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Abstract: The mechanical properties of metastable β-titanium alloys are highly susceptible during
the thermal mechanical processing (TMP). In this process, the recrystallization process plays an
important role in determining the microstructure and texture evolution. The implementation of
dynamic recrystallization (DRX), a process for achieving β-grain refinement, is considered of great
significance for the improvement of the properties of metastable β-titanium alloys and their industrial
production. Along these lines, in this work, an isothermal compression test of TB8 titanium alloy was
carried out by using a Gleeble-3500 thermal simulator. As a result, the rheological stress behavior
was analyzed, the thermal processing map was accurately established based on the stress–strain
curve, and the optimal processing interval was determined. The DRX kinetic and the DRX grain
size models were developed, on the basis of which a new DRX intrinsic model was established to
improve the material parameters. Therefore, the actual situation in the working process could be
better predicted. The microstructural evolution of TB8 titanium alloy during thermal deformation
was comprehensively investigated using the electron backscatter diffraction (EBSD) technique. The
obtained results demonstrate a close correlation between the diversity of DRX mechanisms in TB8
alloy and the distribution of dislocation density. Four microstructural textures during thermal
deformation were identified, in which the cube texture of (001) <010> and the R-Gorss Nd texture of
(110) <110> dominate. Due to the random orientation of the dynamically recrystallized grains, the
strength of the R-Gorss Nd texture of (110) <110> increases with the increase in the volume fraction
of DRX. On the contrary, it was verified that the dynamic recrystallization behavior has a significant
weakening impact on the cube texture of (001) <010>.

Keywords: metastable β-titanium; TB8 titanium; hot-compression; microstructure evolution;
dynamic recrystallization; processing map

1. Introduction

Due to the excellent combination of mechanical properties, metastable β titanium al-
loys have gained more attention in the fields of aerospace, automotive parts, biomedicine,
et al. [1–3]. It is now common to use TMP on titanium-alloy-microstructure-part modulation
to obtain excellent mechanical properties, so that the parts have high creep properties and
fracture toughness; these properties are very important for the manufacture of structural com-
ponents. The mechanical properties of metastable β titanium alloys, however, exhibit high
sensitivity to thermal mechanical processing (TMP), leading to deformation and hardening
phenomena that significantly impact their mechanical performance and workability character-
istics [4–6]. The literature has reported that beta grain refinement can enhance the ductility of
alloys while concurrently augmenting their strength [7]. In other words, the process of dy-
namic recrystallization (DRX) can be utilized for β-grain refinement, resulting in small-grained
alloys with high strength. Furthermore, titanium alloy DRX can also improve the macroscopic
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morphology of the material and enhance its plasticity and toughness. Therefore, it is of great
significance to study the relationship between process parameters and microstructure as well
as the texture evolution of metallic materials during thermal deformation.

For high-stacking-fault-energy titanium alloys, although thermal deformation does not
readily induce dynamic recrystallization, numerous publications have highlighted that the
primary recovery mechanism in the β-phase field is dynamic recovery (DRV), exhibiting an
apparent activation energy similar to Ti diffusion in β-titanium alloys [8]. DRX is often observed
during deformation above the β-phase transition temperature (Tβ) [9]. Continuous dynamic
recrystallization (CDRX)and discontinuous dynamic recrystallization (DDRX) are the two
primary types of DRX [10–12]. Arunabha et al. [13] studied Ti-6Al-4V alloy and found that
DRX occurred during thermal deformation. During the initial deformation, DDRX dominated
the nucleation mechanism of DRX, while CDRX gradually dominated DRX nucleation with
the increase in true strain. Previous publications [14,15] have also confirmed that low strain
rates and high deformation temperatures are conducive to DDRX, while CDRX readily occurs
at high strain rates. Ti-6554 was studied using electron backscatter diffraction (EBSD) and
it was discovered that CDRX prevailed at low strain rates. As the strain rate increased, the
inhomogeneity of deformation caused multiple dynamic recrystallization mechanisms to occur
simultaneously. DDRX was often found near jagged grain boundaries and rare geometric
dynamic recrystallization (GDRX) was also detected at high strain rates [16]. Zhao et al. [17],
during the compression of the Ti-10 V-2Fe-3Al alloy, found that DRV was the main recovery
mechanism and that CDRX, which was characterized by continuous sub-grain rotation, readily
occurred at low temperatures and high strain rates. However, there is a scarcity of research on
the microstructure evolution of titanium alloys in relation to DRX mechanisms.

The constitutive equation Is used as an input to the user subroutine code of finite element
software to simulate the deformation behavior of materials under certain conditions. It is very
important in finite element simulation analysis and the optimization of material-hot-forming
processing [18]. Therefore, the accuracy of finite element simulation heavily relies on the analysis
of material deformation behavior through constitutive equations, which currently represent
mathematical relationships between material flow behavior and parameters such as stress, strain,
temperature, and strain rate. The majority of these constitutive equations are either phenomeno-
logical or empirical in nature [19]. In the phenomenological approach proposed by Sellars [20],
the flow stress is described by the sinusoidal hyperbolic law within the Arrhenius equation,
which has gained extensive utilization in predicting high-temperature flow behavior [16,21]. In
the flow behavior modeling of titanium alloys, Teng et al. [22] employed the Arrhenius equation
to simulate the flow behavior of the Ti-55511 alloy in both the two-phase and single-phase regions,
successfully predicting the flow stress during thermal deformation with high accuracy. Further-
more, extensive research literature is available on the impact of various parameters on the flow
behavior and microstructure evolution of Ti-55511 [23,24]. However, limited research has been
conducted on the thermal deformation characteristics and DRX mechanism of TB8 alloys. Yang
et al. [25] investigated the flow behavior and microstructure of TB8 alloy under hot compression
at a strain rate of 0.001 s−1 and found that DRX occurred during the process. However, the
thermal deformation behavior of TB8 prior to and subsequent to the phase transition has not been
comprehensively investigated. Currently, superplastic forming and traditional thermal forming
are the primary manufacturing methods employed for the production of intricate titanium alloy
parts. However, these shaping techniques not only entail significant time and energy consump-
tion but also incur exorbitant costs. [26]. Therefore, it is imperative to conduct a comprehensive
analysis and investigation into the thermal deformation behavior, dynamic recrystallization
(DRX) mechanism, and microstructural evolution of TB8 titanium alloy under varying strain
rates, deformation temperatures, and levels of deformation. The DRX constitutive equation was
developed to accurately predict the microstructure evolution and thermal deformation flow stress
of TB8 titanium alloy, aiming to comprehensively comprehend the DRX mechanism during TB8
thermal deformation. The determination of the appropriate processing window for material hot
forming, enhancement of material processing conditions, and improvement in forming efficiency
through novel technologies are imperative for practical production.
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In this work, the dynamic recrystallization and microstructure of TB8 titanium alloy
were comprehensively analyzed at different temperatures, deformations, and strain rates.
A new DRX-based intrinsic model was established based on the stress–strain curve, and
a novel DRX kinetic model was developed. The microstructure evolution of the TB8
alloy during heat deformation was also systematically investigated. Our work provides
valuable insights for studying the reasonable TMP process route to improve the properties
of metastable β titanium alloy for industrialized production. The research results can
provide theoretical basis and data support for TB8-alloy hot processing.

2. Experimental

The metastableβ-titanium alloy TB8 that was used in the present study was hot-forged and
annealed at 800 ◦C. A 200 × 200 mm2 block billet with a composition of Ti-15.23 Mo-2.93 Al-2.58
Nb-0.22 Si was obtained and then processed into cylindrical specimens with a diameter of 8 mm
and a height of 12 mm. The Tβ of the alloy was measured at 815 ± 15 ◦C by metallography.

The hot compression experiments were performed on the cylindrical specimen using
a Gleeble-3500 (The thermal simulation testing machine is developed by DSI company in
Nashville, TN, USA) thermal simulation machine. All surfaces of each sample were mechan-
ically ground to reduce friction. Between the squeezed specimen and die, thin tantalum
sheets were positioned to further decrease friction and maintain consistent deformation. The
thermal compression specification is shown in Figure 1: The samples were heated to 780,
840, 900, and 960 ◦C at 10 ◦C/s, held at 180 ◦C, compressed at a strain rate of 0.1–0.001 s−1

with 70% of the total deformation, and compressed at a strain rate of 0.001 s−1 at 960 ◦C
with 30% and 50% of the deformation. The high-temperature microstructure was preserved
by subjecting the samples to rapid water quenching immediately after thermal deformation.
During the process of deformation, the system automatically collected true stress, true strain,
and deformation temperature data. All compression tests were performed in a vacuum.
The microstructural and textural evolution of the deformed specimens were analyzed by
EBSD. Specimens after hot compression were cut along the central axis and subsequently
ground using 400 #, 800 #, 1200 #, 2000 #, and 3000 # SiC sandpaper to achieve a smooth
surface. Finally, mechanical polishing was performed utilizing 1 µm diamond polishing
liquid. EBSD samples were prepared by grinding and electropolishing at 18 V for 15 s in
70 vol% CH3OH, 10 vol% HClO4, and 20 vol% (CH2OH)2 solutions. The observation area is
shown in Figure 1. EBSD examination was carried out in ZEISS Sigma 500 (Jena, Germany)
field-emission scanning electron microscope equipped with an Oxford Nordlys Max3 EBSD
probe. The step size was 1.5 µm and the acceleration voltage was 20 kV. AZtecCrysta software
(https://nano.oxinst.com/azteccrystal, accessed on 25 March 2024) was used to process and
analyze EBSD data, and the DRX volume fraction, average grain size, average KAM and
average GND density were obtained.

Materials 2024, 17, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Thermal deformation flow chart and EBSD observation area diagram. 

3. Results 
3.1. Flow Behavior 

The curve in Figure 2 demonstrates a pronounced dependence of flow stress on the 
temperature and strain rate. Specifically, the flow stress increases with increasing strain 
rate at a given temperature. At a high strain rate, flow softening was reduced due to the 
rapid accumulation of dislocation, increasing critical shear stress. At the same strain rate, 
the flow stress decreased as the temperature increased and the flow stress became closer 
to the steady flow stress. This was because, at high temperatures, the binding force be-
tween atoms decreased, the critical shear stress of the material was reduced, the slip of the 
dislocation was accelerated, and the driving force of the dislocation slip decreased, thus 
reducing the work hardening. In addition, the stress–strain curves for various defor-
mation cases have many common features. Early in the deformation process, the disloca-
tion density rises rapidly and work hardening occurs. This caused the stress to rise quickly 
to its peak stress (σp) across a very narrow strain range. The flow stress curve began a 
continuous softening stage following the peak stress as the strain continued to rise. It has 
been shown that the heat of deformation effect, DRV, DRX and rheological instability are 
all important components of the dynamic softening process [27]. The curve reached a 
steady state when work hardening and dynamic softening achieved equilibrium. 

 
Figure 2. True stress–true strain curve of TB8 titanium alloy at high-temperature compression: (a) 
strain rate 0.1 s−1; (b) strain rate 0.01 s−1; (c) strain rate 0.001 s−1. 

3.2. Hot Processing Maps 
The hot processing map, based on the Dynamic Material Model (DMIM) proposed, 

serves as an effective tool for verifying thermal deformation mechanisms and optimizing 

(c) 

Figure 1. Thermal deformation flow chart and EBSD observation area diagram.

https://nano.oxinst.com/azteccrystal


Materials 2024, 17, 1572 4 of 16

3. Results
3.1. Flow Behavior

The curve in Figure 2 demonstrates a pronounced dependence of flow stress on the
temperature and strain rate. Specifically, the flow stress increases with increasing strain rate
at a given temperature. At a high strain rate, flow softening was reduced due to the rapid
accumulation of dislocation, increasing critical shear stress. At the same strain rate, the
flow stress decreased as the temperature increased and the flow stress became closer to the
steady flow stress. This was because, at high temperatures, the binding force between atoms
decreased, the critical shear stress of the material was reduced, the slip of the dislocation
was accelerated, and the driving force of the dislocation slip decreased, thus reducing
the work hardening. In addition, the stress–strain curves for various deformation cases
have many common features. Early in the deformation process, the dislocation density
rises rapidly and work hardening occurs. This caused the stress to rise quickly to its peak
stress (σp) across a very narrow strain range. The flow stress curve began a continuous
softening stage following the peak stress as the strain continued to rise. It has been shown
that the heat of deformation effect, DRV, DRX and rheological instability are all important
components of the dynamic softening process [27]. The curve reached a steady state when
work hardening and dynamic softening achieved equilibrium.
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Figure 2. True stress–true strain curve of TB8 titanium alloy at high-temperature compression:
(a) strain rate 0.1 s−1; (b) strain rate 0.01 s−1; (c) strain rate 0.001 s−1.

3.2. Hot Processing Maps

The hot processing map, based on the Dynamic Material Model (DMIM) proposed,
serves as an effective tool for verifying thermal deformation mechanisms and optimizing
thermal process parameters. It comprises a power dissipation diagram and instability
diagram. The power dissipation diagram comprises the power dissipation coefficient (η),
which exhibits variations with respect to deformation temperature and strain rate, and can
be computed as follows:

η ==
J

Jmax
=

2m1

(m1 + 1)
(1)

In this context, J represents the power dissipation attributed to microstructural evolu-
tion, while m1 denotes the strain rate sensitivity index, which can be determined through
the following equation:

m1 =
∂(Lnσ)

∂
(

Ln
.
ε
) |T (2)

By applying Zeigler’s principle of maximum entropy generation, the criterion for flow
instability can be derived.

ξ =
∂{lg[m1/(m1 + 1)]}

∂
(
lg

.
ε
) + m1 < 0 (3)
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Figure 3 depicts the hot processing map of the TB8 titanium alloy at different true
stresses. The contours show the power dissipation efficiency; η ≥ 0.4 implies DRX or
superplasticity, which can lower the deformation resistance and increase alloy workabil-
ity [28]. Green denotes the safe zone, with the depth of the color representing stability;
the darker color indicates poorer stability, while grey represents the unstable sector. The
microstructure and performance can be optimized by choosing the processing parameters
with the highest values and the region with the highest stability in the safe zone. As can
be seen from Figure 3, the TB8 alloy had a high-power dissipation efficiency and a small
instability zone. In Figure 3c,d, the gray color at a strain rate of 0.1 s–1 at 960 ◦C indicated
instability. Thus, this region should be avoided as much as possible during hot working
conditions. In contrast, η was greater than 0.38 and stable in the 780–900 ◦C region with a
strain rate of 0.1–0.01 s–1, indicating that the workability was the best in this region.
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and (d) 1.2.

Figure 4 illustrates a significant increase in average grain size with a rising temperature
and decreasing strain rate, accompanied by the emergence of numerous deformed grains at
a deformation temperature of 780 ◦C and a strain rate of 0.1 s−1. These grains are relatively
large, affecting the alloy’s processing performance and mechanical properties. Combined
with the thermal processing diagram in the strain rate 0.001 s−1 deformation temperature
of 960 ◦C, it can be inferred that because the grain is larger, it will be easily destabilized in
the processing. When the deformation temperature was 840–900 ◦C and the strain rate was
0.01 s−1 compared with the strain rate of 0.001 s−1 and the deformation temperature of
960 ◦C, the average grain size significantly decreased due to the dynamic recrystallization
of β grains. It is thus apparent that the grain was refined, the alloy plasticity significantly
increased, and the energy dissipation efficiency η increased. As can be seen from Figure 3,
the energy dissipation efficiency η is greater than 0.38. Some regions even exceed 0.4 to
appear superplastic. These results suggest that TB8 titanium alloy is best machined at a
deformation temperature of 840–900 ◦C and a strain rate of 0.01 s−1.
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3.3. Dynamic Recrystallization Constitutive Model

In this work, the correlation between deformation temperature T, flow stress σ, and
strain rate ε during the compression deformation of TB8 titanium alloy is illustrated by
using the Arrhenius equation [20]. The different stress levels were also divided into three
types, as follows:

.
ε = A

[
sinh

(
ασp

)]n exp(−Qa/RT) (4)
.
ε = Aσn

P exp(−Qa/RT) (5)
.
ε = A exp(βσP) exp(−Qa/RT) (6)

The parameters required for the DRX constitutive model can be obtained by fitting the
above equation to the stress–strain curve [29].

The dynamic recrystallization constitutive model can be obtained as follows (see the
Supplementary Materials):

σ0 = 0.353511 · Z0.26082

σw =
[
σ2

s +
(
σ2

t − σ2
s
)
e−µε

]0.5 · · · · · ·
(
εq < ε ≤ εc

)
σd = σw − (σs − σss)Xdrx · · · · · · (εc < ε)
Z =

.
ε exp(239147/RT)

εp = 1.730813 · Z−0.14929

εc = 0.83εp

σs = 86.6446 × sinh−1(nsZds)

σss = 86.6446 × sinh−1(1.26 × 10−3 · Z0.30876)
µ = 0.282995 · Z0.1341

Xdrx = 1 − exp
[
Kd

(
(ε − εc)/εp

)Pd
]

Kd = 66.34577 · Z−0.19488

Pd = 3 × 10−4 · Z0.31595

DDRX = 1.45 × 104 · Z−0.3601

ds = 0.01376 × ln
.
ε

2
+ 0.14417 ln

.
ε + 0.60966

ns = −0.14396 × 10−4 × ln
.
ε

2 − 0.00806 ln
.
ε − 0.136

(7)

In the equation, σt is the elastic stage stress, εq refers to the yield strain, σw is the
instantaneous stress with only dynamic recovery, εc denotes the critical stress, εp is the
peak strain, σd stands for the DRX stress, σs represents the peak stress, σss signifies the
steady-state stress, Xdrx is the DRX volume fraction, and DDRX states the DRX grain size.

The rheological stress values for thermal deformation at different strain rates and
temperatures were calculated using Equation (7) and subsequently compared with the ex-
perimentally obtained stress–strain curves. The predictive ability of the new DRX intrinsic



Materials 2024, 17, 1572 7 of 16

model of TB8 based on DRX dynamics and the dislocation density theory was tested. As
shown in Figure 5, the prediction results are in good agreement with the experimental data.
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4. Discussion
4.1. Dynamic Recrystallization Mechanism

Microstructure observations revealed that DRX occurred during the thermal deforma-
tion of the TB8 titanium alloy. The DRX phenomena mainly occurred in grain boundaries
and grain interiors, suggesting that there were two main DRX mechanisms at play, namely,
DDRX and CDRX. Similar phenomena have been also reported in other β-titanium al-
loys [16]. In Figure 6b, a local magnification of 70% deformation at 960 ◦C and a strain
rate of 0.001 s–1 is shown. The figure shows that the original grain was segmented by
low-angle grain boundaries (LAGBs) into many regular polygonal sub-grains (labelled
W1–W7), which had the same color as the original grain. Additionally, the presence of
sub-grain boundaries was evident in the comparison diagram. Figure 6c,d display the
orientation-difference angle distribution of lines 1 and 2 along and within the original
grain boundary, respectively. From Figure 6c, it can be observed that the cumulative
orientation-difference distribution along line 1 presented three platforms and gradually
increased, eventually approaching 15◦. The point-to-point orientation difference at the
sub-grain boundary suddenly changed, indicating that the sub-grain was relatively stable.
The orientation of the W1–W3 sub-grains was similar but slightly rotated. Figure 6b also
shows that part of the LAGB was transformed into high-angle grain boundaries (HAGBs).
The above microstructural evolution indicated the presence of CDRX and the transition
from LAGBs to HAGBs by the continual absorption of dislocations and the steady rotation
of the lattice in Figure 6a, where the black arrows indicate the CDRX grains [30]. Zhang
et al. [31] observed a similar phenomenon in Al-7.9Zn-2.7Mg-2.0Cu alloys. As shown in
Figure 6d, the orientation-difference angle distribution of L2 exhibited a similar result, with
an obvious orientation-difference gradient from the center to the edge of the sub-grains.
The sub-grains gradually rotated and absorbed the dislocation, gradually changing from
LAGBs to HAGBs and forming new DRX grains. This resulted in a differential orientation
gradient from the center of the sub-grain to the edge [32]. As can be seen from Figure 7,
CDRX gradually increased as the strain rate decreased. Combined with the results pre-
sented in Figure 7a–c, it can be observed that CDRX appeared at different temperatures
when the deformation rate was 0.001 s−1. This effect indicates that the generation of CDRX
is more dependent on the strain rate, and the nucleation of CDRX is more favorable at a
low strain rate.
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The blue arrow in Figure 8a indicates that there were some little DRX grains near the
triple junction of the first grain. Similarly, some sub-grains were separated by sub-grain
boundaries, which are typical of DDRX. It can be observed from Figure 8a’s enlarged IPF
and kernel average misorientation (KAM) diagrams that the dislocation density inside
the DBs was considerable, suggesting that the deformation energy storage there was
relatively substantial and could easily trigger the DRX process [33]. As shown in Figure 8c,
the distribution of orientation-difference angles along the L3 direction showed that the
misorientation angles at the boundaries were all greater than 15◦, indicating that the grains
indicated by the blue arrow had developed into new DRX grains. The emergence of
new DRX grains at the jagged boundary ridges of DBs is evidence of the occurrence of
DDRX [34]. Figure 8d shows that the point-to-point orientation deviation in the sub-grains
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varied by less than 7◦ in the orientation-difference angle distribution diagram along the L4
direction. On average, the cumulative orientation error was much less than 15◦ and the
bridging LAGB could also be observed in Figure 8b. According to earlier papers [33,35],
the aforementioned characteristic is one of the prototypical features exhibited by DDRX. In
general, the jagged grain boundaries in Figure 8 were caused by deformation coordination
between the strain-induced boundary migration (SIBM) of the original HAGB and nearby
grains. These sharp boundaries with significant local orientation gradients or fault density
served as vantage locations for DDRX nucleation [36]. Due to the fact that DDRX is
characterized by grain boundary growth, SIBM was crucial.
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4.2. Effect of Strain Rate on Dislocation Distribution

The strain rate affects the dislocation distribution [37]. Figure 9 shows the stacking
grain boundary diagram of the KAM of the TB8 titanium alloy at different strain rates. Due
to the increase in dislocation density and interaction, numerous dislocations aggregated
and intertwined in local areas, forming an uneven distribution and resulting in the grains
differentiating into many small crystals with slightly different dislocations. Therefore, the
KAM chart could be used to characterize the non-uniform deformation of the material and
observe its dislocation density distribution. The storage of deformation energy and disloca-
tion density, which correlate to KAM in the figure, are both quite high. The microstructure’s
dislocation density distribution, which is closely related to the energy difference that causes
dislocations to develop between grains, dictates the circumstances under which DRX might
arise [38]. Therefore, the KAM values can be employed to estimate the distribution of
geometrically necessary dislocation (GND) density, enabling an analysis of variations in
dislocation density during thermal deformation of titanium alloy under different strain
rates, as follows [39]:

ρG =
2KAVE

µB

Here, ρG represents the GND density, KAVE represents the mean KAM value, µ repre-
sents the step size of the EBSD test, B is the Burgers vector. As seen in Figure 9a, at low
strain rates, the dislocation was mostly distributed along the grain borders, with low KAM
within the grains and a very uniform distribution of dislocations near the grain boundaries.
A comparison of the inverse level diagram and stacked grain boundary diagrams through
Figure 9a reveals that the level of KAM values is higher near the LAGB than near the HAGB.
KAM and GND densities on average are shown in Figure 10. When compared to other
strain rates, the average KAM was 0.001 s−1 and the corresponding GND density was at
its lowest. Li et al. [38] demonstrated in their investigation of Ti-6554 that the occurrence
of DRX can effectively mitigate dislocation density and deformation energy during the
deformation process.
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Figure 9b illustrates that the dislocation density at a strain rate of 0.01 s–1 gradually
moved towards the sawtooth grain boundary and inside the DBs. The existence of a higher
strain rate was conducive to the proliferation of dislocation. The average KAM and GND
densities increased to 0.42◦ and 0.89 × 1014 m–2, respectively (Figure 10), and numerous
dislocations accumulated at the grain boundaries because there was insufficient time to
develop DRX under such conditions. The average KAM and GND densities reached their
maximum values of 0.71◦ and 1.46 × 1014 m−2, respectively, when the strain rate was
raised further to 0.1 s−1. As mentioned above, very serious non-uniform deformation
occurred inside the material at high strain rates. Under the action of strong localized stress
concentrations, the grains elongated. This was due to the high dislocation density and
substantial deformation energy storage within the grain boundary, which supported the
growth of the DRX process. Some of the dislocation density was also used up during
the DRX nucleation process. As shown in Figure 10, the number percentage of LAGB
significantly decreased with the decrease in the strain rate, which also proves that LAGB
absorbs dislocations and transforms into HAGB with the decrease in the strain rate. On
the contrary, the growth rate of the KAM average and GND density at strain rates from
0.001 s−1 to 0.01 s−1 was smaller than that of strain rates from 0.01 s−1 to 0.1 s−1, which is
also in line with the above-mentioned viewpoints and underlines the validity of the model.
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4.3. Textural Evolution

The texture that arises during the hot working process has a considerable impact on
the mechanical properties of the TB8 titanium alloy. Therefore, it is essential to describe in
detail how the TB8 titanium alloy’s textural evolution occurred during the application of
the thermomechanical machining process. The microscopic texture of a deformed material
may be quantified by tracing the three-dimensional orientation distribution function (ODF),
which can describe the texture intensity of each orientation in three dimensions. Each
texture component in the ODF section is made up of the Euler angles (φ1, ϕ, φ2). The
color’s depth reflects the texture’s intensity. By employing an ODF cross-section of φ2 = 45◦,
it becomes feasible to analyze the conventional texture composition of body-centered cubic
(bcc) metallic materials [40].

The ODF cross-section of TB8 titanium alloy is illustrated in Figures 11–13. The main
components of the deformed samples at different temperatures were the same, comprising
the following types: (001) <010> cube texture, (110) <110> R-Gorss Nd texture, (110) <110>
R-Gorss Nd texture, and (110) <112> brass texture. In particular, the (001) <010> cube
texture and (110) <110> R-Gorss Nd texture predominated. It is widely accepted that R-
Gorss Nd texture, brass texture, and cube texture are the most relevant textural components
for compressing BCC metal materials [41].
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Figure 14a presents the statistics of the textural strength of TB8 titanium alloy at
different temperatures with a strain rate of 0.001 s–1 and 70% deformation. Compared with
the results depicted in Figure 4a, it can be observed that the strength of the cube texture
decreased as the DRX volume fraction increased. This result indicated that the generation
of DRX reduced the strength of the cube texture. At 960 ◦C, the greatest generation of DRX
occurred, and the strength of the cube texture was also the lowest. In contrast, the strength
of the R-Gorss Nd texture increased as the DRX volume increased, confirming that the
generation of DRX contributed to the strength of the R-Gorss Nd texture. Figure 14b shows
the textural strength of the TB8 titanium alloy under different strain rates at 960 ◦C and
70% deformation. As can be seen from the figure, the cube texture decreased when the
R-Gorss Nd texture increased, indicating that the appearance of R-Gorss Nd texture had
an inhibitory effect on the cube texture. Furthermore, the strength of the cube texture and
brass texture decreased at decreasing strain rates, in contrast to the DRX volume fraction
that increased with the decreasing strain rate (Figure 4b). All these results indicated that
the generation of DRX weakened the strength of the cube and brass textures.
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As shown in Figure 14c, as the deformation increased from 30% to 70%, the strength of
the (110) <110> texture significantly increased, while the strength of the (001) <010> texture
first increased and then decreased. This effect could be interpreted by taking into account
the place where grains had recrystallized nucleated. As can be observed in Figure 15, the
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majority of the (110) <110> R-Gorss Nd texture was found in the recrystallized grains that
had protruded and nucleated at the primary grain boundary. In striking contrast, a minor
number was found in the recrystallized grains that had nucleated inside the primary grains
and had undergone deformation at the three nodes of the primary grains. When metals are
thermally deformed, the grain boundary expansion nucleation caused by SIBM plays a key
role in the recrystallization process of deformed metals [12]. Figure 15 further demonstrates
that the majority of the (001) <010> cube texture developed in the highly deformed original
grains, with just a small quantity created in the recrystallized grains with the nucleation of
the original grain borders. The volume percentage of recrystallized grains and the degree
of deformation in the original grains exhibited a gradual increase as the deformation level
reached 50%. A similar pattern was detected for the intensity of the associated (001) <010>
cube texture. DRX was totally created, and the original grains were gradually absorbed
when the deformation amount reached 70%. As a result, the (001) < 010> cube texture
began to progressively decline.
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5. Conclusions

The recrystallization mechanism and microstructure evolution of TB8 alloy during
high-temperature deformation were thoroughly studied in this work. The microstruc-
ture evolution and DRX mechanism of the materials were analyzed, and the following
conclusions can be drawn:

1. The strain rate exerts a greater influence on the flow properties of the stress–strain
curve of TB8 alloy compared to the deformation temperature. Moreover, at low
temperatures and high strain rates, the deformed alloy exhibits more pronounced
rheological softening. DRX occurs in isothermal compression near the β-phase region,
and the diversity of DRX mechanisms in TB8 alloys is closely associated with the dis-
tribution of the dislocation densities. The distribution of the high dislocation density
is also associated with non-uniform deformation, and dynamic recrystallization (DRX)
occurs in certain elongated grains and deformation bands (DBs) due to the impact
of localized energy accumulation. This includes CDRX, which is characterized by
the transition from LAGB to HAGB, and DDRX, and takes place by grain boundary
expansion. DRX is strongly dependent on the employed process parameters. The low
strain rate is more conducive to the nucleation of CDRX.

2. With the increase in the compression temperature and strain rate, the stability of
TB8 titanium alloy deteriorates. The stability starts to get gradually better when
the temperature exceeds 900 ◦C, and destabilization occurs when the compression
temperature is at 960 ◦C and the strain rate is 0.001 s−1. The optimal processing
interval can be found between 840 and 900 ◦C at a strain rate of 0.01 s−1.
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3. The constitutive model of TB8 titanium alloy for dynamic recrystallization was es-
tablished based on the stress–strain curve, employing the DRX dynamic model and
dislocation density theory. In order to enhance the precision of flow stress prediction
during dynamic recrystallization, refinements were made to the material parameters.

4. The (001) <010> cube texture, (110) <110> R-Gorss Nd texture, (112) <110> texture,
and (110) <112> brass texture were found in the TB8 titanium alloy. The (001) <010>
cube texture and (110) <110> R-Gorss Nd texture predominated. Due to the random
orientation of DRX grains, the intensity of (110) <110> R-Gorss Nd texture increased
as the DRX volume fraction increased and the DRX behavior of (001) <010> cube
texture had a significant weakening effect.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17071572/s1, this section mainly includes some unimportant
information in the manuscript, including the DRX constitutive model building process and the
inverse pole figure of TB8 titanium alloy, with the aim of increasing its completeness [29,42,43].
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