ratio of the
material. Considering that the stress on the cross section of square tubes subjected to axial
compression is not uniform and the stress near the tube corner is large and concentrated, the
effective width method in steel structure design in this study is selected as a reference for
calculating the critical force of square cross-sectional tubes, so as to simplify the calculation
of critical force. In the AISI steel structure design specification [31], the effective width
method is used to calculate the ultimate bearing capacity of the axial compression of the
structural steel. The calculation formula for the square cross-sectional tube can be written as

Pcr = σyhbe, (34)

λ =

√
σy

σcr
, (35)

ρ =

{
1 λ ≤ 0.673
(1 − 0.22

λ )/λ λ > 0.673
, (36)

be = ρC, (37)

where ρ is the effective cross-sectional coefficient, be refers to the effective width, and λ
represents the relevant proportional coefficient. The critical force Pcr can be obtained by
calculating the product of the cross section and yield stress under effective width. In the
Chinese standard “Technical code of cold-formed thin-wall steel structures” (GB50018-
2002) [32], a calculation formula for the effective width of the three-section formula is
proposed, in which the relationships between the width of the effective section and the
width of tubes, as well as the thickness, are specified:

be =


C C

h ≤ 18αρc(√
21.8αρch

b − 0.1
)

C 18αρc <
C
h < 38αρc

25αρcC
C

C
h ≤ 38αρc

, (38)

where α is the calculation coefficient of distribution uniformity, and ρc represents the
coefficient of influence that considers the constraints of the plate group and the compressive

stability of the plate, i.e., ρc =
√

205lk
σ1

; σ1 is the reduced stress considering the stability
of the component, and l is the constraint coefficient of the plate group. In comparison
to the specifications in AISI, GB50018-2002 considers more factors and is more detailed
regarding the calculation of critical forces for plates. It is worth noting that although critical
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buckling stress based on elastic assumptions is adopted in both GB50018-2002 and AISI,
the constraints of the plate and the uniformity of stress distribution are also considered in
GB50018-2002. In addition, the influence of the critical stress σcr under compression on the
effective width value is weakened by adding the above correction parameters, making the
parameter values and calculations tend to be empirical. The correlation curves between
ρ and C, as well as the effective cross-sectional coefficient and h obtained from AISI and
GB50018-2002, are shown in Figure 17. Obviously, the width reduction calculated through
GB50018-2002 is more conservative compared to that of AISI. In summary, there is still an
obvious difference in the peak force calculated by the two in the part with width reduction,
and this difference gradually amplifies as the width increases.
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According to the differences in calculation formulas between AISI and GB50018-2002,
the distribution coefficient of stress uniformity of GB50018-2002 is taken into account in this
study in AISI’s formula calculation. In addition, the uniformity of tube wall compression is
considered and a two-stage formula is used to calculate the stability coefficient k. Therefore,
the formula for the critical stress and effective width coefficient of the tubes wall can be
detailed as follows:

σ′
cr =

lkπ2E0

12(1 − ν2)
(

h
C
)

2
, (39)

ρ′ =

{
1 λ′ ≤ 0.673
(1 − 0.22

λ′ )/λ′ λ′ > 0.673
, (40)

in which λ′ =
√

σy
σ′

cr
. In accordance with GB50018-2002, the width and thickness between

adjacent plates are set as Ci and hi (I = 1, 2) respectively. The value of l and k are as follows:

l =


1√
ξ

ξ ≤ 1.1

0.11 + 0.93
(ξ−0.05)2 ξ > 1.1

, (41)

k =

{
7.8 − 8.15φ + 4.35φ2 0 <φ ≤ 1
7.8 − 6.29φ + 9.78φ2 −1 ≤ φ ≤ 0

. (42)

where ξ = C1
C2

√
k
kc

. For T-shaped and crisscross elements, C1
C2

is the maximum value of
all plate width ratios, kc is the compressive stability coefficient of adjacent walls, and the
coefficient of uneven axial pressure is φ = σmax

σmin
. The change in thickness and axial force

of the plate will affect the stress σmax and σmin at both ends of the wall. According to
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Equations (38) and (39), it can be seen that in the case of regular tube walls without obvious
thickness changes, the influence on the stability coefficient and the constraint coefficient
between plates is relatively small. However, for the design of complex cross-sectional
tubes, parameters k and l can effectively correct the coefficient of effective width, so that
the calculation deviation can be controlled within a reasonable range.

6.2. Critical Force in the Axial Direction of Multicellular Thin-Walled Tubes

The critical force calculation discussed in Section 6.1 only involves the analysis of the
values of single-cell square tube walls. When using AISI specifications for design, changes
in the width and thickness of adjacent tube walls can result in inconsistent formulas for
critical stress and effective width. Therefore, it is necessary to distinguish between tube
walls under different combinations of width and thickness when it comes to design and
calculation. Figure 18 shows the relation curve between C and h under the change in λ, in

which D = lkπ2E0
12(1−ν2)

. The width-to-thickness ratio can be obtained from Equations (32) and

(35), that is, d = λ
√

D
σy

. When λ = 0.673, the corresponding width-to-thickness ratio d0 is
the critical ratio of width to thickness. According to the segmented function Equation (35),
the set of points is divided (h, C) into two areas in the C-h curve: 1⃝ and 2⃝, where the
method for obtaining the effective width coefficient ρ (h, C) in the two areas is different.
Due to the regularity of each lattice form within square multicellular thin-walled tubes,
the wall width-to-thickness ratio is the same. Assuming the cell width is CN = Ctotal

N , the
impact of changing the width of a square cross-sectional tube on the value of ρ is discussed
in the following parts.
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(1) When (h, CN) ∈ Area 1⃝, i.e., dN ≤ d0, then ρN = 1, the effective width beN = CN,
and the expression for the critical force can be given as

PcrN = ∑ σyhCN . (43)
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(2) When (h, CN) ∈ Area 2⃝, i.e., dN > d0, and then ρN = λN−0.22
λN

2 , the critical force
under axial compression can be given as

PcrN = ∑ σyρNhCN = ∑
(√

σyD − 0.22DNh
Ctotal

)
h2. (44)

From the above, it is clear that the calculation of the axial critical force of a square
cross-sectional tube can be attributed to the relationship between the width-to-thickness
ratio of the tube wall and the width-to-thickness ratio d0 of the boundary, in which the
calculation process can be simplified through the above derivation. According to the
element division and quantitative relationship described in Section 5.2, the number of tube
walls can be obtained as n = 2N(N + 1). Due to the same aspect ratio of lattice walls, the
critical force falls into the same region during calculation. Therefore, the critical force of
square lattice multicellular tubes is detailed as follows:

Pcr−total = 2N(N + 1)


σyhCtotal

N (dN ≤ 0.673
√

D
σy
)(√

σyD − 0.22DNh
Ctotal

)
h2 (dN > 0.673

√
D
σy
)

. (45)

7. Discussion
7.1. Verification of Axial Compression Theory

In this section, a comprehensive comparative analysis of the accuracy of energy con-
sumption calculations for single-cell square tubes is made through finite-element simulation.
In addition, the finite-element parameter of both the material and finite-element properties
outlined in Table 1 and Section 3 is still used to calculate the mean and peak crushing
forces, in which the thicknesses of the single-cell square tube wall selected for practical
engineering are 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm, and the widths are 50 mm, 100 mm,
150 mm, and 200 mm, respectively. Meanwhile, the height of the tube body is set at 300 mm.
The specific research results are shown in Table 6, and the comparison between theoretical
and finite-element values is shown in Figure 19a,b.

Table 6. Theoretical and finite-element simulation results of single-cell square tubes.

Number
Dimensions of

Square Tube cross
Section (mm × mm)

Thickness of
Tube Surface

(mm)

ICF (kN) MCF (kN) Theoretical
Calculation
of H (mm)

Theoretical
Calculation
of b (mm)Theory FE Diff (%) Theory FE Diff (%)

S1-1 50 × 50 0.5 13.77 13.81 −0.11 6.70 9.98 −32.87 12.16 2.75
S1-2 50 × 50 1.0 48.50 51.55 −7.72 19.87 23.54 −15.59 17.20 3.89
S1-3 50 × 50 1.5 94.33 105.09 −10.24 37.79 44.83 −15.70 21.07 4.76
S1-4 50 × 50 2.0 126.54 130.64 −3.14 59.84 66.62 −10.18 24.33 5.50
S2-1 100 × 100 0.5 14.59 15.48 −5.75 9.16 12.52 −26.84 17.20 3.89
S2-2 100 × 100 1.0 55.08 57.63 −4.43 26.81 29.64 −9.55 24.33 5.50
S2-3 100 × 100 1.5 116.53 101.4 14.92 50.54 46.48 8.73 29.80 6.74
S2-4 100 × 100 2.0 194.01 207.7 −6.59 79.48 75.54 5.22 34.41 7.78
S3-1 150 × 150 0.5 14.87 16.59 −10.37 11.04 15.12 −26.98 21.07 4.76
S3-2 150 × 150 1.0 57.27 62.67 −8.62 32.14 38.45 −16.41 29.80 6.74
S3-3 150 × 150 1.5 123.93 139.64 −11.25 60.32 55.61 8.47 36.49 8.25
S3-4 150 × 150 2.0 211.55 224.33 −5.70 94.54 110.61 −14.53 42.14 9.53
S4-1 200 × 200 0.5 15.00 17.84 −15.92 12.63 16.21 −22.09 24.33 5.50
S4-2 200 × 200 1.0 58.37 56.98 2.44 36.63 39.59 −7.48 34.41 7.78
S4-3 200 × 200 1.5 127.63 138.51 −7.86 68.57 61.66 11.21 42.14 9.53
S4-4 200 × 200 2.0 220.32 235.97 −6.63 107.24 112.44 −4.62 48.66 11.00

From the data in Table 6 and Figure 19a, it can be seen that when the values of
h and C are small, the predicted ICF value obtained through theoretical calculation is
smaller than the finite-element simulation value; when the value of h increases to the range
around 1.5 mm, the theoretical predicted ICF value begins to exceed the finite-element
simulation value, in which the difference between the theoretical predicted ICF value and
the finite-element simulation value slightly increases with the increase in the value of C.
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However, the theoretical predicted results are in good agreement with the finite-element
simulation results, and the deviation rate between these two is relatively small. In terms
of average force, there is also the phenomenon that the theoretically calculated MCF is
slightly smaller than the finite-element simulation values when the values of h and C are
small. Nevertheless, with gradual increases in the values of h and C, the projection of
numerical points in the z-axis direction of the curve shows that the mapping points are
sparsely distributed when the value of h is large (Figure 19b). Then, the deviation rate
between the two shows a fluctuation of positive and negative changes, which is to some
extent related to the stability of the tube body during folding. The maximum deviation rate
of MCF is −32.87%, but the deviation value is only 3.28 kN. By referring to the abundant
works in the literature [8,26,33,34], we concluded that, for numerical deviations with small
bases, a force within 4 kN is acceptable. In general, the predicted ICF values for the
axial crushing of single-cell tubes are relatively close to the values simulated by the finite-
element analysis, and the error deviation is relatively small but shows a growing trend
with increasing thickness.
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The element height H and the bending radius b of the folded lobe are key parameters
for the calculation of the folding formula. In Section 5.4, the values of H and b are obtained,
and the calculated values are compared with those in the classical super folding element
theory, as shown in Figure 20a,b. From the comparison of the fitting surface, it can be
seen that the values obtained with the improved theory differ significantly from those
obtained with the classical super folding theory. Meanwhile, the theoretical values of
convex panel stretching, whether H or b, are greater than those obtained in the classical
theory, and the deviation rate of the predicted values increases with the increase in the
values of h and C. To further verify the accuracy of the theory, the FE models of specimens
of S1-4, S2-4, S3-4, and S4-4 were selected as representatives for a qualitative analysis of the
simulation results. From Figure 20c–f, it can be found that the range of element heights
formed by the four FE models after crushing is [44, 50], [60, 75], [82, 86], and [92, 100],
respectively, by calculating the number of grids. Additionally, the theoretical prediction of
2H is within the corresponding range mentioned above, which can also be inferred from the
total number of folded lobes formed by the tube after folding. By calculating the rate of the
remaining height to the number of folded layers at the turning point of the FE simulation
in the densification stage, the bending radius of the outer folded lobe under four working
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conditions can be obtained, with the corresponding values of b being 5.69 mm, 8.24 mm,
9.13 mm, and 10.83 mm, respectively. In accordance with Table 6, the theoretical values
of b differ from the FE simulation results by 0.19 mm, 0.46 mm, 0.4 mm, and 0.17 mm,
respectively, and the deviation rates are only 3.3%, 5.6%, −4.4%, and −1.6%, respectively,
which indicates that the calculated values are basically consistent with the model results.
In summary, the theory and model in this study conform to the numerical simulation
results in terms of the MCF and ICF, as well as the parameters H and b. Therefore, it can be
considered that this calculation model is suitable for practical engineering designs.
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7.2. Optimization of Variables N and h

The single-cell square tube is a special case of multicellular square tube with N = 1,
which has been verified using the finite-element method in Section 7.1 and is considered to
be effectively applicable by folding theory. In engineering, there are often design limitations
on the cross-sectional width Ctotal of this tube, while multicellular square tubes can form a
diverse combination by changing the number of segments and wall thickness. In this study,
N and h are set as variables, the optimization method of N and h under the condition of
fixed Ctotal is discussed, and the height of the tube is uniformly specified as L = 300 mm.

7.2.1. Construction of Response Surface

In practical engineering designs, various indicators such as peak pressure, average
force, and energy consumption are often taken into account, while SEA can simultaneously
reflect the changes in MCF, tube mass, and energy consumption, which can be regarded
as a suitable analysis index [35]. According to Equations (1) and (3), SEA = Pmδe

m can be
derived. In view of geometric relationships, the mass of square lattice multicellular tubes
can be expressed as follows:

m = ANρL = ρhL(N + 1)[2Ctotal − (N + 1)h]. (46)

The effective stroke δe is related to N and h, as well as the cross-sectional width Ctotal.
To obtain the specific energy absorption SEA corresponding to different aspect ratios and
cell numbers, the SEA values obtained by combining the finite-element simulation results
of Equations (32) and (46) in this study are shown in Table 7. Xiang [36] summarized the
literature and indicated that the effective crushing distance to original length could be
in the range of 65% and 80%. According to the results in Table 7, the δe values can all
meet the above range. Subsequently, the polynomial response surface method (PRSM)
is used to construct a proxy model for SEA [5]. It has been confirmed that the use of
a full fourth-order function as the fitting function can meet the accuracy requirements
of SEA under bivariate conditions [8,35]. The values of effective stroke δe are obtained
through finite-element simulation and the response surfaces of SEA with Ctotal of 50 mm,
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100 mm, 150 mm, and 200 mm are drawn, as shown in Figure 21. The corresponding
fourth-order response surface functions are shown in Appendix A. By calculating the R2

(coefficient of determination) of the response surface and finite-element data, it is clear that
the fitting degree of the response surface is relatively good, so this function can be used for
optimization analysis. On the whole, as the values of N and h increase, the values of Ctotal
decrease and SEA also increases, which is related to the mass changes in the tube body.

Table 7. δe and SEA values under axial crushing.

Number
of Cells
N × N

h (mm)

Section Width Ctotal (mm)

50 100 150 200

δe (mm) SEA (kJ/kg) δe (mm) SEA (kJ/kg) δe (mm) SEA (kJ/kg) δe (mm) SEA (kJ/kg)

1 × 1 0.5 227.98 6.49 233.76 4.52 219.77 3.41 230.98 3.07
2 × 2 0.5 219.46 10.28 223.16 6.92 220.69 5.43 224.46 4.70
3 × 3 0.5 219.65 13.12 227.56 8.88 223.94 6.89 225.65 5.89
4 × 4 0.5 216.92 15.33 220.22 10.07 223.63 8.02 223.92 6.79
5 × 5 0.5 218.63 17.62 220.17 11.38 222.03 8.97 221.21 7.53
1 × 1 1 229.76 9.79 227.98 6.49 213.14 4.83 233.76 4.52
2 × 2 1 216.16 15.69 219.46 10.28 222.88 8.18 234.14 7.27
3 × 3 1 219.56 20.72 219.65 13.12 220.24 10.23 227.56 8.88
4 × 4 1 210.22 23.80 216.92 15.33 215.48 11.76 220.22 10.07
5 × 5 1 209.17 27.34 213.21 17.18 222.97 13.80 227.43 11.75
1 × 1 1.5 211.77 11.56 210.14 7.55 227.98 6.49 217.77 5.27
2 × 2 1.5 208.69 19.91 218.88 13.20 227.51 10.66 217.69 8.57
3 × 3 1.5 209.94 26.41 215.24 16.72 219.65 13.12 231.81 11.57
4 × 4 1.5 207.63 31.71 209.48 19.40 210.99 14.91 219.63 12.91
5 × 5 1.5 204.03 36.35 216.97 23.07 218.63 17.62 226.69 15.13
1 × 1 2 221.98 14.54 229.76 9.79 215.77 7.24 203.97 5.80
2 × 2 2 209.46 24.49 228.14 16.56 214.69 12.02 235.56 11.03
3 × 3 2 207.65 32.42 219.56 20.72 228.81 16.45 219.65 13.12
4 × 4 2 202.92 38.87 210.22 23.80 215.63 18.44 228.79 16.17
5 × 5 2 197.21 44.48 217.43 28.42 222.69 21.81 213.21 17.18
1 × 1 2.5 211.19 16.01 220.41 10.75 204.77 7.83 245.79 7.95
2 × 2 2.5 216.90 29.91 218.08 18.36 235.36 15.18 226.90 12.20
3 × 3 2.5 211.32 39.35 207.95 22.93 218.82 18.24 208.58 14.38
4 × 4 2.5 203.80 47.02 217.59 28.97 203.56 20.27 218.80 17.91
5 × 5 2.5 195.74 53.67 205.04 31.69 211.45 24.22 225.64 21.14
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7.2.2. Pareto Front

In this study, the critical force ICF and specific energy absorption SEA are used as
optimization indicators for the collision resistance performance of multicellular tubes [37].
From the non-dominated sorting genetic algorithm (NSGAII), a set of Pareto solutions
with high accuracy can be obtained through non-dominated sorting while maintaining
population diversity, which is suitable for nonlinear optimization of SEA and critical
forces [38,39]. Given its superiority, NSGAII was selected in this study for multi-objective
optimization, so as to determine the objective functions and constraints, which can be
detailed as follows: 

Minimize F1(C, h) =ICF(N, h)
Maximize F2(C, h) = SEA(N, h)
s.t 1 ≤ N ≤ 5

0.5 mm ≤ h ≤ 2.5 mm

. (47)

The Pareto frontier values obtained under different cell numbers are shown in Figure 22.
The selection of the optimal point of the Pareto solution set is often related to the actual
engineering requirements and design direction.
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The knee point on the front line represents that the larger value of SEA should be
selected as much as possible without a sharp increase in ICF. The inflection point along the
front line is believed to be an ideal solution in the decision space [8,20]. Given that the front
line of this study is a convex line with only a single knee point, the identification of ideal
Pareto points under multi-objective optimization can be carried out by using the Normal
Boundary Intersection Method (NBI) for exploration [40,41]. The payoff matrix composed

of boundary functions is defined as P =

[
ICF1(N, h) ICF2(N, h)
SEA1(N, h) SEA2(N, h)

]
. The payoff matrices

for these four widths set based on the variable range and optimization results are detailed
in the following:

P50 =

[
13.7942 472.5
0.1538 0.0186

]
P100 =

[
14.6293 945
0.2278 0.0312

]
;

P150 =

[
14.9077 1417.5
0.2964 0.0414

]
P200 =

[
15.0469 1890
0.3169 0.0477

]
,

(48)

The knee points are shown in Figure 22. The curves in Figure 22a–d all present
obvious convex shapes, which indicates a conflict between SEA and ICF with N and h as
optimization variables. Therefore, it is necessary to discuss the optimization of N and h.
Data on the SEA and ICF of the four knee points are summarized in Table 8. From the
crushing force efficiency of the four different cross-sectional widths, it can be found that
the CFE of the optimal solution for multicellular square tubes is not linearly correlated
with Ctotal. When Ctotal increases from 50 mm to 150 mm, the CFE will increase from 42.75%
to 45.00%. However, when Ctotal = 200 mm, CFE will decrease to 43.10%, even less than
the CFE value at Ctotal = 100 mm, which suggests that there is a peak value in the CFE of
cells when Ctotal changes. From the changes in the values of the optimization variables in
Figure 23a, the number of pores in the optimized overall cell remains in the range of 3 × 3
to 5 × 5, indicating that the multicellular form is conducive to improving the strength and
energy consumption of the tubes. When the width increases to 200 mm, the number of
optimal cells will decrease and the thickness will obviously increase. In Figure 23b, the
changes in SEA and ICF are demonstrated. Generally, SEA shows a decreasing trend with
the variation in cross-sectional width, while the change in trend of ICF is opposite to that of
SEA, which should be the result of the increasing influence of the multicellular tube’s mass
on the optimization of larger cross-sectional width conditions. Comparing Figure 23a,b, it
can be inferred that the influence of N on mass is greater than that of h. To compensate for
the decreasing trend of SEA due to the impact of mass, a relatively rapid increase in h is
induced in this study. When Ctotal increased from 150 mm to 200 mm, h increased by 92%.

Table 8. Dual-indicator optimization results under the application of the NBI method.

Section Width
Ctotal

Optimal Parameters Based on PF Knee Points
SEA (kJ/kg) ICF (kN) CFE

N h (mm)

50 4 0.56 19.94 115.29 42.75%
100 4 0.57 10.95 151.48 44.70%
150 5 0.5 9.01 190.21 45.00%
200 3 0.96 8.59 288.85 43.10%

From the above optimization results, a reasonable value range of Ctotal is needed to
ensure superior crashworthiness and energy consumption. With design permission, Ctotal
can be placed within a range of around 150 mm to obtain a PF point with higher SEA and
lower ICF. Additionally, it is worth noting that the PF knee point selected in this study is the
optimal balance point in the absence of special requirements for dual indicators. In practical
engineering designs, the allowable design range for SEA and ICF can be specified according
to actual requirements, so that the intervals of variables of N and h can be determined in
PF. In this way, on the premise of determining the width of the multicellular tubes, the
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optimal combination of N and h required by the index can be clearly obtained from the
optimization results. However, the previous optimization of the tube often focuses on the
optimal state of the tube width and wall thickness under the exact number of cell pores,
which is also the reference of the formula and optimization method proposed in this paper.

Materials 2024, 17, x FOR PEER REVIEW 31 of 34 
 

 

  
(a) (b) 

Figure 23. Impact of Ctotal: (a) Ctotal—N-h; (b) Ctotal—SEA-ICF. 

From the above optimization results, a reasonable value range of Ctotal is needed to 
ensure superior crashworthiness and energy consumption. With design permission, Ctotal 
can be placed within a range of around 150 mm to obtain a PF point with higher SEA and 
lower ICF. Additionally, it is worth noting that the PF knee point selected in this study is 
the optimal balance point in the absence of special requirements for dual indicators. In 
practical engineering designs, the allowable design range for SEA and ICF can be specified 
according to actual requirements, so that the intervals of variables of N and h can be de-
termined in PF. In this way, on the premise of determining the width of the multicellular 
tubes, the optimal combination of N and h required by the index can be clearly obtained 
from the optimization results. However, the previous optimization of the tube often fo-
cuses on the optimal state of the tube width and wall thickness under the exact number of 
cell pores, which is also the reference of the formula and optimization method proposed 
in this paper. 

8. Conclusions 
In order to study the calculation methods for the average force and peak crushing 

force of lattice-filled square multicellular cross-sectional tubes, the super folding element 
theoretical model and the calculation formula for peak crushing force are summarized 
and improved in this study based on the force calculation of single-cell square cross-sec-
tional tubes. Additionally, the calculation method is extended from single-cell square 
tubes to thin-walled square multicellular tubes. Furthermore, in accordance with cross-
sectional and deformation characteristics, elements with the same compression forms are 
classified in this study, for the purpose of obtaining the calculation formulas for the peak 
force and average force of multicellular tubes. In addition, a response surface is con-
structed, and a multi-objective algorithm is used to optimize the square lattice multicellu-
lar tubes with dual indicators. The specific conclusions of this study are as follows: 
(1) A super folding element model that considers convex panel stretching is proposed 

based on the classic super folding element model and the extended folding element 
model. Meanwhile, the folded-lobe model and double-hinged-line model are intro-
duced, and the corresponding reference planes are set. Moreover, the partition prob-
lem of the calculation of the cross section of energy consumption’s area has been 
solved, making the calculation of energy consumption of the tube more convenient. 

(2) A comparison and analysis of the critical crushing force calculation formulas in AISI 
and GB50018-2002 specifications is made, which takes into consideration the stability 
coefficient of the plate group in the effective width calculation. Meanwhile, the criti-
cal force formulas based on the influence of the width-to-thickness ratio are summa-
rized. In the expansion of multicellular tubes, the width-to-thickness ratio of cells and 

50 100 150 200

3

4

5

N

Ctoal(mm)

 N

0.4

0.6

0.8

1.0

 h

h(mm)

50 100 150 200

8

12

16

20

24

SE
A

(k
J/k

g)

Ctotal(mm)

 SEA(kJ/kg)

100

150

200

250

300

350
 ICF(kN)

ICF(kN
)

Figure 23. Impact of Ctotal: (a) Ctotal—N-h; (b) Ctotal—SEA-ICF.

8. Conclusions

In order to study the calculation methods for the average force and peak crushing
force of lattice-filled square multicellular cross-sectional tubes, the super folding element
theoretical model and the calculation formula for peak crushing force are summarized and
improved in this study based on the force calculation of single-cell square cross-sectional
tubes. Additionally, the calculation method is extended from single-cell square tubes to
thin-walled square multicellular tubes. Furthermore, in accordance with cross-sectional
and deformation characteristics, elements with the same compression forms are classified
in this study, for the purpose of obtaining the calculation formulas for the peak force and
average force of multicellular tubes. In addition, a response surface is constructed, and a
multi-objective algorithm is used to optimize the square lattice multicellular tubes with
dual indicators. The specific conclusions of this study are as follows:

(1) A super folding element model that considers convex panel stretching is proposed
based on the classic super folding element model and the extended folding element
model. Meanwhile, the folded-lobe model and double-hinged-line model are in-
troduced, and the corresponding reference planes are set. Moreover, the partition
problem of the calculation of the cross section of energy consumption’s area has been
solved, making the calculation of energy consumption of the tube more convenient.

(2) A comparison and analysis of the critical crushing force calculation formulas in AISI
and GB50018-2002 specifications is made, which takes into consideration the stability
coefficient of the plate group in the effective width calculation. Meanwhile, the critical
force formulas based on the influence of the width-to-thickness ratio are summarized.
In the expansion of multicellular tubes, the width-to-thickness ratio of cells and the
number of cells are taken as parameters so as to obtain the calculation formula for
multicellular tubes.

(3) Additionally, the folding element in square lattice multicellular cross-sectional tubes
is divided into the following types based on the folding characteristics: L-shaped
element, T-shaped element, and crisscross element. According to the differences
in the folded-lobe model, the folding element is divided into Mode A and Mode B.
Ultimately, the average collapse response value of multicellular tubes is calculated for
the participation of five energy-consuming regions in the three element types.

(4) Based on the NSGAII method, SEA and ICF are optimized by regarding N and h
as variables, and the NBI method is used to obtain knee points, aiming to explore
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the influence of N and h on the optimized square lattice multicellular tubes under
different Ctotal values. Finally, optimization directions and references are provided in
this study for future research.

In conclusion, the lattice-filled multicellular square tube structure is characterized as
exhibiting superior performance for the obvious buffering capability and energy absorp-
tion. By proposing the two reference planes, improving the super folding element, and
expanding the effective section method, the calculation method and formula proposed in
this study for the average crushing force and critical peak force of multicellular square
sections are relatively reasonable. Therefore, the lattice-filled multicellular square tube
can not only be used for engineering designs and crashworthiness analyses, but can also
provide novel perspectives for optimizing the design of the cross section of square lattice
multicellular tubes.
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Appendix A

The form of the full fourth-order function under the dual variables N and h is

F(N, h) = z0 + A1N + A2h + B1N2 + B2Nh + B3h2 + C1N3 + C2N2h + C3Nh2 + C4h3

+D1N4 + D2N3h + D3N2h2 + D4Nh3 + D5h4

Equations for SEA response surface under different cell numbers:
In the case of Ctotal = 50 mm:

SEA(N, h) = −0.8698 + 1.23739N + 10.12792h
+0.38652N2 + 6.67592Nh − 10.13095h2

−0.17358N3 − 0.76068N2h − 0.2258Nh2 + 3.78533h3

+0.01608N4 + 0.07783N3h − 0.11694N2h2 + 0.20133Nh3 − 0.54933h4

In the case of Ctotal = 100 mm:

SEA(N, h) = −7.1724 + 8.49628N + 17.38888h
−3.71369N2 + 2.77493Nh − 20.24176h2

+0.73867N3 − 0.26206N2h + 0.33588Nh2 + 9.844h3

−0.05417N4 + 0.03133N3h − 0.06184N2h2 − 0.03467Nh3 − 1.68667h4

In the case of Ctotal = 150 mm:

SEA(N, h) = 0.8128 − 3.73201N + 8.46379h
+3.07969N2 + 4.11148Nh − 9.88429h2

−0.70883N3 − 1.61308N2h + 1.59241Nh2 + 3.63467h3

+0.05267N4 + 0.193N3h − 0.10245N2h2 − 0.26133Nh3 − 0.504h4
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In the case of Ctotal = 200 mm:

SEA(N, h) = −1.547 + 5.27274N − 0.39267h
−3.44568N2 + 7.19994Nh − 2.258h2

+0.84808N3 − 1.14285N2h − 1.63127Nh2 + 1.29067h3

−0.0675N4 + 0.04083N3h + 0.24816N2h2 − 0.01333Nh3 − 0.12h4
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