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Abstract: In this study, we investigate the effect of small amounts of zirconium alloying the medium-
entropy alloy (TiVNb)85Cr15, a promising material for hydrogen storage. Alloys with 1, 4, and 7 at.%
of Zr were prepared by arc melting and found to be multiphase, comprising at least three phases,
indicating that Zr addition does not stabilize a single-phase solid solution. The dominant BCC phase
(HEA1) is the primary hydrogen absorber, while the minor phases HEA2 and HEA3 play a crucial
role in hydrogen absorption/desorption. Among the studied alloys, Zr4 (TiVNb)81Cr15Zr4 shows the
highest hydrogen storage capacity, ease of activation, and reversibly retrievable hydrogen. This alloy
can absorb hydrogen at room temperature without additional processing, with a reversible capacity
of up to 0.74 wt.%, corresponding to hydrogen-to-metal ratio H/M = 0.46. The study emphasizes the
significant role of minor elemental additions in alloy properties, stressing the importance of tailored
compositions for hydrogen storage applications. It suggests a direction for further research in metal
hydride alloys for effective and safe hydrogen storage.

Keywords: medium-entropy alloy; (TiVNb)85Cr15; zirconium; hydrogen absorption; metal hydride

1. Introduction

The transition to a hydrogen and fuel cell-based economy presents a compelling
opportunity for a greener energy sector, currently reliant on fossil fuels. Central to this
transition is the development of efficient hydrogen storage methods, crucial for ensuring
safety, effectiveness, and economic viability. Among these methods, solid-state storage
has potential to store more hydrogen per unit volume compared to liquid or gas storage
options. Since this approach has been introduced, significant attention has been devoted to
exploring various types of metal hydrides as solid-state hydrogen storage materials [1,2].
Research in this area has primarily focused on enhancing the gravimetric and volumetric
capacities of these materials, improving their thermodynamic and kinetic properties for
hydrogen absorption/desorption, and ensuring long-term cycling stability [2–8].

Recently, new materials called medium- (MEAs) and high-entropy alloys (HEAs)
are being explored for their potential to store hydrogen [3,9]. Such alloys were initially
defined as those containing four or more principal elements with a concentration being
between 5 at.% and 35 at.%. Later, another definition was also proposed, which suggests
that the alloys can be classified as MEAs if their configurational entropies fall between
1 R and 1.5 R (R is the universal gas constant) and HEAs above 1.5 R [10–12]. Upon
exposure to hydrogen, these alloys undergo a transformation into metal hydrides, known
for their hydrogen storage capabilities. Since the properties of these hydrides depend
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heavily on their structure and composition, MEAs/HEAs, with their vast range of possible
combinations, offer a great opportunity to design advanced hydrogen storage materials for
clean energy storage and transportation.

The potential of medium-/high-entropy alloys (MEAs/HEAs) for hydrogen storage
became particularly exciting when Sahlberg et al. [13] reported a high hydrogen-to-metal
ratio H/M of 2.5 (equivalent to 2.7 wt.% H2) upon hydrogenation at 573 K and 5.3 MPa.
However, further studies on the same HEA composition failed to replicate this high H/M
ratio. For example, Ek et al. [14] measured capacities only around H/M = 2, but no results
were shown where H/M of 2 was exceeded.

Two additional alloy systems stand out for their potential in room-temperature hy-
drogen storage: TiVNb-Zr (Ti32.5V27.5Nb27.5Zr12.5) and TiVNb-Cr ((TiVNb)85Cr15). Both
exhibit a remarkable reversible capacity of H/M = 2, even after repeated cycling [15,16].
They absorb significant amounts of hydrogen (equivalent to 3.1–3.2 wt.% H2, or 2 H/M
ratio) in less than a minute at room temperature and 0.2 MPa pressure. Increasing the
temperature further enhances absorption speed, reducing the time needed to 20 s and the
initial incubation period to just 35 s. The disadvantage of these alloys, however, is the
relatively high temperature of hydrogen desorption from their volume. For example, for
(TiVNb)85Cr15, the desorption temperature at a rate of 5 K/min starts at 150 ◦C, but to
completely release hydrogen from the alloy, a temperature of 450 ◦C must be reached [17].
Hydrogen desorption from the Ti32.5V27.5Nb27.5Zr12.5 alloy occurs within a temperature
range of 224 ◦C to 405 ◦C [18].

In this work, we investigated the effect of small additions of Zr (1, 4, and 7 at.%) on
both the stability of solid solution formation and hydrogen absorption and desorption in
(TiVNb)85Cr15. The effect of adding a small amount of Zr is nicely demonstrated by the
study of Yang et al. on the alloy (VFe)60(TiCrCo)40−xZrx (0 ≤ x ≤ 2) [19]. Despite slightly
reduced total storage capacity from 2.1 wt.% to 1.88 wt.%, the Zr element significantly
improves its cyclic stability during hydrogen absorption/desorption cycles. Furthermore,
it was observed that the zirconium addition caused also reduction in hydrogen desorption
plateau pressure.

2. Materials and Methods
2.1. Material Design

In an effort to develop alloys with enhanced sorption properties, we employed the
(TiVNb)85Cr15 precursor, to which we added a small amount of Zr (1, 4, and 7 at.%). The
precursor itself forms a single-phase supersaturated solid solution with a BCC (body-
centered cube) lattice [17]. We attempted to empirically predict whether the addition of Zr
would preserve the single-phase structure applying Hume-Rothery’s rules for obtaining
solid solution alloys [9]. In accordance with these principles, the creation of solid solutions
is preferred in alloys where the elements share comparable atomic sizes, electronegativities,
and valences, while also possessing identical crystalline structures [17,20]. In the empirical
approach, factors representing discrepancies in atomic size (δ), concentration of valence
electrons (VEC), the enthalpy of mixing (∆Hmix) and a parameter Ω that links the enthalpy
of mixing, the entropy of mixing (∆Smix), and melting temperature (Tm) are determined
according to the following equations [9,21]:

δ =

√
∑ ci

(
1 − ri

r

)2
× 100

VEC = ∑ ci VECi

∆Hmix = ∑
i<j

4 Hij ci cj

Ω =
Tm∆Smix
|∆Hmix|
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where Tm = ∑n
i=1 ci (Tm)i, and ∆Smix = −R∑ ciln ci. In the equations, ri and VECi stand for

the atomic radius and valence electron concentration of element i, respectively; r = ∑ ciri
is the average of atomic radius; ci and cj are the atom fractions of elements i and j; Hij
is the enthalpy of mixing of elements i and j at the equimolar concentration in regular
binary solutions; (Tm)i is the melting temperature of element i; and R is the universal gas
constant [9,22].

Guo and his team defined the stability region of saturated solid solutions where the
atomic size difference parameter δ < 6.6% and ∆Hmix falls within the range of −11.6 to
3.2 kJ·mol−1 [21]. Furthermore, if Ω > 1, then the Gibbs free energy is determined by the
mixing entropy ∆Smix, which stabilizes the solid solution. The values of thermodynamic
parameters for all investigated alloys, as well as the precursor, are listed in Table 1.

Table 1. Thermodynamic parameters of the alloy (TiVNb)85Cr15 and the alloys with Zr additions
investigated.

Alloy δ

[%]
∆Hmix

[kJ·mol−1] Ω
∆Smix

[J.K−1.mol−1]
Tm
[K] VEC

Precursor (TiVNb)85Cr15 5.76 −3.04 8.37 1.36 R 2257 4.87
Zr1 (TiVNb)84Cr15Zr1 5.96 −3.07 8.54 1.40 R 2255 4.86
Zr4 (TiVNb)81Cr15Zr4 6.48 −3.17 8.70 1.47 R 2251 4.84
Zr7 (TiVNb)78Cr15Zr7 6.93 −3.27 8.69 1.52 R 2246 4.82

The relationship between the δ and ∆Hmix parameters can be depicted graphically,
see Figure 1, where the blue shaded area represents the stability region of saturated solid
solutions (MEAs/HEAs), the red shaded area represents the stability region of amorphous
phases, and the region bounded by the green ellipse represents the region of intermetallic
compounds. In this graph adapted from [21], we plotted parameters for both the precursor
and the alloys under investigation containing a small addition of Zr.
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Figure 1. A δ—∆Hmix plot delineating phase selection in HEAs; dash dotted regions highlight
individual region forming solid solutions, intermetallic compounds, and amorphous phase (graph
adapted from [21]) with plotted parameters of the (TiVNb)85Cr15, Zr1, Zr4, and Zr7 alloys.

From comparison of the thermodynamic parameters listed in Table 1 and Figure 1, the
following conclusions can be drawn:

- All the alloys can be categorized as medium-entropy alloys since their mixing entropy
values fall within the range of 1 R < ∆Smix < 1.5 R.

- High values of the parameter Ω were observed in all the alloys, suggesting their
potential for forming a single disordered solid solution.
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- Increasing Zr addition leads to a rise in the δ parameter (atomic size difference),
causing the Zr7 alloy ((TiVNb)78Cr15Zr7) to fall outside the empirically determined
region of solid solutions.

- The value of the VEC parameter in all alloys is less than 6.87, indicating that the alloys
should have a BCC structure [21].

2.2. Material Preparation

The alloys Zr1 (TiVNb)84Cr15Zr1, Zr4 (TiVNb)81Cr15Zr4, and Zr7 (TiVNb)78Cr15Zr7
were synthesized by arc melting under an inert argon atmosphere, starting from pure
elements purchased from Alfa-Aesar: Ti (99.99%), V (99.7%), Nb (99.8%), Cr (99%), and
Zr (99.2%) in the Mini Arc Melting System MAM—1 furnace (Edmund Bühler GmbH,
Bodelshausen, Germany). Initially, only Ti and Nb pieces were melted to form a binary
alloy and subsequently, V, Cr, and Zr pieces were added and melted to obtain the desired
alloy (this procedure was adopted to avoid incomplete dissolution of Nb pieces). The alloy
was remelted five times, turning the piece upside down between each remelt step in order
to improve their chemical homogeneity. The Ti, V, Nb, Cr, and Zr pieces used to synthesize
the alloy have purity levels higher than 99.7%. Ti getter pieces were melted prior to the
alloy’s synthesis to minimize oxygen content in the melting chamber.

2.3. Material Characterization

In the first step, the density of the alloys was determined by the Archimedes method,
using the precise laboratory scales Kern ABT 120-4M (KERN & SOHN GmbH, Balingen,
Germany) equipped with the special adapter ABT-A01 for density measurement. Metal-
lographic cuts were prepared from the bulk alloys (buttons) using standard procedures,
including mounting, planar grinding, rough polishing, final polishing, and etching. Mi-
crostructure and chemical composition of the prepared alloys were then obtained using
the Jeol JSM 7000F (JEOL Ltd., Tokyo, Japan) scanning electron microscope equipped with
an EDS detector. Microhardness tests HV0.3 were performed on the polished surface of
the samples using a Wilson-Wolper Tukon 1102 hardness tester (Berg Engineering & Sales
Company, Inc., Rolling Meadows, IL, USA) equipped with the Wicker type of microin-
denter. Ten indentations were made during the microhardness tests, and the mean value
and standard deviation were calculated from the measurements. The nanoindentation
hardness and elastic modulus were determined using the Nano Indenter G200 device man-
ufactured by Agilent Technologies, Inc. (Chandler, AZ, USA). The measurement consisted
of 30 indentation cycles, each applying a load of 50 mg for 15 s.

In the next step, the bulk alloys were pulverized using ball milling for 20 min in an
argon atmosphere. The powder samples were then sieved in a glovebox to particles below
45 µm in size to maximize the active surface area for hydrogen absorption. An additional
density measurement was performed on this powder fraction using the helium pycnometer
AccuPyc II 1345 (Micromeritics, Norcross, GA, USA). Results from the Archimedean (bulk
materials) and He pycnometry (powder) measurements were very similar, with differences
only in the third decimal place. The phase composition analysis was conducted using the
X-ray diffraction on the Philips X’Pert Pro diffractometer (Malvern Panalytical, Almelo,
The Netherlands). The XRD measurements were performed in 2θ range from 20◦ to 120◦

with 0.03◦ step size and 25 s dwell time per step.

2.4. Hydrogen Absorption and Desorption Experiments

Hydrogen absorption measurements were conducted using the magnetic suspension
balance (IsoSORP series, TA Instruments, New Castle, DE, USA), which can operate at
pressures up to 50 MPa with a measurement accuracy of 0.05%. Each sample was measured
according to the following protocol:

1. Approximately 0.5 g of powder alloy was placed into the reaction chamber of the
magnetic suspension balance. The system was then sealed and evacuated to a rotary
pump vacuum <0.02 bar (2 kPa).
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2. The alloy was activated by exposure to low hydrogen pressure of approximately
0.1 MPa at room temperature for 1 h to reduce oxides on the surfaces of the powder
particles. To remove the absorbed hydrogen, the sample was then heated to 400 ◦C
for 3 h in a vacuum.

3. After activation, the reaction chamber was cooled to room temperature. Once reached,
it was filled with hydrogen to a pressure of 2 MPa. The sample mass was monitored by
the magnetic suspension balance. The chamber temperature (and thus that of the sam-
ple) was increased from room temperature to 250 ◦C in steps of 25 ◦C. At each step, the
sample was held for 25 min. The aim of this isobaric measurement was to determine
the temperature at which the sample starts significantly absorbing hydrogen.

4. After this measurement, the sample was cooled down to room temperature under
2 MPa of H2. Measurement in hydrogen after cooling allowed us to determine the
amount of total absorbed hydrogen by the sample in step 3.

5. The chamber was then evacuated again and heated to 400 ◦C for 3 h to desorb
hydrogen from the sample.

6. The chamber was heated to the temperature at which the alloy absorbed hydrogen
significantly, and hydrogen was again introduced to the chamber at a pressure of
2 MPa. During this second absorption measurement lasting 1 h, the sample weight
was monitored again.

7. Following hydrogenation, the sample was removed from the chamber for X-ray
diffraction (XRD) and thermogravimetric analysis (TGA) using the Netsch Jupiter
STA 449-F1 analyzer, Selb, Germany.

The hydrogen absorption raw data were further recalculated to amount of hydrogen
absorbed per gram material using standard routines for buoyancy corrections [23].

3. Results and Discussion

The results of our material analysis on the Zr-modified (TiVNb)85Cr15 alloys are listed
in the Table 2.

Table 2. Results from the measurement of Zr-modified (TiVNb)85Cr15 alloys. Chemical composition
of the alloys determined by the EDX spectroscopy, density, microhardness HV0.3, elastic modulus,
activation temperature of hydrogen absorption at pressure of 20 bar, maximum achieved storage
capacity of hydrogen in the alloy, and the amount of residual hydrogen firmly chemically bounded to
the alloy matrix.

Alloy
EDX Composition

[at.%]

Density
[g.cm−3]

Hardness
HV03

Elastic
Modulus

[GPa]

Activation
Temperature

[◦C]

Maximum H2
Capacity
[wt.%]
(H/M)

Residual H2
Content
[wt.%]

Zr1 (TiVNb)84Cr15Zr1
Ti28V27Nb30Cr14Zr1

6.53 482 ± 8 130 ± 1 >150 0.77
(0.47) 0.73

Zr4 (TiVNb)81Cr15Zr4
Ti27V26Nb29Cr14Zr4

6.58 463 ± 13 112 ± 4 <RT 0.92
(0.57) 0.18

Zr7 (TiVNb)78Cr15Zr7
Ti26V25Nb28Cr14Zr7

6.57 475 ± 17 136 ± 6 >150 0.34
(0.21) 0.15

3.1. Chemical Composition and Density

EDX spectroscopy performed on the Zr1, Zr4, and Zr7 bulk alloys (polished met-
allographic cross-sections) confirmed a chemical composition close to the nominal. The
maximum deviation obtained was 2 at.%, which is typical for arc-melted alloys. The density
of these alloys was ~6.56 g.cm−3, and due to only a slight change in the concentration, its
value changed only at the second decimal place.
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3.2. Phase Composition

Phase analysis was performed on all samples in powder form, both in their initial state
(as-prepared) and after hydrogenation. Figure 2 shows the XRD patterns of the as-prepared
samples of Zr1, Zr4, and Zr7 in red, green, and blue, respectively. The black patterns are
from these alloys but after hydrogenation.
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3.2.1. Analysis of the As-Prepared Samples

Phase analysis of the as-prepared samples demonstrates that they are not single-phase,
but rather consist of multiple phases. It is important to note here that detailed structural
analysis of the (TiVNb)85Cr15 precursor revealed that even this alloy is not completely
single-phase [24,25]. Samples Zr1 and Zr4 consist of a dominant BCC phase (Space Group
(S.G): Im-3m) with a lattice parameter of a = 3.173 Å (in the figure, shown in orange and
labeled as HEA1). In addition to this phase, at least two other minor phases are present: a
second BCC phase (S.G: Im-3m) with a significantly smaller lattice parameter of a = 2.872 Å
(shown in green and labeled HEA2) and a primitive cubic phase (S.G: Pm-3m) with a larger
lattice parameter of a = 4.234 Å (purple, labeled HEA3). For this last phase, it cannot be
ruled out that it is a C14 Laves phase (S.G: P63/mmc) similar to that in the work of [26],
but this cannot be confirmed based on the performed experiment. All these phases are
present also in the Zr7 sample, but their proportions are different. The HEA1 and HEA3 are
approximately equally represented, while the amount of the HEA2 decreased.

3.2.2. Analysis of the Hydrogenated Samples

After hydrogenation, the samples Zr4 and Zr7 exhibit similar XRD patterns to those
in the as-prepared state. The Bragg peaks from the HEA1 have lower intensity, which
is probably due to the refinement of the structure (reduction in crystallite size), and are
slightly shifted to the left, which means that the lattice parameter of the original phase
has slightly increased due to the presence of hydrogen. The pattern from the Zr1 sample
shows a larger change with a significant increase in the lattice parameter of the HEA1 phase.
Interestingly, the peaks from HEA2 and HEA3 remain unchanged in all patterns. These
results lead us to the following conclusions:

- Based on the analysis of the Bragg peak shift (lattice parameter changes), we believe
that the HEA1 phase is the phase that significantly absorbs hydrogen in all samples.
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The HEA2 and HEA3 phases are practically unaffected by hydrogen, which means
that they either do not absorb hydrogen or release it after removal from the reaction
vessel. Unfortunately, this study did not allow us to perform in situ XRD experiments
during hydrogenation of our alloys. Synchrotron sources would be the most suitable
for this purpose. However, we are not aware of any beamlines that allow experiments
at hydrogen pressure of 20 bar.

- The increase in the lattice parameter of the Zr1 sample is a manifestation of the
chemical bonding of absorbed hydrogen in the metal matrix. As will be shown later,
samples Zr4 and Zr7 absorb hydrogen equally and even more, but they bind it with
weaker bonds, which causes hydrogen to escape from the matrix at ambient conditions.

- Since no permanent changes in the diffraction profiles were induced by hydrogen, it
can be concluded that hydrogen is dissolved within interstitial positions in the absorb-
ing phases and does not form hydrides with a completely different crystallography.

3.3. Microstructures

Microstructures of the Zr-modified (TiVNb)85Cr15 alloys are shown in Figure 3. The
images were obtained by SEM operated in the backscattered electron (BSE) mode. In all
alloys, a primary dendritic heterogeneous microstructure can be observed, which docu-
ments the presence of multiple chemically distinct phases. In the case of the Zr7 alloy, a
higher proportion of secondary HEA3 phase can be observed visible at boundaries of the
HEA1 grains. This observation is consistent with our XRD results. As mentioned earlier,
the HEA3 can be the C14 Laves phase, which crystallizes eutectically at the boundaries of
the HEA1 grains.
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(1000×).

3.4. Hydrogen Absorption and Desorption
3.4.1. Absorption

Hydrogen absorption in the Zr-modified (TiVNb)85Cr15 alloys was evaluated by weigh-
ing the samples at elevated temperatures under hydrogen gas environment of constant
pressure of 2 MPa. This pressure was chosen because most commercial low-pressure metal
hydride storage tanks operate at this pressure. The alloys were heated under isobaric
conditions in the temperature range from RT to 250 ◦C in steps of 25 ◦C, with each step
lasting for 25 min. Figure 4 illustrates absorption capabilities of the Zr1, Zr4, and Zr7 alloys
under constant pressure and increasing temperature.
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By comparing these isobaric curves, the following observations can be made:

- The alloy with the lowest zirconium content, Zr1, begins to absorb hydrogen at tem-
peratures above 150 ◦C. The maximum storage capacity of 0.77 wt.% (corresponding
to H/M = 0.47) was reached at the highest measurement temperature of 250 ◦C.

- The Zr4 alloy is activated already at room temperature. A significant increase in
this alloy weight was observed already when the reaction chamber was filled with
hydrogen. The maximum amount of hydrogen absorbed by this alloy is 0.92 wt.%
(H/M = 0.57). As can be seen, from 150 ◦C, the alloy starts to desorb hydrogen, so it is
very likely that if we increased the pressure of gaseous hydrogen in the chamber, its
absorption capacity would be higher.

- By adding additional 3 at.% Zr to the alloy (sample Zr7), this trend was significantly
reverted. Activation again occurs only at high temperatures above 150 ◦C. The overall
hydrogen absorption capacity is low, only 0.34 wt.% (H/M = 0.21), and only at the
highest measured temperature.

3.4.2. Desorption

As mentioned in the previous chapter, hydrogen desorption from the Zr4 alloy also
occurs at 2 MPa of H2 at temperatures above 150 ◦C. To determine parameters of com-
plete hydrogen desorption, the samples were first fully hydrogenated (see Section 2.4),
then removed from the chamber, and subsequently subjected to thermogravimetric (TG)
experiments. During the TG measurement, weight loss of the sample was determined as
a function of increasing temperature at a heating rate of 10 K/min in argon atmosphere.
Figure 5 shows the desorption curves of all alloys.
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Based on these results, the following conclusions can be formulated:

- The Zr1 sample contains a large amount of chemically bounded hydrogen, which
significantly starts to desorb from the alloy at ~160 ◦C. Complete release of hydrogen
from the metal lattice occurs only at 500 ◦C. These results approximately correspond to
the desorption temperatures from reference [25]. The amount of hydrogen released in
this way is 0.73 wt.%. For this alloy, only 0.04 wt.% of hydrogen is, therefore, available
for reversible low-temperature (up to 160 ◦C) absorption/desorption.

- The situation is completely different for the Zr4 alloy where the amount of hydrogen
released at 600 ◦C is significantly lower, only 0.18 wt.%. This means that this alloy has
up to 0.74 wt.% (H/M = 0.46) hydrogen available for reversible use.

- The situation is similar for the Zr7 alloy, but since this alloy absorbs the least, the
amount of reversibly available hydrogen is only 0.19 wt.%.

This study clearly demonstrates the significant impact that a small addition of a
suitably chosen element can have on hydrogen absorption and desorption properties.

4. Conclusions

In this work, we focused on the influence of adding a small amount of Zr to the
medium-entropy alloy (TiVNb)85Cr15, which is currently considered one of the most promis-
ing materials for practical hydrogen storage. The alloys we prepared with additions of 1, 4,
and 7 at.% Zr are multiphase, consisting of at least three phases. Therefore, adding Zr does
not allow stabilizing a single-phase supersaturated solid solution. The major BCC phase
(referred to as HEA1 in the article) is the primary hydrogen-absorbing phase, while HEA2
and HEA3 show minimal hydrogen uptake. However, the presence of these two minor
phases is crucial for hydrogen absorption and desorption from these materials.

In terms of the amount of hydrogen stored, ease of activation, and amount of reversibly
retrievable hydrogen, the Zr4 (TiVNb)81Cr15Zr4 is the best of all the alloys we studied. This
alloy, which can be prepared easily by arc melting and powdered by crushing, can absorb
hydrogen at room temperature without any additional treatment. The amount of reversibly
usable hydrogen in low-pressure tanks is up to 0.74 wt.%, which corresponds to H/M = 0.46.
We can, therefore, conclude that precipitating the right amount of HEA2 (around 10 vol%)
and HEA3 (around 3 vol%) phases activates the main HEA1 phase, allowing it to absorb
more hydrogen. Moreover, it is important to note the following: This alloy exhibits the
lowest modulus of elasticity among all the studied alloys. In our latest unpublished work,
we demonstrate the correlation between hydrogen absorption and the alloy’s modulus of
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elasticity. Moreover, this alloy does not contain rare earth elements, which China banned
from exporting at the end of the year in 2023 [27].

The most commonly used alloy for hydrogen storage today is LaNi5, which can store
approximately 1.2 wt.% hydrogen (H/M~1) at a pressure of 24 bar. It reaches full saturation
at this pressure and room temperature within 7.5 min. For our Zr4 alloy under the same
conditions, this is approximately 0.27 wt.% (H/M = 0.17). This alloy, therefore, is not yet
perfect from the application point of view, but this work points the way for future materials
research on metal hydride materials and demonstrates how to activate MEAs/HEAs for
hydrogen absorption.

Overall, the study highlights the significant impact of minor elemental additions on the
hydrogen absorption and desorption properties of alloys. This underscores the importance
of carefully selecting alloy compositions to tailor their performance for specific applications
in hydrogen storage technologies. This article thus identifies one of the directions for
further development and research of metal hydride alloys for safe hydrogen storage.
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