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Abstract: The microstructure, corrosion resistance, and phase-transition process of micro-arc oxida-
tion (MAO) coatings prepared on LaFe11.6Si1.4 alloy surfaces in different electrolyte systems were
systematically investigated. Research has demonstrated that various electrolyte systems do not alter
the main components of the coatings. However, the synergistic action of Na2CO3 and Na2B4O7 more
effectively modulated the ionization and chemical reactions of the MAO process and accelerated the
formation of α-Al2O3. Moreover, the addition of Na2CO3 and Na2B4O7 improved the micromorphol-
ogy of the coating, resulting in a uniform coating thickness and good bonding with the LaFe11.6Si1.4

substrate. The dynamic potential polarization analysis was performed in a three-electrode system
consisting of a LaFe11.6Si1.4 working electrode, a saturated calomel reference electrode, and a plat-
inum auxiliary electrode. The results showed that the self-corrosion potential of the LaFe11.6Si1.4 alloy
without surface treatment was −0.68 V, with a current density of 8.96 × 10−6 A/cm2. In contrast, the
presence of a micro-arc electrolytic oxidation coating significantly improved the corrosion resistance
of the LaFe11.6Si1.4 substrate, where the minimum corrosion current density was 1.32 × 10−7 A/cm2

and the corrosion potential was −0.50 V. Similarly, after optimizing the MAO electrolyte with Na2CO3

and Na2B4O7, the corrosion resistance of the material further improved. Simultaneously, the effect of
the coatings on the order of the phase transition, latent heat, and temperature is negligible. Therefore,
micro-arc oxidation technology based on the in situ growth coating of the material surface effectively
improves the working life and stability of La(Fe, Si)13 materials in the refrigeration cycle, which
is an excellent alternative as a protection technology to promote the practical process of magnetic
refrigeration technology.

Keywords: La-Fe-Si alloys; magnetic refrigeration materials; micro-arc oxidation; microstructure;
corrosion resistance

1. Introduction

Magnetic cooling technology is based on the magnetocaloric effect (MCE) [1,2], which
refers to the magnetic entropy change (∆SM) or temperature change (∆Tad) produced by the
application or removal of a magnetic field in adiabatic (or isothermal) conditions [3]. Com-
pared to conventional cooling technology, it is highly efficient, environmentally friendly,
stable, and reliable. Therefore, it is a novel and highly promising refrigeration technology.
As the core of magnetic refrigeration technology, research regarding magnetic refrigera-
tion working media is critical. Thus far, magnetocaloric materials with large MCEs near
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room temperature, such as Gd5Si4−xGex [4], La(Fe, Si)13 [5], and MnFePxAs1-x-based com-
pounds [6], as well as certain rare earth-based oxides, alloys, and microwires [7], have been
explored. Among these, La(Fe, Si)13-based materials with NaZn13 crystals are considered
one of the most feasible alternative refrigerants for magnetic refrigeration owing to their
significant advantages of having large MCEs, relatively high cooling power, and non-toxic
constituent elements [8]. In addition, La(Fe, Si)13-based compounds have adjustable Curie
temperatures (TC). However, as a typical first-order phase-transition MCE material, the
order of the magnetic phase transition of La(Fe, Si)13 has a strong relationship with the
Si content [9]. When 1.2 ≤ x ≤ 1.6, LaFe13-xSix compounds demonstrate intense magnet-
ically elastic coupling characterized by a lager negative expansion of the lattice at the
Curie temperature and a magnetic-field-induced itinerant-electron metamagnetic transition
(IEMT) [10]. Concurrently, the large changes in the magnetization and lattice parameters
near the Curie temperature cause the La(Fe, Si)13 series of compounds to present significant
magnetocaloric properties, and a small change in the magnetic entropy versus temperature
curve [11].

Heat exchange is an important component in the working process of a magnetic refrig-
erator. Owing to their large heat capacity and high thermal conductivity, aqueous solutions
or water-based fluids are utilized as highly efficient heat-exchange media between the mag-
netic refrigerants and loads for magnetic refrigerators operating near room temperature [12].
Notedly, LaFe13−xSix compounds severely corrode in water without protection, which not
only diminishes the working efficiency of the refrigerator but also damages its stability and
working life [13]. In many cases, corrosion degradation deteriorates the magnetocaloric
effect of the material, and the corrosion products affect the fluidity and heat conduction of
the heat-transfer medium. Therefore, corrosion protection must be considered in practical
processes. The causes of La(Fe, Si)13 material corrosion were investigated considering
two perspectives. On the one hand, they contain the highly chemically active rare-earth
element La, and on the other hand, the multi-phase structure and high potential difference
between the phases caused by the non-equilibrium solidification of the La(Fe, Si)13 material
weakens the electrochemical corrosion of the magnet when contacting the heat-exchange
fluid [14]. The corrosion mechanism of the La(Fe, Si)13-based alloy principally depends
on its multi-phase structure, and a micro galvanic couple is formed between two adjacent
phases to accelerate the corrosion rate [15].

Thus far, several theoretical studies regarding corrosion behavior have been conducted
considering the constituent elements, chemical composition, and original microstructure.
By studying the corrosion resistance of annealed LaFe11.6Si1.4By series alloys, Fe2B was
found to replace α-Fe in the second phase after B doping, the difference in the micro
galvanic corrosion potential between the second and matrix phases decreased, as well as
the mixed current density, which inhibited the corrosion of the main phase [16]. Similarly,
research regarding the latent heat behavior of La(Fe, Mn, Si)13 in the thermal cycle has
demonstrated that Mn-doping can reduce the corrosion potential difference and strengthen
the corrosion resistance of the alloy [17]. Additionally, the effect of adding Co and C was
investigated, which concluded that the addition of Co and C can significantly enhance
the membrane impedance and promote the formation of a protective corrosion membrane
layer [14]. In addition, the non-stoichiometric La(Fe, Si)13 base alloy can also improve the
corrosion resistance [18] by increasing the content of the specific impurity phases to amplify
the magnetic and corrosion properties of the alloys.

In addition to the composition and inherent structural improvements, a utilization
strategy for magnetocaloric materials coated with corrosion-resistant materials in refrigera-
tion units was proposed, which inspired another study that revealed the corrosion behavior
of LaFe11.5Si1.5/Cu compounds and found that Cu cladding separates the magnetic re-
frigeration working medium and corrosion liquid, effectively heightening the corrosion
potential, reducing the corrosion current density, and improving the corrosion resistance of
the alloy [19]. However, to ensure an efficient heat exchange with the heat-transfer liquid
in AMR cycles, the materials must be processed into large surface areas. The application
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of cladding materials remains difficult, owing to several issues such as being limited to
simple molded parts, poor cladding tightness, and the plating-liquid contamination of the
environment [20]. The ion-implantation technology is not dependent on the silhouette. By
using Cu ion implantation in the LaFe11.6Si1.4 alloy, the results indicated that the corrosion
potential increased and the corrosion current decreased with Cu-ion implantation in the
LaFe11.6Si1.4 alloy [21]. Nevertheless, the copper-formed surface corrosion layer is not
as dense as those of other metal oxides, resulting in uneven and loose phenomena that
accelerate corrosion. Recently, micro-arc oxidation (MAO) technology has been widely
used in the anti-corrosion process of medical magnesium–zinc alloys owing to their dense
and uniform coating, which has a good anti-corrosion performance, simple operation, no
pollution, and no strict requirements for the appearance of the matrix materials [22]. At
present, micro-arc oxidation technology is mainly applied to metals such as Mg, Al, and
Ti, rather than Fe-based alloys. The main reason is that the MAO coating directly formed
on the Fe substrate is not stable enough to achieve good corrosion resistance. In the trial
experiment of the micro-arc oxidation of an iron-based rare-earth La(Fe, Si)13 alloy, it was
found that the addition of rare-earth elements significantly improved the performance of
MAO coatings on this series of alloys. If suitable electrolytes can be used, it is expected to
obtain MAO coatings with good corrosion resistance. Therefore, the study of La(Fe, Si)13
series alloy MAO coatings is not only beneficial for the practical application of magnetic
refrigeration technology, but also can promote the application of this coating on Fe-based
alloys. However, there are no current studies regarding them.

In this study, a LaFe11.6Si1.4 alloy was used as the substrate of micro-arc oxidation.
According to previous studies, the main component of the aluminate electrolyte system
is Al2O3, which has a high strength, hardness, and abrasiveness, whereas the coating
formed by it is compact and uniform, has a good thermal conductivity, and high corrosion
resistance. Therefore, three electrolyte solutions based on the aluminate electrolyte system
were designed using NaAlO2, Na2CO3, NaH2PO4, and Na2B4O7. The micro morphology
of the MAO coating and its influence on the corrosion resistance and phase-transition
process of LaFe11.6Si1.4 materials were systematically studied. This study introduces the
foundation for preparing in situ MAO metal coatings on the surfaces of La(Fe, Si)13 magne-
tothermal materials.

2. Experimental

LaFe11.6Si1.4 alloys were prepared by arc-melting pure La (99.9%), Fe (99.9%), and Si
(99.9%) in a high-purity argon atmosphere. Cylinder samples of Φ8 × 3 (±0.1) mm in size
were cut out of the ingot. The samples were annealed at 1323 K for 12 days in a quartz
tube filled with an argon atmosphere, followed by ice-water quenching. The oxides on the
surface of the sample were removed using a 1000-mesh silicon carbide sandpaper. Surface
grease was then removed by ultrasonic cleaning. In the MAO process, the LaFe11.6Si1.4
sample was the working anode and the stainless steel was the cathode. The voltage and
pulse frequency were set at 500 V and 1200 Hz, respectively, and the treatment duration
was 20 min. The electrolyte temperature was maintained at 20 ◦C by circulating the water-
cooling bath. The main electrolytes used for MAO were NaAlO2, Na2CO3, NaH2PO4, and
Na2B4O7. Table 1 and Figure 1 list the combinations of electrolytes and the schematic
diagram of the MAO device used in this experiment; the coatings prepared are represented
by M1, M2, and M3, respectively.

Table 1. Composition and concentration of the electrolytes used in different MAO coatings.

Coatings NaAlO2 (g/L) NaH2PO4 (g/L) Na2CO3 (g/L) Na2B4O7 (g/L)

M1 15 3 / /
M2 15 3 3 /
M3 15 3 3 3
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Figure 1. Schematic diagram of the micro-arc oxidation device.

The microstructures and elemental compositions of the coatings were analyzed us-
ing scanning electron microscopy (SEM, JSM-6360LV, JEOL, Tokyo, Japan) and energy-
dispersive spectrometry (EDS, Oxford Atec X-max 50, Oxford Company, Oxford, UK). X-ray
diffraction (XRD, Ultima-IV, Rigaku, Tokyo, Japan) was used to study the crystal structure
of the samples. The porosity of the coating surface was quantified using ImageJ software
(ImageJ 1.8.0, National Institutes of Health, Bethesda, MD, USA). The coating-binding
force was tested using a WS-2005 coating adhesion scratch instrument (Shanghai Shenrui
Instrument Co.,Ltd., Shanghai, China).

Dynamic polarization (IE) testing of the coatings was performed using a standard
three-electrode electrochemical analyzer/workstation (VersaSTAT MC, Ametek Company,
Berwyn, PA, USA). For the electrochemical study, each measurement was performed in
a standard three-electrode cell consisting of a LaFe11.6Si1.4 working electrode, saturated
calomel reference electrode (SCE), and platinum counter electrode. Distilled water was
used as the test solution in the 0.2 cm2 test area. The polarization curves of the samples
in the test solution were recorded at a scanning speed of 1 × 10−3 V/s. The thermal cycle
was conducted near TC using differential scanning calorimetry (DSC, DSC214, NETZSCH-
Gerätebau GmbH, Selb, Germany) at a scanning rate of 3 K/min.

3. Results and Discussion

Figure 2 presents the XRD patterns of the MAO-coated samples with different elec-
trolyte compositions, which demonstrates that all the MAO coatings present characteristic
peaks of α-Al2O3, γ-Al2O3, Fe2O3, FeAl2O4, and FePO4, indicating that different electrolyte
compositions did not change the main components of the MAO coatings. Specifically, the
diffraction peaks of Fe2O3 and FePO4 were observed at 45.5◦ and 65.0◦ [23], respectively,
for all the samples. Notably, owing to the layered porous structure of the coating, X-rays
can penetrate the coating onto the Fe2O3-dense oxide layer, resulting in the appearance of
Fe2O3 diffraction peaks. This also indicates that the iron oxide on the substrate participates
in the MAO reaction [23,24]. In addition, the FeAl2O4 diffraction peak was located at 45.5◦,
which overlaps with those of the first two Fe-containing compounds [24]. The diffraction
peaks of α-Al2O3 were located at 31.7◦, 37.2◦, 44.6◦, 60.3◦, and 66.0◦, and 43.3◦, 47.0◦, 56.3◦,
and 82.5◦ corresponded to γ-Al2O3. Compared with M1, the diffraction-peak intensity of
Fe2O3 remarkably decreased in the M2 spectrum, whereas those of α-Al2O3 and γ-Al2O3
increased, indicating that the addition of Na2CO3 promotes the growth of the α-Al2O3 film
layer and affects the reaction of MAO [25,26]. The diffraction peaks of Fe2O3 and FePO4 in
M3 nearly disappeared, and the intensity of the γ-Al2O3 diffraction peaks decreased, indi-
cating that the addition of the Na2B4O7 resolved the iron-oxide formation and significantly
inhibited FePO4 formation in the envelope [27]. Generally, the type of Al2O3 crystal in the
coating directly affects the corrosion resistance, and a higher content of α-Al2O3 improves
the corrosion resistance.
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Figure 3a–d, as well as Figure 3e,f, demonstrate the surface morphology of M1, M2,
and M3 MAO coatings prepared under different electrolyte compositions, respectively. The
content of each element obtained from the EDS analysis is listed in Table 2. Because it was
performed in a constant pressure mode, the sample surfaces under different electrolytes
exhibited “volcanic characteristics” of the MAO coating [28,29]. The mastoid morphology is
the main surface feature that can be observed in the high magnification images, as shown in
point A in Figure 3a, where the upper-right illustration presents an enlarged view of point
A. All the coatings have black circular pores distributed in the molten region on the surface.
These circular micropores are volcanic vents, which are residual channels of the discharge
reaction, and are caused by the outflow of molten oxides from the discharge channel and
are cooled by relatively cold electrolytes [30]. The microcracks in the coating are caused by
the thermal stress generated by the rapid solidification of molten oxide [31]. The coating of
numerous microcracks and microporous structures was clearly observed in M1, resulting
in an uneven surface and higher roughness (Figure 3b). However, the appearance of cracks
indicates that the formation process of the MAO coating is unstable during arc interruption,
and it also suggests the presence of loose Fe2O3 and FePO4. Similarly, the pores and cracks
as defects will be detrimental to the anti-corrosion performance of the material. M1 is
mainly composed of Al, O, Fe, and P elements, with Al and Fe atoms accounting for 29.7%
and 6.6%, respectively, as shown in Table 2. When Na2CO3 was added to M2, the small
hole at the center of the circular surface protrusion was a typical charge perforation in the
MAO process (Figure 3d). Na2CO3 has a positive impact on the formation of coatings,
which is manifested by a significant reduction in the surface cracks, a lower roughness,
and a denser coating. This phenomenon is due to the addition of Na2CO3, changing the
solution environment and thus improving the discharge mechanism [25,26], making it
more conducive to the production of Al2O3, resulting in a higher content of Al2O3 in the
coating. The EDS analysis confirms that the content of Al and O slightly increased in M2,
whereas the content of Fe and P decreased, indicating that the growth of the Al2O3 crystals
effectively improved during the MAO process [32]. The surface morphology of M3 is
generally consistent with that of M2, but the large pores are significantly reduced, shrinking
to half. The coating surface is uniform and dense (Figure 3e). During the formation process



Materials 2024, 17, 1316 6 of 14

of M3 coating, the addition of Na2CO3 and Na2B4O7 further improved the discharge
mechanism of micro-arc oxidation [28], thereby changing the formation mechanism of the
surface layer and leading to the disappearance of cracks and the sealing of most discharge
holes. On the other hand, the presence of Na2B4O7 promoted the decomposition of iron
oxide, making it more conducive to the generation of Al2O3. Therefore, the combined effect
resulted in a smoother and more uniform surface layer of the M3 coating. According to
the EDS results, the atomic percentages of Al and O are 36.9% and 58.2%, respectively,
with a ratio of 0.634, which is notably close to the Al/O ratio of the Al2O3 compound
(0.667). Overall, the addition of both Na2B4O7 and Na2CO3 regulates the reaction process,
significantly inhibiting the oxidation reaction of Fe in the substrate and catalyzing the
generation of Al2O3. Simultaneously, the appropriate amount of Na2CO3 or Na2B4O7
makes the coating surface uniform and delicate.
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Table 2. The elemental content (atomic percentage) of the MAO coatings under different elec-
trolyte components.

Sample Al (%) O (%) P (%) Fe (%)

M1 29.7 59.9 3.9 6.6
M2 33 60.4 3.1 3.6
M3 36.9 58.2 2.3 2.7

The cross-sectional SEM morphologies and EDS elemental line-scanning distribution
curves of the MAO coatings in different electrolytes are shown in Figure 4. Figure 4a,c,e
correspond to M1, M2, and M3, respectively. Specifically, Figure 4b,d,f correspond to
the enlarged views of the region in the circle in Figure 4a,c,e, respectively, whereas a1,
b2, and c3 correspond to the line scanning at the transverse line, respectively. Figure 4a
demonstrates that the coating thickness is uniform, whereas Figure 4b indicates that the
substrate material is closely connected to the coating; however, the presence of deeper
cracks causes the coating surface to become dense and thus fall off. In addition, the line-
scan pattern demonstrates that the diffraction peaks of Al and O are alternately serrated,
whereas the diffraction peaks of Fe and P appear simultaneously. This indicates that the
compositional distribution of the coating was uneven and that there were other oxides that
significantly reduced the bonding strength. Furthermore, the average coating thickness
of M1 was 40 ± 2 µm. The overall condition of M2 was good, but according to the energy
spectrum, impurities remained and the coating thickness (33 ± 2 µm) was smaller than
the other two coatings. The coating thickness of M3 reached 65 ± 2 µm, there was no gap
with the substrate, and its cross-sectional state was sufficiently stable, dense, and smooth.
A comparison of the thicknesses of the coatings is shown in the SEM images. Changes in the
electrolyte composition can apparently result in significant differences in the cross-sectional
morphologies of the coatings. Notedly, there was a stable Fe-A1 co-position transition zone
between the coating and substrate with a thickness of 3 ± 0.5 µm, indicating that substrate
oxidation occurs during the initial stage of the coating formation.
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The surface pore distribution of the MAO coatings with different electrolytes is shown
in Figure 5a–c, where a–c corresponds to M1–M3, respectively, and the porosity calculated
using the ImageJ software is shown in Figure 5d. Overall, owing to the constant pressure
mode, the dominant pore structure was the discharge channel [33]. M1 was mainly com-
posed of micropores and cracks with a porosity of 15.28%. The addition of Na2CO3 to
M2 significantly regulated the MAO-discharge process and improved the density of the
membrane layer and growth of the outer layer, resulting in the formation of a porous mor-
phology; its porosity decreased to 10.78%. When Na2B4O7 was added, the porosity did not
change; however, the hole diameter significantly decreased. This is because the discharge
process significantly improved, the conductivity was enhanced, and the solidified oxide
melted and decomposed again, causing it to slightly solidify or become submerged when
encountering colder electrolytes. In conclusion, an appropriate electrolyte composition
can improve the pore morphology of the coating surface and make it smooth, compact,
and uniform.

The bonding strength between the coatings and the La-Fe-Si substrate is critical for
practical use. In this regard, Figure 6 presents the bonding-force analysis of the coatings
prepared with different electrolyte components. According to this definition [34], the peak
position of the first acoustic signal corresponds to the load capacity, that is, the bonding
force. The ratio of the first load to the surface area of the sample is the bonding strength.
Figure 6 demonstrates that M1 had the lowest adhesion among the three coatings, for
which the bonding force was 10.83 ± 0.15 N and bonding strength was 86.25 ± 1.18 MPa.
This is owing to the crack defects, an unstable Fe-Al transition layer, and a complex coating
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composition, resulting in a low bonding force. The bonding force of M2 was 16.65 ± 0.37 N,
and the bonding strength was 132.56 ± 2.29 MPa. Compared with M1, the bonding capacity
of M2 increased, which further verifies that the addition of Na2CO3 changes the discharge
reaction and improves the distribution of the coating structure and diffusion process of the
components. However, the bonding force and bonding strength of the M3 coating slightly
decreased, which were 16.05 ± 0.44 N and 127.80 ± 3.54 MPa, respectively. This is owing to
the influence of the discharge reaction on the M3 layer; furthermore, the increase in pores
in the outermost membrane layer leads to a decrease in the density, and the stability of the
Fe-A1 transition layer remains unchanged.
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Figure 7 presents the polarization curves (PDP) obtained from the kinetic potential
polarization tests of the samples prepared in different electrolytes in distilled water. The
dynamic potential polarization analysis was performed in a three-electrode system con-
sisting of a LaFe11.6Si1.4 working electrode, a saturated calomel reference electrode and
a platinum auxiliary electrode. The electrochemical data obtained after Tafel fitting are
shown in Table 3. The samples without coatings demonstrated poor corrosion resistance,
whereas those with coatings had significantly improved corrosion resistance. Among these,
the M3 coating exhibited the best protective performance, with a polarization potential
and corrosion current density of −0.50 V and 1.32 × 10−7 A/cm2, respectively, which
was owing to the large coating thickness and small pore size, inhibiting the corrosion of
the sample. The corrosion potential apparently increased from −0.68 V of LaFe11.6Si1.4 to
−0.50 V of M3, and the corrosion current density decreased from 8.96 × 10−6 A/cm2 to
1.32 × 10−7 A/cm2, indicating an increase in the corrosion potential and decrease in the
corrosion current density of the sample. This also confirms that the addition of Na2CO3 and
Na2B4O7 improved the microstructure of the coating and enhanced the corrosion resistance
of the substrate material.
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Table 3. MAO coating data fitted by the Tafel polarization curve under different electrolyte compositions.

Sample Corrosion Current Density
icorr (A/cm2)

Corrosion Potential
Ecorr (V)

Corrosion Rate
CR (mm/y)

LaFe11.6Si1.4 8.96 × 10−6 −0.68 0.0690
M1 3.37 × 10−7 −0.56 0.0026
M2 1.51 × 10−7 −0.53 0.0011
M3 1.32 × 10−7 −0.50 0.0010

The aforementioned results were obtained owing to the following: 1⃝ The coating has
a higher α-Al2O3 content, and its good coating performance separates the substrate from
the solution, inhibits the corrosion of the substrate, and decelerates the electrochemical
corrosion. 2⃝ Owing to the unique, uniform, and dense micromorphology of the constant-
voltage discharge mode, contact with the heat-exchange medium is effectively avoided.
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3⃝ Owing to the high bonding strength of the coating, the dense layer and substrate were
directly connected.

As indicated above, the coating was successfully prepared on the surface of the
LaFe11.6Si1.4 alloy, and the corrosion resistance of the substrate was effectively improved.
Owing to the need for heat exchange between the magnetic refrigeration materials and the
medium during the operation, it is necessary to consider whether the coating affects the heat
absorption and release during the phase-transition process. The M3 coating demonstrated
an excellent corrosion resistance, as shown in Figure 8, which presents the DSC curves of the
samples without the surface treatment and M3-coated samples; here, the peak represents
the heat absorbed by the material during the phase-transition process. The phase-transition
temperatures, determined by differentiating the DSC (DDSC) curves [35], were 190 K
and 187 K, respectively. Endothermic peaks occurred at the same temperature during
the thermal cycling process, indicating that the phase transition temperature was nearly
consistent during the cycling process [36,37]. The phase-transition latent heat indicates the
integral of the DSC curve peak over time [38]:

∆H =
∫ dQ

dt
· dt (1)
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In the formula, dQ
dt is the heat-flux rate, expressed as the difference in power delivered

to the sample and the reference while keeping their temperatures equal (where Q and t are
heat and time, respectively). The

∫ dQ
dt · dt is the latent heat, which is directly calculated by

the built-in software of the DSC equipment (NETZSCH Proteus 5.0, NETZSCH-Gerätebau
GmbH, Selb, Germany). The calculations determined that the values without and with
the coating were 4.43 J/g and 4.26 J/g, respectively. The phase-change latent heats of the
uncoated and coated samples were nearly identical. In addition, the sharp latent thermal
peak indicates that the coated LaFe11.6Si1.4 remains a first-order magnetic-phase transition
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material. Therefore, the micro-arc oxidation technology not only improves the corrosion
resistance of the material, but also does not alter the other properties, which is critical for
protecting the substrate from damage.

4. Conclusions

In this study, the micromorphology, coating performance, corrosion resistance, and
magnetocaloric effect of MAO coatings prepared on LaFe11.6Si1.4 alloy surfaces using dif-
ferent electrolyte systems were systematically compared and analyzed. X-ray diffraction
mapping revealed that the different electrolyte systems had little effect on the main compo-
nents of the coating; however, there were apparent differences in the Al2O3 content. The
addition of Na2CO3 and Na2B4O7 significantly improved the MAO-discharge process, mak-
ing the coating structure and morphology on the LaFe11.6Si1.4 alloy surface more compact
and smoother, with a more uniform thickness and improved performance. Furthermore,
the addition of Na2CO3 and Na2B4O7 reduced the surface porosity and pore diameter of
the LaFe11.6Si1.4 alloy while improving the binding force and binding strength between
the coating and substrate, which were 16.65 ± 0.37 N and 132.56 ± 2.29 MPa, respectively.
Compared with the alloy without the surface treatment, the corrosion resistance of the
LaFe11.6Si1.4 alloy with the MAO coating was significantly improved, and the self-corrosion
current density of the coating was reduced to 1.32 × 10−7 A/cm2. In addition, the MAO
coating enhanced the corrosion resistance without affecting the magnetothermal prop-
erties of the LaFe11.6Si1.4. Therefore, micro-arc oxidation, a technology that decelerates
the corrosion of the substrate, effectively provides corrosion protection for La(Fe, Si)13
in refrigeration cycles and is expected to promote the practicality of magnetic refrigera-
tion technology.
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