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Abstract: To obtain high-quality joints of Al/steel dissimilar materials, a new extrinsic-riveting
friction stir lap welding (ERFSLW) method was proposed combining the synthesis advantages of
mechanical riveting and metallurgical bonding. SiC-reinforced Al matrix composite bars were placed
in the prefabricated holes in Al sheets and steel sheets, arranged in a zigzag array. The bars were
stirred and mixed with Al sheets under severe plastic deformation (SPD), forming composite rivets
to strengthen the mechanical joining. SiC particles were uniformly dispersed in the lower part of
the welding nugget zone (WNZ). The smooth transition between the SiC mixed zone and extrinsic-
riveting zone (ERZ) ensured the metallurgical bonding. The maximum tensile shear load of the joints
reached 7.8 kN and the maximum load of the weld per unit length was 497 N/mm. The fracture
occurred at the interface between the rivets and steel sheets rather than the conventional Al/steel
joining interface. Moreover, ERFSLW can prolong the service life of joints due to three fracture stages.
This method can be further extended to the welding of other dissimilar materials that conform to the
model of “soft/hard”.

Keywords: extrinsic-riveting friction stir lap welding; Al/steel; mechanical riveting; metallurgical
bonding; mechanical properties

1. Introduction

The background of carbon neutrality has made demands on the development of
lightweight designs for rockets, high-speed trains, and vehicles [1,2]. One effective strategy
to achieve this goal is the replacement of steel with Al alloys. However, the welding
between Al alloys and steel faces a big challenge due to the substantial difference in
physical and mechanical properties [3]. Therefore, developing new methods which can
achieve the goal of the high-quality welding of Al/steel dissimilar materials is particularly
important.

Solid-state welding methods such as explosive welding can avoid the shortages of
fusion welding when it comes to dissimilar materials [4,5], but many of them are only
suitable for the welding of plates with a large size. Friction stir welding (FSW) has been
widely used in the welding of dissimilar metals because of the characteristics such as low
welding temperature and large plastic deformation [6–8]. Many methods were proposed to
improve the mechanical properties of the joints. Changing to a new experimental design
or improving the welding parameters are relatively classic strategies [9–11]. Adding an
interlayer between the Al alloys and steel can prevent direct contact between the two mate-
rials, reducing the production of hard and brittle intermetallic compounds (IMCs) [12–14].
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Auxiliary methods promoting the material flow such as arc preheatment [15] and ultra-
sonic vibration [16–18] were also reported in FSW between Al alloys and steel. But these
methods rely only on the metallurgical bonding to improve the properties. It is worth
mentioning that combining welding with mechanical joining methods is another effective
way to further improve the strength of the joints [19–21]. Huang et al. [22,23] proposed
self-riveting friction stir lap welding (SRFSLW) to introduce a new concept with the as-
sistance of mechanical riveting via prefabricated geometrical configurations. Dynamic
recrystallized Al alloys flowed downwards and filled the prefabricated holes in the steel
sheets, forming a self-riveting structure. However, this action resulted in the weld thinning
for about 0.70 mm. The fracture occurred at the rivets, indicating that the strengthening
effect is still to be improved.

In this paper, a novel method, extrinsic-riveting friction stir lap welding (ERFSLW),
was proposed for obtaining Al/steel lap joints in order to achieve micro-weld thinning
joints with great mechanical properties. Dissimilar lap joints between 6082-T6 Al alloy and
QSTE340TM steel were adopted. The structure and mechanical properties of the ERFSLW
joints were investigated in detail.

2. Materials and Methods
2.1. Materials

The 6082-T6 Al alloy sheets (Alnan Aluminium Construction Co., Ltd., Nanning,
Guangxi, China) and QSTE340TM steel sheets (Baoshan Iron & Steel Co., Ltd., Shang-
hai, China) were selected, whose dimensions were 300 mm × 80 mm × 3 mm, and
300 mm × 80 mm × 2 mm, respectively. Schematics of the ERFSLW process and welding
tool are illustrated in Figure 1. The specific procedures are as follows: (a) The Al sheet
was located at the upper region and the steel sheet was lain at the lower region in order
to avoid the tool abrasion since the pin directly contacted with steel. (b) Before welding,
straight-through holes in a zigzag array which had a diameter of 4 mm were prefabricated
in both Al and steel sheets. The total width of two rows was 7 mm. (c) SiC-reinforced 2024
Al matrix composite bars were set in the holes. The selected reason are as follows: Firstly,
SiC-reinforced 2024 Al matrix composite has been proven to be an effective strengthening
material. Secondly, 6082-T6 Al alloys are easily softened under the thermo-mechanical
effects. The 2024 Al matrix composite can make up for the strength loss. Last but not least,
the corrosion resistance between 6082-T6 and 2024 Al matrix composite are different, which
is beneficial for observing the distribution of SiC particles after etching. In order to make
three holes uniformly distributed on the tensile shear specimen as a cycle, the interval
between adjacent holes in a row was fixed at 10.67 mm. The bars had a diameter of 3.95 mm
and a length of 5 mm. The volume fraction of SiC particles, which had an average diameter
of 5.5 µm in the bar, was 45%. (d) During the welding process, the welding tool advanced
along the center line of holes. Then, the bars were stirred and mixed with Al sheet, forming
composite rivets. The welding tool had a concave shoulder with a diameter of 16 mm and
an enlarged-end pin with a length of 3 mm. The diameter of the enlarged-end was 8 mm,
which can realize the coverage of bars and Al sheet. Rotational speed, tilt angle, and plunge
depth were fixed at 1000 rpm, 2.5◦, and 0.1 mm, respectively. Welding speed varied from
100 mm/min to 300 mm/min.
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Figure 1. Schematics of the ERFSLW process and welding tool. 

2.2. Analytic Methods 
The metallographic specimens and tensile shear specimens of joints were prepared 

by wire-cut electrical discharge machining (WEDM) according to the positions and di-
mensions illustrated in Figure 2. The rivets on each specimen were uniformly distributed. 
Macrostructure and microstructure of the joints were observed by Keyence VHX-1000E 
optical microscope (OM, Keyence Corporation, Osaka, Japan). Microhardness tests of the 
joints’ cross-section were conducted using HX-1000 Vickers hardness tester (Shanghai 
Changfang Optical Instrument Co., Ltd., Shanghai, China) applying a test load of 200 g 
with a dwelling time of 10 s. Tensile shear tests were performed at the ambient tempera-
ture under a crosshead speed of 0.5 mm/min on AG-X plus testing machine (Shimadzu 
Corporation, Kyoto, Japan). 

 
Figure 2. Positions and dimensions of the specimens: (a) positions of the specimens, and (b) dimen-
sions of the tensile shear specimens (unit: mm). 

3. Results and Discussion 
3.1. Macrostructure and Microstructure 

Among the three group of parameters, when the welding speed was fixed at 100 
mm/min, the formation of joints was the best. Now, we mainly analyze the joints formed 
by this welding speed. Figure 3 illustrates the upper and lower surfaces of joints. No ob-
vious defects or large black spots can be observed on the upper surface, indicating that 

Figure 1. Schematics of the ERFSLW process and welding tool.

2.2. Analytic Methods

The metallographic specimens and tensile shear specimens of joints were prepared
by wire-cut electrical discharge machining (WEDM) according to the positions and di-
mensions illustrated in Figure 2. The rivets on each specimen were uniformly distributed.
Macrostructure and microstructure of the joints were observed by Keyence VHX-1000E
optical microscope (OM, Keyence Corporation, Osaka, Japan). Microhardness tests of
the joints’ cross-section were conducted using HX-1000 Vickers hardness tester (Shanghai
Changfang Optical Instrument Co., Ltd., Shanghai, China) applying a test load of 200 g
with a dwelling time of 10 s. Tensile shear tests were performed at the ambient tempera-
ture under a crosshead speed of 0.5 mm/min on AG-X plus testing machine (Shimadzu
Corporation, Kyoto, Japan).
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Figure 2. Positions and dimensions of the specimens: (a) positions of the specimens, and (b) dimen-
sions of the tensile shear specimens (unit: mm).

3. Results and Discussion
3.1. Macrostructure and Microstructure

Among the three group of parameters, when the welding speed was fixed at
100 mm/min, the formation of joints was the best. Now, we mainly analyze the joints
formed by this welding speed. Figure 3 illustrates the upper and lower surfaces of joints.
No obvious defects or large black spots can be observed on the upper surface, indicating
that the hard Al matrix composite was sufficiently smashed and mixed with Al alloy. The
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gaps between the bars and the inner wall of holes were too small to be visible, which means
the rivets were formed successfully. These phenomena indicate that ERFSLW achieved a
satisfactory formation of joints due to the joining between the Al alloy, Al matrix composite
bars, and steel.
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Figure 3. Surface formation of joints at 100 mm/min: (a) the upper surface, and (b) the lower surface.

Figure 4 shows the macrostructure of the joints’ cross-section. The interface between
the Al sheet and bars was formed under severe plastic deformation (SPD). The cross-section
can be divided into five zones: the welding nugget zone (WNZ), thermal-mechanically
affected zone (TMAZ), heat affected zone (HAZ), base material (BM), and extrinsic-riveting
zone (ERZ). The interface between two sheets was straight since the enlarged-end pin
did not make contact with the steel, which can effectively avoid the pin abrasion. Impor-
tantly, the weld thinning of joints was about 0.34 mm, which was much smaller than that
of SRFSLW.
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Combining the macrostructure of the joints’ longitudinal-section, it is found that the
SiC particles were dispersedly distributed in the lower part of the WNZ due to the severe
stirring effect of the enlarged-end pin, as is observed in Figure 5. During the welding
process, as for the pin, the enlarged-end can completely stir the bars, so the particles can be
fully dispersed and mixed with Al alloy. However, the diameter of the other part is smaller
than the total width of the two rows of bars, which caused some of the composite to not be
directly affected by the pin. Therefore, the upper part of the WNZ was the SiC unmixed
zone while the lower part was the SiC mixed zone. The combination of rivets and Al alloy
became the key point that decided the strength of the joints. According to Figure 6, the
SiC mixed zone and ERZ had a smooth transition and no defects were observed. This is
because the high strain rate can improve the interface atom diffusion between the Al matrix
composite and Al alloy. In the transition zone, the size of the grains was similar and the
distribution of the SiC particles was uniform, reducing the stress concentration during the
tensile shear process. The above synthesis effects are together conducive to improving the
strength of the joints.
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In addition, the original Al matrix composite usually have many micro-cracks and
micro-holes. During the cooling process of pressure casting, tensile stress will be generated
at the interface between the SiC particles and Al matrix because of the huge difference in
their coefficient of thermal expansion (CTE). When the stress is larger than their bonding
force, micro-cracks and micro-holes will occur. According to Figure 7, ERFSLW can make
materials tighter, repairing the original micro-cracks and micro-holes in the bars, which is
also beneficial for improving the mechanical properties of joints.
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3.2. Microhardness Tests

Figure 8 shows the microhardness distribution of the joints’ longitudinal-section,
1 mm above the interface between two sheets. With the increase in welding speed, the
distribution of hardness was more uneven. Because the stirring time of the weld per unit
length was reduced, the uniformity distribution of the SiC particles decreases. The hardness
distribution of the joints at 100 mm/min and 200 mm/min were more uniform, avoiding
the stress concentration. Markedly, the hardness of ERZ with SiC particles was higher than
that of base Al alloy. It shows that SiC particles play a role in strengthening the rivets.
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3.3. Tensile Shear Tests

Figure 9 reveals the typical tensile shear curves and fracture morphologies of the joints.
At different welding speeds, the maximum load of the joints was basically the same, which
was about 7.8 kN. The maximum load per unit length was 497 N/mm. The lower the
welding speed, the longer the stirring time of the weld per unit length, which led to the
higher temperature. The sufficient heat input can improve the interfacial metallurgical
bonding between the Al sheets and steel sheet. With the increase in welding speed and
decrease in heat input, the interfacial metallurgical bonding was gradually weak, which
reduced the elongation of joints. The fracture of each specimen occurred at the interface
between the rivets and steel sheets. This is because the bearing area of each sheet was
reduced due to the prefabricated holes. The metallurgical bonding of the rivets and Al
sheet made up for the shortage, whereas the steel sheet did not. There are three stages
in each tensile shear curve. Figure 10 shows the schematic of the load bearing during
the tensile shear process. A, B, and C are three important positions of the joints. The
minimum width of A and B is only 0.67 mm, so it is easy to shrink at the two positions.
Due to the unavoidable machining errors, the actual dimensions of the two positions will
be slightly different. The synchronous fracture of the two positions caused the formation of
the first and second drop in the curve. When the load was larger than the bear capacity
of C, the neck contraction occurred, showing a slowly descending curve. When the final
fracture occurred, the third drop appeared. In general, Al/steel dissimilar joints show
the characteristics of indirect fracture. The three stages during the tensile shear process is
conducive to establishing an early warning mechanism for the fracture and prolonging
the service life of the joints. Besides Al/steel joints, ERFSLW can be further extended to
the welding of other dissimilar materials such as Al/Ti, Al/Cu, and Al/polymer, which
conform to the model of “soft/hard”.
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