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Abstract: This study explores the stability of electrodeposited copper catalysts utilized in electrochem-
ical CO2 reduction (ECR) across various amine media. The focus is on understanding the influence of
different amine types, corrosion ramifications, and the efficacy of pulse ECR methodologies. Employ-
ing a suite of electrochemical techniques including potentiodynamic polarization, linear resistance
polarization, cyclic voltammetry, and chronopotentiometry, the investigation reveals useful insights.
The findings show that among the tested amines, CO2-rich monoethanolamine (MEA) exhibits the
highest corrosion rate. However, in most cases, the rates remain within tolerable limits for ECR oper-
ations. Primary amines, notably monoethanolamine (MEA), show enhanced compatibility with ECR
processes, attributable to their resistance against carbonate salt precipitation and sustained stability
over extended durations. Conversely, tertiary amines such as methyldiethanolamine (MDEA) present
challenges due to the formation of carbonate salts during ECR, impeding their effective utilization.
This study highlights the effectiveness of pulse ECR strategies in stabilizing ECR. A noticeable
shift in cathodic potential and reduced deposit formation on the catalyst surface through periodic
oxidation underscores the efficacy of such strategies. These findings offer insights for optimizing
ECR in amine media, thereby providing promising pathways for advancements in CO2 emission
reduction technologies.

Keywords: electrodeposition; copper; electrochemical CO2 reduction; corrosion; amine capture;
carbon capture

1. Introduction

Mitigating climate change necessitates urgent action to reduce CO2 emissions. Achiev-
ing net zero CO2 emissions by 2050 is critical to limit the temperature rise to below 1.5 ◦C,
in line with the Paris Agreement (COP21) objectives [1]. To address this challenge, the
development of CO2 capture technologies is a priority. Currently, the most advanced
industrial technology employs aqueous amine solutions such as monoethanolamine (MEA),
methyldiethanolamine (MDEA), and 2-amino-2-methylpropanol (AMP) for CO2 capture.
This process entails direct CO2 capture from the flue gas stream and its subsequent release
by heating the CO2-rich amine capture media in a desorber unit at approximately 120 ◦C [2].
The regenerated amine then re-enters the capture cycle. However, the regeneration step, ac-
counting for up to 30% of the total plant energy output, is highly energy-intensive [3]. This
issue may be overcome by regenerating the CO2-rich amine media using electrochemical
CO2 reduction (ECR) instead. This approach features the direct transformation of amine-
CO2 adducts, such as carbamates, into valuable chemicals [4]. The seamless integration
of amine-based CO2 capture and ECR demonstrates good synergy. This approach not
only bypasses challenges related to CO2 transportation and storage but also eradicates the
necessity for regenerating capture media through the thermal release of molecular CO2 [5].

ECR is an emerging field, evolving independently from carbon capture technologies.
It presents significant synergies with other climate change challenges, notably in storing
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surplus renewable electricity. ECR converts excess electricity into valuable energy-dense
products like CO, ethylene, and ethanol. The output product spectrum depends on the
applied potential, catalyst, and cell configuration [6]. Copper is unique in promoting
valuable C2+ products like ethylene and is, therefore, widely employed as a catalyst [7].
Achieving economic viability in ECR hinges on meeting specific performance benchmarks,
including current density, Faradaic efficiency (FE), energy efficiency (EE), and stability [8].
Recent research has made significant strides in improving current density, FE, and EE.
Notably, current densities over 1 A cm−2 with 45% EE for ethylene production using
copper gas diffusion electrodes (GDEs) have been achieved [9]. Ongoing efforts aim to
enhance selectivity toward C2+ products through advanced copper-based catalysts [10–12].
However, stability improvements remain a less explored yet critical aspect for viable ECR.
Copper catalysts often undergo rapid degradation due to surface reconstruction, poisoning,
and carbonate salt precipitation [13]. Studies by Huang et al. [14] and Simon et al. [15]
show that cathodic potential drives copper catalyst surface reconstruction and refaceting.
This process results in decreased selectivity towards C2+ products, undermining long-
term catalyst performance [16–19]. Another challenge for stable ECR is carbonate salt
precipitation on the catalyst surface [20–22]. The local high pH near the electrode, due to
HO− production in the CO2 reduction reaction, facilitates carbonate salt formation through
reaction with cations.

Recent advancements in electrochemical CO2 reduction (ECR) have highlighted pulse
ECR as a method to enhance long-term process performance [23]. Pulse ECR involves
interspersing short anodic segments with longer cathodic ones to regenerate the catalytic
properties of copper by inducing oxidation. Obasanjo et al. [24] demonstrated that this
oxidation process reactivates C2+ active sites by removing Cu-OH, which gradually deacti-
vates the catalyst. Xu et al. [21] successfully employed pulse ECR to sustain high Faradaic
efficiency (FE) towards C2+ products over 36 h, observing that Cu(I) oxide formation is
advantageous for C2+ product formation and can be regenerated through anodic pulsing.
Similarly, Zhang et al. [25] found that a combination of Cu(0) and Cu(I) states favors C2+
products, maintaining a high FE (70%) towards ethylene across 145 h of operation using
pulse ECR. Complementary studies have shown that appropriate pulse strategies can en-
hance and modulate the long-term selectivity of ECR [26,27], while also mitigating catalyst
poisoning [28] and carbamate salt formation [21,29].

Research on ECR, including pulse ECR has largely focused on using aqueous car-
bonate (KOH + CO2) or bicarbonate (KHCO3 + CO2) solutions. Increasing efforts are
now directed towards integrating ECR with amine-based CO2 capture. Various studies
have reported carbamate reduction to CO [30], formate [31,32], or both [33] using metal
electrodes like copper [30,32]. However, the long-term stability of these catalytic properties
remains unexplored. Additionally, the impact of amines on copper corrosion is a growing
concern [5], with some studies suggesting significant copper degradation in MEA under
halted cathodic potential [34], which necessitates further investigation.

This study is part of the larger CoCaCO2la project, which aims to demonstrate an
isothermal capture and conversion intensified process, where CO2 release, conversion, and
capture media regeneration are performed in the electrolyzer, enabling an isothermal loop
for carbon capture. To promote scalability, affordable and low lead time processes, such as
electrodeposition, were investigated for Cu catalyst production.

In this study, we explore the electrochemical and corrosion properties of electrode-
posited copper in amine-based electrolytes under CO2-lean and -rich conditions. We also
examine the stability of the copper catalyst under cathodic polarization relevant to CO2
reduction. Different pulse polarization strategies are tested to assess the impact of pulse
ECR in amine media.
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2. Materials and Methods
2.1. Specimen Preparation and Characterisation

Copper was electrodeposited onto a copper substrate using a method detailed in the
Supplementary Materials. Following electrodeposition, specimens were selectively masked
with resin provided by Belzona Ltd. (Hawarden, UK, reference 1395) resin, resulting in
an exposed surface area of approximately 1 cm2 for each specimen. To characterize the
surfaces of these specimens, an optical microscope BX41M-LED from Olympus (Hachioji,
Japan) and a Sigma 1455EP scanning electron microscope (SEM) from Ziess (Oberkochen,
Germany) were employed.

2.2. Amine Media

Four amine-based media, commonly employed for CO2 capture, were evaluated:

• 30 wt.% Monoethanolamine (MEA), CAS: 141-43-5, a primary amine extensively
utilized for CO2 capture [2].

• 37 wt.% Methyldiethanolamine (MDEA) CAS: 105-59-9, a tertiary amine.
• 30 wt.% MDEA + 21 wt.% piperazine (PZ), CAS: 110-85-0, generally used to improve

capture kinetics [35].
• 30 wt.% 2-Amino-2-methyl-1-propanol (AMP), CAS: 124-68-5, a sterically hindered

primary amine known for its elevated CO2 absorption capacity [36].

The anolyte for these experiments was 0.5 M potassium chloride (KCl) solution. Addi-
tionally, 0.5 M KCl was incorporated into the amine solutions to enhance their electrical
conductivity. All chemicals used in solution preparation were of laboratory grade and
supplied by Merck Life Science UK Ltd. (Gillingham, UK).

In subsequent discussions and analyses, these solutions are referred to as MEA, MDEA,
MDEA/PZ, and AMP for simplicity.

2.3. Electrochemical Tests

Electrochemical experiments were conducted using a Biologic (Grenoble, France)
VMP-300 potentiostat and a 100 mL H-cell sourced from Dek research (Hong Kong), as rep-
resented in Figure 1. The experimental setup featured anodic and cathodic compartments,
separated by a Nafion 117 proton exchange membrane (Dupont, Wilmington, DE, USA)
which underwent appropriate activation before use. The reference electrode comprised an
Ag/AgCl in 3.5 M KCl, positioned in a Luggin capillary filled with 3.5 M KCl to isolate it
from the amine electrolyte. The capillary’s tip was situated 5 mm from the specimen. A
platinum mesh served as the counter electrode. The cell design included gas inlet/outlet
provisions for purging the solution with CO2. Each specimen was kept at −0.5 V relative
to the Open Circuit Potential (OCP) for 5 min before testing to remove the air-formed
oxide layer.
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Linear polarization resistance (LPR), potentiodynamic polarization (PDP), and cyclic
voltammetry (CV) tests were performed after recording and stabilizing the OCP for 1 h.
To ensure reproducibility, each measurement was conducted in triplicate. LPR results are
presented in Supplementary Materials Figure S6. The test solutions were maintained at
ambient laboratory conditions (20 ± 2 ◦C) and could be CO2-purged as required. LPR tests
utilized a potential offset of ±20 mV relative to OCP at a scan rate of 0.125 mV s−1. PDP
involved potential sweeping from −0.2 V to +0.2 V versus OCP at a rate of 10 mV min−1.
CV scans were conducted at 20 mV s−1 scan rate, reversing the scan when the current
density reached |10| mA cm−2 for both cathodic and anodic polarization.

Chronopotentiometry experiments were designed to simulate 60 h of ECR. Three
strategies, which included alternating anodic and cathodic segments, were implemented
as detailed in Figure 2. Anodic segments were conducted at +1 mA cm−2, while cathodic
segments operated at −10 mA cm−2, cumulatively totaling 60 h for cathodic segments.
Pulse mode 1 consisted of a 24 s anodic segment every 45 min, and pulse mode 2 involved
a 2 s anodic segment every 50 s.
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Figure 2. Three modes of chronopotentiometry: (1) continuous polarization at −10 mA cm−2 for 60 h;
(2) pulse mode 1, 45 min at −10 mA cm−2 for 24 s at +1 mA cm−2 repeated 80 times; (3) pulse mode
2, 50 s at −10 mA cm−2 for 2 s at +1 mA cm−2 repeated 4320 times.

Electrochemical tests underwent iR compensation utilizing the potentiostat’s built-in
feature, which is based on high-frequency impedance measurements. The average cell
resistances determined for each media are systematically tabulated in Supplementary
Materials Table S1.

3. Results
3.1. Electrochemical Characterisation of Electrodeposited Copper in Amine Media

Potentiodynamic polarizations were performed in triplicate under both CO2-free and
CO2-purged conditions across various amine media and are shown in Figure 3. The Tafel
extrapolation method was employed to estimate the corrosion current density (jcorr) [37];
the full set of Tafel extrapolation is provided in Supplementary Materials, Figures S2–S5.
The average jcorr values, together with the corresponding corrosion potentials (Ecorr), are
compiled in Table 1.
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Table 1. Average corrosion potential (Ecorr), corrosion current density (jcorr), and polarization resis-
tance (Rp) for electrodeposited copper specimens in different amine media.

Media CO2 Ecorr/V jcorr/µA cm−2 Rp/kΩ cm2

MEA
no −0.58 ± 0.01 2.4 ± 0.1 3.8 ± 0.7

yes −0.29 ± 0.02 14.1 ± 6.9 0.7 ± 0.2

MDEA
no −0.42 ± 0.01 0.3 ± 0.1 19.0 ± 4.4

yes −0.33 ± 0.03 1.0 ± 0.1 10.4 ± 0.5

MDEA/PZ
no −0.53 ± 0.01 0.4 ± 0.1 18.3 ± 6.3

yes −0.39 ± 0.01 0.9 ± 0.6 12.6 ± 11.3

AMP
no −0.57 ± 0.01 1.5 ± 0.3 5.6 ± 1.1

yes −0.29 ± 0.02 7.7 ± 1.3 1.0 ± 0.6

KCl no −0.20 ± 0.03 2.4 ± 0.6 3.7 ± 1.1
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In environments devoid of CO2, jcorr values for all amines were lower compared to
0.5 M KCl. Specifically, MDEA and MDEA/PZ exhibited reduced jcorr values relative
to MEA and AMP, with the latter two showing jcorr values comparable to KCl. Upon
introducing CO2, a notable shift in Ecorr towards more anodic potentials occurred for all
amines, attributable to the dissolution of CO2 and the formation of carbonate/bicarbonate
species. Concurrently, the introduction of CO2 resulted in an increase in jcorr across all
amines. The relative order of jcorr values remained consistent with the CO2-free cases:
MEA and AMP exhibited higher jcorr, exceeding that of KCl, while MDEA and MDEA/PZ
maintained significantly lower values. Polarization resistance (Rp) data, derived from
LPR measurements, were consistent with jcorr. Lower Rp values, indicative of higher
corrosion rates, were observed for CO2-loaded MEA and AMP, whereas CO2-free MDEA
and MDEA/PZ demonstrated higher resistances.

CV scans, presented in Figure 4, reveal distinct electrochemical behaviors of copper in
various amine media. For comparative purposes, CV experiments were also conducted in
0.5 M KCl. In CO2-lean amine media, two oxidation peaks (A and B) and two reduction
peaks (C and D) were identified. Peak onset potentials are tabulated in Table 2. It is well
established that copper oxidizes to form either Cu(I) or Cu(II) [38]. During the anodic
sweep, the initial peak (A) is attributed to the formation of Cu(I), while the subsequent peak
(B) corresponds to Cu(II) oxidation, both manifesting as copper oxides/hydroxides and
their hydrated forms. The oxidation current increase beyond peak B signifies the formation
of soluble copper ions such as CuO2

− until the onset of oxygen evolution at more anodic
potentials. The onset potential for peak A remains relatively consistent across all CO2-free
amine media, approximately at 0.45 V. However, the onset for peak B varies significantly,
indicating a more complex oxidation mechanism, which is in line with previous findings in
KOH solutions [39]. In MEA, the lowest onset potential leads to the overlapping of peaks
A and B. In contrast, MDEA, MDEA/PZ, and AMP exhibit distinct B peaks at more anodic
potentials, at −0.27 V, −0.15 V, and −0.27 V, respectively. Peaks C and D are associated
with the reduction in Cu(I) and Cu(II) species, while the highest cathodic current surge is
attributed to the hydrogen evolution reaction (HER).

Table 2. Onset potentials from cyclic voltammetry. Potentials vs. Ag/AgCl reference electrode.

Media CO2 A/V B/V C/V D/V

MEA
no −0.5 −0.4 −0.48 −1.2

yes −0.21 −0.22 - -

MDEA
no −0.46 −0.27 −0.1 −0.97

yes −0.27 −0.27 - -

MDEA/PZ
no −0.44 −0.15 −0.47 −0.75

yes −0.17 −0.12 - -

AMP
no −0.52 −0.27 −0.51 −1.1

yes −0.25 −0.18 - -

KCl no −0.4 −0.1 −0.06 −0.95

In CO2-rich amine media, only two peaks, labeled ACO2 and BCO2, are evident. Peak
ACO2 could represent the overlap of peaks A and B, indicating the concurrent formation
of both Cu(I) and Cu(II) species, or it might signify the exclusive formation of Cu(II)
species. The former scenario seems more probable, as the overlapping of peaks A and B
has been previously reported in high pH conditions [39], likely influenced by CO2 purging.
The onset oxidation potentials in various amines are closer in the CO2-rich environment,
recorded at −0.21 V, −0.27 V, −0.17 V, and −0.25 V for MEA, MDEA, MDEA-PZ, and AMP,
respectively. This observation underscores the significant impact of the presence of CO2 on
copper oxidation and supports previous PDP and LPR data. Copper oxidizes more readily
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in CO2-rich media, as evidenced by a steeper increase in oxidation current at more cathodic
potentials, except for MEA, which exhibits a slightly higher oxidation onset potential in
CO2-rich conditions. In CO2-rich amines, the most anodic current is either due to HER or
the CO2 reduction reaction (CO2RR) and is shifted towards more anodic potentials. This
shift suggests that CO2RR may have a more anodic onset potential than HER, leading to an
observable increase in current density on the CV scan for CO2-purged media.
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3.2. Chronopotentiometry

Specimens underwent cathodic polarization for a cumulative duration of 60 h, employ-
ing varied pulse strategies. These strategies encompassed continuous cathodic polarization,
pulse mode 1, and pulse mode 2, as detailed in Figure 2. The potential as a function of
time was closely monitored, with the corresponding cathodic chronopotentiometry re-
sults displayed in Figure 5. Anodic chronopotentiometry results are similarly detailed
in Figure 6.
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Chronopotentiometry results for continuous cathodic polarization over 60 h in MEA,
MDEA, and AMP are illustrated in Figure 5a. In MDEA/PZ, this experiment was hindered
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by the formation of carbonate salts, which obstructed the CO2 gas inlet after only 2–3 h.
Similar carbonate salt precipitation was observed in MDEA, leading to an unstable cathodic
potential that progressively shifted towards more cathodic values, as depicted in Figure 5a.
In contrast, the potentials in AMP demonstrated greater stability, albeit with a slight
decrease over time. Notably, MEA exhibited the most stable potential, concluding the
experiment at a potential 20 mV higher than the initial value.

The influence of pulse strategies on potential evolution for the various amine solutions
is highlighted in Figure 5b–d. Employing a lower frequency pulse strategy (pulse mode 1)
consistently improved potential stability across all amine solutions. In the case of MDEA,
this strategy resulted in a stable potential decrease beyond 55 h, contrasting with the trend
observed under continuous polarization. For MEA and AMP, pulse mode 1 induced a
gradual electropositive shift in potential, reaching increments of +70 mV and +65 mV from
their initial values, respectively. The adoption of a higher frequency of anodic segments
(pulse mode 2) demonstrated diverse outcomes. In MEA, pulse mode 2 more significantly
improved potential stability compared to pulse mode 1, achieving an increase of +125 mV
compared to the initial value. In contrast, for AMP, the potential under pulse mode
2 initially remained stable but began to decline after 45 h, aligning more closely with the
behavior observed under continuous polarization. For MDEA, the potential during pulse
mode 2 rapidly deteriorated and became extremely unstable upon the onset of carbonate
salt precipitation.

Anodic chronopotentiometry results for the various pulse strategies are shown in
Figure 6. Three distinct behaviors emerged: stable, erratic, and decreasing. A stable po-
tential was noted in all specimens subjected to pulse mode 1, as well as in MEA under
pulse mode 2. The potential required to reach a current density of +1 mA cm−2 hovered
around −0.15 V for pulse mode 1 and −0.2 V for pulse mode 2 in MEA. This variance is at-
tributed to surface charging/discharging phenomena, necessitating more anodic potentials
to offset the declining discharging current with an elevated Faradaic oxidation current for
longer anodic durations. Since pulse mode 2 features shorter durations, the proportion of
Faradaic current is reduced, hence less anodic potentials are sufficient to sustain the target
current density.

In the case of MDEA and AMP under pulse mode 2, the anodic potential exhibited
instability, albeit with markedly different behaviors. In MDEA using pulse mode 2, an
erratic potential was observed beyond 15 h, likely caused by the intermittent formation
and detachment of carbonate salts on the catalyst surface. In contrast, AMP during pulse
mode 2 exhibited a continuous cathodic shift in anodic potential over time.

The post-chronopotentiometry visual appearance of copper catalysts exhibits marked
variations contingent on the polarization mode, as illustrated in Figure 6. Continuously
polarized specimens display darker surfaces, whereas those subjected to pulse modes
generally manifest ‘cleaner’ copper surfaces, with the exception of AMP under pulse mode
2. When correlating the visual observations of the catalysts after chronopotentiometry with
the anodic potential data from Figure 6, it becomes evident that periodic oxidation facili-
tated by pulse modes effectively mitigates the formation of dark deposits. The pronounced
dark deposit observed in AMP under pulse mode 2 indicates inadequate oxidation of the
copper catalyst. Indeed, several factors can contribute to a cathodic shift in potential when
maintaining a target anodic current density, such as a reduction in active surface area, a
shift in oxidation onset potential, or an increased charging of the interface reducing the
proportion of Faradaic currents required to achieve the target. The observed potential
diminution for AMP pulse mode 2 is presumably attributed to the latter, as post-test sur-
face characterization revealed a dark deposit akin to that observed following continuous
polarization, as shown in Figure 7. This suggests that the intended oxidation of copper
was not effectively achieved, pointing to surface charging as the underlying cause for the
diminished oxidation. Under these specific test conditions, an anodic duration of 2 s proved
insufficient for achieving copper oxidation in CO2-rich AMP. These findings underscore the
importance of cyclic copper oxidation in preventing the formation of such dark deposits.
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Figure 7. Optical macrographs of catalysts after chronopotentiometry.

Artefacts resulting from a gas generation at the catalyst surface, characterized by black
spots with occasional dark trails directed upward, are discernible in specimens under
continuous and pulse mode 1 polarization. However, these artefacts are absent in samples
subjected to pulse mode 2, where no such phenomena are observed.

Higher magnification images of the catalyst surface are provided in Figure 8. Prior to
chronopotentiometry, as shown in Figure 8a,b, the surface primarily consists of pure copper,
characterized by an uneven topology with sporadic overgrown protrusions, ranging from
15 µm to 35 µm in diameter. After continuous polarization, the formation of a dark deposit
is apparent, leaving only a thin network of exposed copper (Figure 8c,d). Conversely, in
MEA under pulse mode 2 (Figure 8e), the surface displays no discernible dark deposits,
and the integrity of the surface is notably preserved. An instance of the gas generation
artefact, observable in MEA under pulse mode 1 (Figure 8f), exhibits a dark deposit in
the shape of a ring, approximately 100 µm in diameter, with a center of exposed copper
corresponding to the cathodic site.
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4. Discussion
4.1. Corrosion of Copper Catalyst in Amine Media

Corrosion rates were calculated from the corrosion current density (jcorr) in accordance
with ASTM G102 guidelines [40]. The derived corrosion rates, along with the time necessary
to dissolve a 50 µm copper deposit (the estimated thickness based on weight measurements),
are tabulated in Table 3 These calculations reveal that the complete dissolution of the copper
deposit, under the presumption of exclusive Cu(I) formation and in the absence of any
passivation, would necessitate 56 days in the most severe scenario (CO2-enriched MEA).
In the case of Cu(II) formation, the time extends to 112 days. It is critical to recognize that
the hypothesis of no passivation is valid only immediately after the termination of the
cathodic current, as an oxide protective layer is expected to form subsequently. Thus, these
calculations are pertinent mainly for approximating the cumulative switch-off duration
tolerable by the catalyst. Accordingly, a cumulative switch-off time threshold of 56 days is
considered more than adequate. Therefore, the free corrosion of copper in the amine media
does not constitute a limiting factor for the catalyst’s operational lifespan.

Table 3. Corrosion rates and time required to dissolve a 50 µm thick copper layer, calculated from
corrosion current density data in Table 1.

Dissolution into Cu(I) Dissolution into Cu(II)

Media CO2 CR/mm y−1 Time/Days CR/mm y−1 Time/Days

MEA
no 0.056 328 0.028 655

yes 0.327 56 0.164 112

MDEA
no 0.007 2623 0.003 5242

yes 0.023 787 0.012 1573

MDEA/PZ
no 0.009 1967 0.005 3931

yes 0.021 874 0.010 1747

AMP
no 0.035 525 0.017 1048

yes 0.179 102 0.089 204

KCl no 0.056 328 0.028 655

The influence of corrosion-induced surface alterations on the catalyst’s efficiency, in-
cluding aspects such as selectivity, FE, and EE, still requires further investigation. However,
existing literature, including findings by [41], indicates that copper oxides favor the reduc-
tion in CO2 into C2+ products, suggesting that corrosion may not pose immediate concerns
for catalyst functionality.

4.2. Choice of Amine Capture Media for ECR

CO2 capture in amine media is primarily governed by two processes. The initial
process involves the formation of carbamate, as described by reaction (1). Subsequently,
the formed carbamate undergoes hydrolysis into bicarbonate, delineated in reaction (2).
The prevalence of these reactions is contingent on the amine type. Non-sterically hindered
primary amines, such as MEA, tend to form stable carbamate; thus, reaction (1) predomi-
nates, leading to almost complete CO2 capture in the form of carbamate [42]. While this
mechanism offers rapid capture kinetics, it necessitates higher energy for CO2 release.

In sterically hindered amines like AMP, the carbamate bond is less stable [36,43],
enhancing the carbamate hydrolysis reaction (reaction 2). This results in CO2 being stored
as both carbamate and bicarbonate, combining the fast capture kinetics of reaction (1) with
an increased CO2 absorption capacity due to the 1:1 stoichiometry between CO2 and the
amine molecule in reaction (2), in contrast to the 2:1 ratio in reaction (1).

CO2 + 2R1R2NH ⇌ R1R2N+H2 (1)
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R1R2N+H2 + H2O ⇌ R1R2NH + HCO−
3 (2)

Tertiary amines, such as MDEA, do not form carbamate with CO2. Instead, they
function as catalysts for CO2 hydration [44], leading to exclusive bicarbonate capture as
per reaction (3). This mechanism offers a higher absorption capacity, albeit at a slower
capture rate.

CO2 + H2O + R1R2R3N ⇌ HCO−
3 + R1R2R3N+H (3)

Historically, capturing CO2 as bicarbonate has been favorable due to its greater ab-
sorption capacity and reduced thermal energy requirement for CO2 release. The findings
presented here indicate that tertiary amine can lead to significant carbonate salt precipi-
tation during ECR, as observed in MDEA and MDEA/PZ. In contrast, primary amines
do not facilitate carbonate salt formation, as evidenced in MEA and AMP. Based on these
observations, primary amines are emerging as more promising candidates for direct ECR
applications. This is confirmed by chronopotentiometry results which showed greater
stability for MEA.

4.3. Pulse ECR in Amine Media

Pulse chronopotentiometry findings clearly demonstrate that incorporating short
anodic segments counteracts the cathodic shift in potential over time, often resulting
in an anodic shift in cathodic potentials. This trend suggests an enhancement in the
efficiency of reduction reactions, as evidenced by lower overpotentials needed to maintain
the target current density. The formation of copper oxides during anodic segments is likely
responsible for this anodic potential shift.

Beyond the advantageous potential shift, pulse ECR exhibits a pronounced ability to
preserve the catalyst surface, effectively minimizing the formation of dark deposits. These
outcomes highlight the necessity for optimization in pulse ECR to enhance results, such
as maximizing potential shifts and reducing deposit formation, as exemplified by pulse
mode 2 in MEA. The optimization process varies with the media used, as evidenced by
the differences in outcomes for MEA and AMP under pulse mode 2. Key considerations
for effective pulse ECR include ensuring adequate oxidation of the copper surface by
setting a sufficiently long anodic step duration, counter to the approach seen in AMP under
pulse mode 2. Additionally, the cathodic step duration should be short enough to prevent
excessive deposit formation at gas generation sites, such as observed in AMP under pulse
mode 1, which could be problematic to eliminate during subsequent anodic steps.

Carbonate salt formation arises from localized HO− ion enrichment near the catalyst
surface, a byproduct of the CO2 reduction reaction (CO2RR) [20]. Previous studies have
suggested that pulse ECR can mitigate carbonate salt formation by curbing HO− accu-
mulation [21,29]. However, the pulse strategies evaluated were ineffective in preventing
carbonate salt precipitation in MDEA-based capture media. This outcome implies that
tertiary amines favor carbonate salt formation.

5. Conclusions

The investigation into the stability of electrodeposited copper catalysts for Electro-
chemical Reduction (ECR) in various amine media offers valuable insights into critical
aspects of this process. The study underscores several key findings that advance our
understanding and pave the way for future research endeavors:

• Corrosion is not a significant impediment to the catalyst’s longevity in amine media.
Both computational modeling and experimental data corroborate that the inherent
corrosion of copper in these conditions does not critically limit the operational lifespan
of the catalyst. This insight alleviates concerns regarding the durability of copper
catalysts in practical ECR applications.

• Primary amines, particularly MEA, demonstrate higher compatibility with ECR pro-
cesses, characterized by the absence of carbonate salt precipitation and more stable
potentials over time. This observation emphasizes the importance of considering the
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amine type in optimizing ECR performance and underscores the potential for tailored
catalyst–amine combinations to improve efficiency.

• Pulse ECR demonstrated significant potential in improving ECR stability, manifested
by a shift in cathodic potential and effective mitigation of deposits on the catalyst
surface through periodic oxidation. This highlights the importance of exploring inno-
vative operational strategies to augment the stability and efficiency of ECR processes.

Future investigations should prioritize delineating the specific products formed from
the reduction in amine–carbamate adducts using electrodeposited copper catalysts. Un-
derstanding these reaction pathways is paramount for optimizing the ECR processes and
expanding their industrial applications. Additionally, the effect of pulse strategies on ECR
productivity needs exploration, particularly in understanding how the intermittent nature
of these strategies influences the rate and efficiency of CO2 conversion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17081825/s1, Figure S1: Schematic representing the electro-
plating setup, highlighting the positioning of the anode and cathode, maintained at a consistent
distance of 95 mm; Figure S2: (a–f) Tafel extrapolation of potentiodynamic polarization of copper
specimens in MEA. Scan rate 10 mV min−1; Figure S3: (a–f) Tafel extrapolation of potentiodynamic
polarization of copper specimens in MDEA. Scan rate 10 mV min−1; Figure S4: (a–f) Tafel extrapo-
lation of potentiodynamic polarization of copper specimens in MDEA-PZ. Scan rate 10 mV min−1;
Figure S5: (a–f) Tafel extrapolation of potentiodynamic polarization of copper specimens in AMP.
Scan rate 10 mV min−1; Figure S6: Linear polarization resistance of copper specimens in the different
amine-based capture media. (a) MEA, (b) MDEA, (c) MDEA/PZ, (d) AMP. Scan rate 0.125 mV s−1;
Table S1: Average cell resistances in the different amine solutions.
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