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Abstract: Different formulations of foaming polyurethane grout offer controlled expansion rates.
This is crucial for precision in filling voids without exerting excessive pressure on surrounding
structures, which could potentially cause damage. This study focuses on the impact of composition
on the expansion performance of tailor-made polyurethane grouting materials. Initially, multiple
unknown chemical reaction kinetic parameters were identified by combining free expansion tests,
which involved measuring density and temperature changes, with the particle swarm optimization
algorithm. A numerical simulation, integrating chemical kinetic models and fluid flow equations,
was established to replicate the free expansion process of polyurethane grout in a cup, aligning with
our experimental results. Subsequently, we analyzed the polymerization process of polyurethane
grout with varying compositions to determine the effect of composition ratios on grout expansion.
Our findings reveal that the expansion ratio of foaming polyurethane is predominantly influenced by
the concentrations of physical and chemical foaming agents, followed by isocyanate concentration.
Polyol, in contrast, exerts a relatively minor influence. Furthermore, the solubility of the physical
foaming agent in the grout determines both its maximum allowable concentration and its maximum
contribution to volume increase. This study provides valuable insights for the design and selection of
polyurethane grout components tailored to diverse applications.

Keywords: self-expanding polymers; expansion characteristics; ingredient proportion; simulation
study

1. Introduction

Customized polyurethane grouting materials with varying expansion ratios have
been widely developed for infrastructure rehabilitation, including applications in road
maintenance, slab lifting, structure reinforcement, and underground anti-seepage [1–4].
The fundamental principle of polyurethane grouting lies in injecting a two-component
polyurethane grout into specified locations, aimed at filling voids and cracks, waterproofing,
and enhancing load-bearing capacity. This process generates an expansion force that acts
upon either the surrounding geological or environmental medium or the grout itself,
facilitating the desired structural adjustments or repairs.

Different formulations of foaming polyurethane grout lead to different expansion
ratios. It is essential to achieve the appropriate expansion ratio to ensure that the grout
effectively fills voids without exerting excessive pressure on the surrounding structure,
which could result in insufficient filling and potential damage to the original structure.
Therefore, it is crucial to adjust the grout components according to the specific requirements
for expansion performance in practical projects.

Numerical simulation serves as a crucial method for investigating expanding
polyurethane foams. Typically, the polymer grout is regarded as a generalized Newtonian
fluid, with the expansion process simulated as a fluid flow operation. Researchers have
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employed macro-scale computational fluid dynamics (CFD) and multi-scale modeling to
forecast the properties of polyurethane foam [5–7]. These methods connect large-scale fluid
behavior with the minute interactions of bubbles. Despite these advances, the nature of
foaming is complex, involving the interplay of liquid and gas, intricate chemical reactions,
and varied thermal processes, like heat transfer and phase changes. The simulation requires
careful consideration of many factors, such as the pre-exponential factor and activation
energy parameters in kinetic equations, as well as parameters in solubility equations, each
contributing to the complexity of the model. Researchers, such as Gerier [8], Lipshitz [9],
Bouayad et al. [10], and Dimier [11], have conducted extensive experiments and thermal
analyses to identify these parameters. To streamline this process, Raimbault [12] devised
an analytical model that simplifies the identification of key parameters for curing kinetics
and viscosity. Similarly, Jia et al. [13] refined the parameters for the solubility model of
the physical blowing agent, applying mass conservation and the Clapeyron equations.
Abdessalam [14] took a different approach with an inverse identification method, which
integrates data from dynamic rotational rhinometry and FOAMAT system tests with foam-
ing simulations using the finite pointset method. This strategy aims to lessen the extensive
labor involved in measuring numerous parameters that vary with different formulations.

In the field of grouting engineering, the expansion characteristics have a significant
impact on the mechanical properties. Yang et al. [15] utilized microcellular foaming tech-
nology, employing CO2 and N2 as co-foaming agents, to modulate the shrinkage behavior
of hexamethylene diisocyanate (HDI)-based thermoplastic polyurethane (TPU) foam. They
examined the influence of shrinkage rate, expansion rate, and cell size on the mechanical
properties of the foam and found that the mechanical properties of TPU foams with a
smaller shrinkage ratio are much higher than those with a larger initial expansion ratio and
a similar final expansion ratio. Vipulanandan C et al. [16] investigated the curing process
of hydrophilic polyurethane, focusing on how varying water–grouting ratios influence
volume change. Their findings indicate a direct correlation between these ratios and the
observed increases in pressure and temperature at peak curing. Sabri, M.M. et al. [17]
manipulated the volume expansion ratio of expandable polyurethane resin by adjusting the
injected resin amount and examining the mechanical properties that ensured. This work
culminated in establishing a stress–strain diagram at varying densities and expansion ratios.

Researchers have conducted investigations into the impact of certain components on
both the foaming process of polyurethane and its mechanical properties. Zhuang et al. [18]
observed that incorporating a chain extender into the TPU matrix enhances the branching of
the molecular chain, resulting in an expansion rate and compressive strength of composite
foam that are two to threefold that of the unmodified sample. Lai et al. [19] studied
the effects of varying chain extender levels on the mechanical and foaming properties of
thermoplastic polyurethane materials. Oppon et al. [20] explored the effect of preheating
temperature on foaming duration and expansion rate, discovering that higher preheating
temperatures reduce the time required for foaming and accelerate the expansion rate.
Karimi et al. [21,22] used the population balance equation to assess how different types
and quantities of the physical blowing agent, along with water content, affect the density
and temperature of polyurethane materials. Nofar et al. [23] extensively analyzed how the
content of hard segments influences the foaming behavior of thermoplastic polyurethane,
revealing that an increase in hard segment crystallization during the saturation process
restricts foam expansion.

Despite extensive research on the chemical kinetic parameters and numerical simu-
lations of the polyurethane foam filling process for mold filling, studies on polyurethane
grouting have predominantly focused on the diffusion and mechanical properties of
polyurethane grout with set components. The complexity of the formula and the opera-
tional environment introduce uncertainties in the numerical model of expansion behavior
in polyurethane grouting projects. Currently, optimizing grout composition for desired ex-
pansion behavior largely depends on existing experience or experimental methods, which
are costly and inefficient. Consequently, a significant challenge remains in developing a
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numerical method of grout expansion that can accommodate polyurethane grouting with
undetermined kinetic parameters.

In this study, we conducted an investigation into the quantitative effect of composition
ratios on the expansion properties of polyurethane grouting materials through numerical
simulation. Initially, a free expansion test of the grout was carried out to monitor changes
in grout density and temperature over time. Subsequently, utilizing particle swarm opti-
mization (PSO), we identified the chemical reaction kinetics parameters of the grouting
materials and established material models for polyurethane. Building upon this foun-
dation, we developed a numerical simulation to predict the expansion ratio and density
of polyurethane grouting materials. Furthermore, an analysis was performed to assess
the impact of different composition ratios, including isocyanate and polyol, as well as
physical and chemical blowing agents, on expansion performance. This study serves as a
fundamental step towards designing formulas for polyurethane grouting materials with
desired expansion properties.

2. Chemical Kinetic Parameter Identification

The pre-exponential factor and activation energy are crucial parameters in the chemi-
cal reaction kinetics equation of polymer grouting materials. These kinetic parameters are
determined using a particle swarm inversion algorithm, which combines an energy conser-
vation equation, chemical reaction kinetic model, and density model. Through continuous
optimization of particle swarm fitness, we were able to ascertain the pre-exponential fac-
tor and activation energy for our custom polymer grouting material through progressive
refinement. The optimization process concludes when the discrepancies in density and tem-
perature between calculated and experimental values reach their minimum. These results
provide a solid foundation for the numerical simulation of the polymer expansion process
in subsequent steps. Figure 1 presents a schematic diagram of our research, illustrating the
application of the particle swarm inversion algorithm more clearly.
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Figure 1. Flow diagram of the particle swarm algorithm.

2.1. Preparation of the Polyurethane Grouting Material

In this study, a new type of polyurethane polymer grout was developed, which en-
hanced the identification of the chemical kinetic parameters through more obvious foaming
properties, and we established an accurate numerical model of the expansion process of
polyurethane grout. Through a series of experiments and comparative evaluations, optimal
raw materials and their proportions were identified. The primary components for crafting
this polyurethane grout encompass isocyanates, polyols, catalysts, blowing agents, foam
stabilizers, and a selection of additional additives.
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Table 1 presents the selected raw materials and their precise ratios used to create
the polymer grout via a one-step method [24]. To prevent the material from sticking to
the container post-reaction, the inner surface of the container was lightly coated with
lubricating oil before beginning the experiment. At room temperature, the polyether polyol,
foaming agent, foam stabilizer, and catalyst were combined in the container according
to the specified proportions. Once thoroughly mixed, MDI-50 was quickly integrated,
ensuring rapid reaction and expansion to produce the polyurethane grout. The entire
process was illustrated in Figure 2.

Table 1. The ratio and strength of each component in the raw material of polymer grouting.

Formulation Raw Material Source Mass (%) Strength

Isocyanate MDI-50

Wanhua, Yantai,
China

46.9 Enhancing the flexibility and elongation.

Polyols Polyether N220 43.6
Reacting with diisocyanates, resulting in

flexible, hydrolysis-resistant,
heat-resistant linear polyurethanes.

Foaming agent
Physical foaming
agent HCFC-141b 6.2

Low thermal conductivity in gases and
highly compatible with polyols and

isocyanates.
Chemical foaming

agent water 1.4 Low cost, non-toxic, non-flammable, and
no adverse effects on the ozone layer.

Catalyst Catalytic agent A33 1.4
Causing the initial viscosity increasing

rapidly, enhancing the stability and
flexibility.

Foam stabilizers Foam stabilizer
AK8806 0.5 Good defoaming and foaming function

and excellent thermal stability.
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2.2. Free Expansion Test

As shown in Figure 3 using a 62 mm diameter cylinder marked with a scale, we
added the reactive raw materials in specified ratios at room temperature to conduct the
free expansion experiment. The initial height of polyurethane mixture in the cylinder is
represented by h0. During the expansion, we continuously measured and recorded the
height and temperature of the grout, enabling us to calculate the volume expansion ratio
and density changes. The shape of the grouting materials undergoes changes over time,
with the volume initially approximated as a cylinder during the early stage of expansion.
As the grouting materials expands to a certain extent, its outline becomes more prominent,
and the upper convex part can be approximated as hemispherical [25]. Therefore, the
volume expansion ratio of the grouting materials in both stages is as follows:

φ =


πr2h1(t)

πr2h0
πr2h1(t)+ 2

3 πr2[h(t)−h1(t)]
πr2h0

(1)
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where r is radius of the cylinder, h(t) is the height from the bottom of the container to the
highest point of the grouting at time t, and h1(t) is the height of the grouting cylinder at
time t.
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The density of the grout at different times is determined by dividing its mass by the
volume of expansion. Based on the energy balance equation, this experimental data lays
the foundational groundwork for the subsequent inversion of the kinetic parameters of the
polyurethane grout.

2.3. Chemical Reaction Kinetics Model

The expansion process of polyurethane related to chemical reactions is complex,
involving several chemical reactions and intermediate products. It primarily encompasses
two key chain growth reactions: the gelation reaction between isocyanate and hydroxyl
groups, and the foaming reaction where isocyanate interacts with water. The chemical
reaction can be represented as follows:

R − NCO + R′ − OH → R − NH −

O
∥
C − O − R′ (2)

2R − NCO + H2O → R − NH −

O
∥
C − NH − R + CO2 ↑ (3)

To understand the foaming mechanism of polyurethane grout, it is essential to analyze
the conversion rate and residual concentrations of reactants over time. This analysis
enables the correlation of density, viscosity, and other physical parameters with the reactant
concentrations. Developing a detailed kinetic model of the polyurethane grout is, therefore,
crucial, with a focus on key parameters, such as pre-factor and activation energy. The
reaction rates for both gelation and foaming are effectively determined by the changing
concentrations of hydroxyl groups and water. Based on the principles of the Arrhenius
equation, the kinetic equations for these reactions in the polymer paste are as follows [26,27]:

dXOH

dt
= AOH · exp(−EOH

RT
) · C0

OH · (1 − XOH) · (
C0

NCO

C0
OH

− 2
C0

W
C0

OH
XW − XOH) (4)

dXW

dt
= AW · exp(−EW

RT
) · C0

OH · (1 − XW) · (
C0

NCO

C0
OH

− 2
C0

W
C0

OH
XW − XOH) (5)

where XOH is the conversion rate of the hydroxyl component. AOH is the pre-exponential
factor of the gel reaction, m3/g equiv/s. EOH is the activation energy of the gel reaction,
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J/g mol. R is the ideal gas constant. T is the current temperature, K. C0
OH

is the molar
concentration of the hydroxyl component at the initial time, mol/m3. C0

NCO
is the molar

concentration of the isocyanate component at the initial time, mol/m3. C0
W

is the initial
molar concentration of the water component, mol/m3. XW is the conversion rate of the
water component. AW is the pre-exponential factor of the foaming reaction, m3/g equiv/s.
EW is the activation energy of the foaming reaction, J/g mol.

For different chemical reactions, such as the gel reaction and foaming reaction of
polymer grout, as well as polymer grout of different components, the pre-factor and
activation energy are different, which usually means that the pre-factor and activation
energy are calculated and solved by experiments [8]. In this paper, the inversion method
was adopted to identify the pre-factor and activation energy of self-made polymer grouting
materials. Based on the measured temperature and density data, the method used a particle
swarm optimization algorithm to invert the chemical reaction kinetic parameters of polymer
grouting, with fewer tests and high accuracy.

2.4. Energy Balance Equation

Both the gelation reaction and foaming reaction are exothermic reactions, while the
physical foaming agent absorbs heat due to evaporation. The energy balance equation of
expanding polyurethane grout under adiabatic condition is as follows [28]:

[CP + rCO2 CCO2 + rWCW + rBGCBG + rBLCBL]
dT
dt

=

[
(−∆H)OHCOH,0

ρP

]
dXOH

dt
+

[
(−∆H)WCW,0

ρP

]
dXW

dt
− λ

(
− drBL

dt

)
(6)

where CP is the heat capacity of polymer grouting, CCO2 is the heat capacity of carbon
dioxide, CW is the heat capacity of water, CBG is the heat capacity of the gaseous physical
foaming agent, CBL is the heat capacity of the liquid physical foaming agent, rCO2 is the
mass fraction of carbon dioxide, rW is the mass fraction of water, rBG is the mass fraction of
the gaseous physical foaming agent, ∆HW is the heat of the foaming reaction, and λ is the
heat of the evaporation and absorption of the physical foaming agent.

2.5. Material Properties of Polyurethane

(1) Density model

Polyurethane grout can be classified as a macroscopically homogeneous liquid, en-
compassing two distinct phases: a liquid phase and a gas phase. The gaseous components
primarily originate from the evaporation of the physical blowing agent and the generation
of carbon dioxide, factors which significantly contribute to alterations in density. The liquid
phase comprises both the reactants and the unreacted substances, such as polyurethane
and the liquid physical foaming agent that is dissolved in the mixture. According to
references [6,29], the density of this system is expressed as follows:

ρ =
1 + r0

W + r0
BL

XW
RgTr0

W
PMW

+ rBGRT
PMB

+ rBL
ρBL

+ rW
ρW

+ 1
ρP

(7)

where r0
W

is the initial mass fraction of water, r0
BL

is the initial mass fraction of physical
foaming agent, Rg is the ideal gas constant, rBG is the mass fraction of the gaseous physical
foaming agent, rBL is the mass fraction of the liquid physical foaming agent, rW is the mass
fraction of water, MW is the molar mass of water, MB is the molar mass of the physical
foaming agent, ρBL is the density of the liquid physical foaming agent, ρW is the density of
water, and ρP is the density of the polymer mixture.

(2) Viscosity model
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The viscosity change in polymer grouting can usually be described by the Castro–
Macosko model [30], as follows:

µ f (T, XNCO) = µ∞ exp(
Eµ

RT
) · (

XNCO,gel

XNCO,gel − XNCO
)
(a+bXNCO+cX2

NCO)

(8)

where XNCO,gel is the conversion rate of isocyanate gel, µ∞ and Eµ

R are the coefficients, and
a, b, and c are the viscosity model coefficients, with values of 1.5, 1, and 0, respectively.

(3) Thermal conductivity

The equation for the thermal conductivity uses an empirical density-dependent ex-
pression obtained by Marciano based on Harper’s test [31,32]. The thermal conductivity
formula is as follows:

λF =

{
8.7006 × 10−8ρ2

F + 8.4674 × 10−5ρF + 1.16 × 10−2 ρF ≥ 48kg/m3

9.3738 × 10−6ρ2
F − 7.3511 × 10−4ρF + 2.956 × 10−2 ρF < 48kg/m3 (9)

where λF is the thermal conductivity of the grouting, and ρF is the density of the grouting.

(4) Solubility determination of HCFC-141b

Following the methodology outlined by S.A. Baser [26], experiments were conducted
to assess the emulsification temperature of the physical foaming agent at varying molar
fractions, the results of which are illustrated in Figure 4. A linear relationship between the
molar fraction xBL of HCFC-141b within the mixture and the emulsification temperature TB
was established through fitting. The linear correlation coefficient was found to be 0.91488.
The linear correlation coefficient between the variables in the fitting function indicates
a strong fit. By utilizing the first-order function of the mole fraction in relation to the
emulsification temperature, we can further elucidate the solubility model of HCFC-141b,
as follows:

drBL
dt =

{
116.9
700 · −0.01078

(0.01078T−2.62831)2 · dT
dt T ≥ TBL,0

0 T < TBL,0
(10)
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2.6. Identification of Pre-Exponential Factor and Activation Energy

The particle swarm optimization (PSO) algorithm, initially introduced by Kennedy and
Eberhart, is a stochastic search algorithm renowned for its straightforward implementation
and robust global search capability [33]. Utilizing this algorithm, based on the measured
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temperature and density data, the pre-exponential factor and activation energy within
the kinetic equation of polymer grouting material’s chemical reaction are identified. The
procedural steps are as follows:

(1) Define the population size n, the particle search space range and dimension d, learning
factors c1 and c2, the iteration count t, and the convergence accuracy ε. The search
space encompasses the pre-exponential factor and activation energy.

(2) Initialize the position and velocity of each particle in the population. Positions are
randomly set within the estimated ranges for the pre-exponential factor and activation
energy, expressed as xi

t = (AOH, EOH, AW, EW), i = 1: n. Particle velocities are also
randomly generated in the form of vi

t = (vi1, vi2, vi3, vi4), i = 1: n, applicable to
each particle.

(3) Initialize the individual and group historical optimal values for each particle. Initial
parameters for the polyurethane grouting material, such as the initial concentration
of the hydroxyl C0

OH
, isocyanate C0

NCO
, and water component C0

W
, the initial mass

fraction of the physical foaming agent r0
BL

, the initial density of the grout ρ0
P

and
its initial temperature T0, are inputted. In the process of steps (1)–(3) above, the
parameter values that need to be entered and set are shown in Table 2.

Table 2. Particle swarm algorithm input value setting.

Parameters Value Unit

Particle swarm
parameter

n The population size 60 /
t The iteration count 50 /

c1 Learning factors 0.5 /
c2 0.5 /

Material
parameter

C0
OH

The initial concentration of the
hydroxyl 381.33 mol/m3

C0
NCO

The initial concentration of the
isocyanate 3401.71 mol/m3

C0
W

The initial concentration of the
water component 713.06 mol/m3

r0
BL

The initial mass fraction of the
physical foaming agent 0.06726 /

ρ0
P The initial density of the grout 893.49 kg/m3

T0 The initial temperature 301.15 K

The forward modeling serves as a key tool for resolving the chemical reaction kinetics
and heat balance equations of polyurethane grout. Through this approach, we obtain
time-dependent conversion rate of grout components and the variations in temperature
at different times. The density model is then employed to calculate the grout density. To
evaluate the fitness of the particles fit, we use the sum of the absolute deviations between
the calculated and measured values of grout temperature and density at various time
points. The formula for this calculation is as follows [34]:

f t
i =

m

∑
k=1

∣∣Tk − T′
k
∣∣+ l

∑
j=1

∣∣∣Dj − D′
j

∣∣∣ (11)

where Tk is the test temperature value, Tk
′ is the calculated temperature value, Dj is the test

density value, Dj
′ is the calculated density value, k is the sequence number of temperature

recording points, m is the total number of temperature recording points, j is the sequence
number of density recording points, and l is the total number of density recording points.

In accordance with the aforementioned methodology, the initial fitness value of each
particle is calculated. This initial fitness value, denoted as f i

0, is assigned as the initial
historical optimal fitness value f pi for each particle. Among these, the minimum value is
selected as the initial historical optimal fitness value f g for the group.
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(4) The iterative optimization process continues until either the maximum number of
iterations is reached or the optimal historical fitness value of the searched population
satisfies the predefined accuracy criteria. Upon completion, the parameter set corre-
sponding to the historical optimal fitness of the population represents the inversely
derived chemical reaction kinetic parameters. An average of 10 inversion outcomes
is considered as the final result. The initial parameter value ranges and the final
inversion result are shown in Table 3.

Table 3. Inversion results of the chemical reaction kinetics parameters.

Kinetic
Parameters

The Range of the Initial Value Inversion Parameter
Values Unit

Minimum Maximum

AW 20.996 30.776 25.571 m3/g equiv/s
EW 35,810 40,120 38,998.51 J/g mol

AOH 2.0348 3.0048 2.471 m3/g equiv/s
EOH 35,400 39,400 37,015.27 J/g mol

3. Numerical Simulation of Polyurethane Grout Foaming

In the forward modeling of the polyurethane grout expansion process, the following
assumptions are made:

(1) The polyurethane grout is treated as a homogeneous fluid.
(2) The grout maintains uniform mixing, ensuring consistent reaction rates and den-

sity throughout.
(3) The reaction vessel is assumed to be thermally insulated.
(4) Heat exchange between the grouting and the surrounding air is neglected.
(5) The generated gas is assumed to completely enter the liquid mixture.

3.1. Flow Control Equations

Equation (12) is a mass conservation equation. The density of the expanding polyurethane
grout is subject to changes in both its temporal and spatial dimensions. These changes
conform to the basic principle of mass conservation, expressed as follows:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (12)

where ρ is the density, u is the velocity vector, and u, v, and w are the velocity components
of the velocity vector u in the x, y, and z directions, respectively.

The grout satisfies the following momentum conservation equation in the expan-
sion process: 

∂(ρu)
∂t +∇ · (ρuu) = ∇ · (µ∇u)− ∂p

∂x + Su
∂(ρv)

∂t +∇ · (ρvu) = ∇ · (µ∇v)− ∂p
∂y + Sv

∂(ρw)
∂t +∇ · (ρwu) = ∇ · (µ∇w)− ∂p

∂z + Sw

(13)

where t is time, ∇ is the symbol of divergence, p is the pressure on the fluid element,
µ is viscosity, and u, v, and w are the components of the velocity vector u in the x, y,
and z directions, respectively. Su, Sv, and Sw are the source terms in the x, y, and z
directions, respectively.

Given the presence of both exothermic reactions and endothermic evaporation, ad-
herence to the energy conservation equation is essential, and it can be represented by the
following formula:

∂

∂t
(ρE′) +∇ · [u(ρE + p)] = ∇ · (λ∇T) + QE (14)
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where the source term QE of the energy equation is used to describe the heat release of
the chemical reaction of the polyurethane polymer grouting and the heat absorption of
the physical foaming agent, which represents the heat generation rate of the internal heat
source. The formula is as follows:

QE = αF ·
ρF

ρ0
F
· (∆HOH · C0

OH · dXOH

dt
+ ∆HW · C0

W · dXW

dt
− ∆hV,BA · ρ0

F ·
drBL

dt
(15)

where E is energy, E′ is the average energy, λ is the weighted average of thermal con-
ductivity, αF is the volume fraction of polyurethane polymer grouting, ρF is the polymer
density, and ∆HW and ∆HOH are the reaction heats of the foaming reaction and the gel
reaction, which are 8.6 × 104 J/g equiv and 7.705 × 104 J/g equiv [27], respectively.
∆hV,BA is the endothermic evaporation of the physical foaming agent, and the value is
2.068 × 105 J/kg [28].

In order to determine the concentration of the water and hydroxyl components, as
well as the gasification rate of the physical blowing agent, three customized scalar transport
equations are formulated as follows [29]:

∂
∂t (ραFXOH) +∇ · (ραFXOHu) = ραFQKim,OH
∂
∂t (ρFαFXW) +∇ · (ρFαFXWu) = ρFαFQKim,W
∂
∂t (ρFαFLgas) +∇ · (ρFαFLgasv) = ρFαFQBA

(16)

where the source terms QKin,OH, QKim,W, and QBA represent the conversion of the hydroxyl
component and water component and the solubility of the physical blowing agent in
polymer grouting with temperature and pressure, respectively. According to the kinetic
Equations (4) and (5) and the solubility formula of blowing agent (10), the expression of
the source terms QKin,OH, QKim,W, and QBA can be obtained, respectively, and expressed
as follows:

QKin,OH = AOH · exp(− EOH
RT ) · c0

OH .(1 − XOH) · (
c0

NCO
c0

OH
− 2 c0

W
c0

OH
XW − XOH)

QKin,W = AW · exp(− EW
RT ) · c0

OH · (1 − XW) · ( c0
NCO
c0

OH
− 2 c0

W
c0

OH
· XW − XOH)

QBA =

{
116.9
700 · 0.01078

(0.01078T−2.62831)2 · dT
dt T ≥ T0

BL

0 T < T0
BL

(17)

Please refer to Appendix A for a comprehensive explanation of the parameters dis-
cussed in this paper.

3.2. Verification of Numerical Simulation

Figure 5 illustrates the numerical calculation process for the expansion behavior of
polyurethane grouting, taking into account the influence of the chemical components.
An open cup with filling grout was initially used as the physical model. The upper
boundary is defined as the outlet, while the side and bottom surfaces are designated as wall
boundaries. The initial volume and density of polyurethane grout are known as V0 and
ρ0, respectively. The finite volume method is employed to discretize the solution domain.
For this study, secondary development of the commercial software ANSYS Fluent 2021 R1
was undertaken, which involved incorporating source terms into the energy equations and
developing specific transport equations. The governing equations were solved utilizing the
SIMPLE algorithm, second-order upwind scheme, and first-order time scheme. Figure 6
illustrates the simulated process of grout expansion under the specified working conditions.
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Comparative analysis between the calculated and measured values of the grout density
and temperature reveals significant insights. Figure 7 demonstrates that the grouting
density diminishes over time, while the temperature increases and eventually stabilizes. It
is evident from Figure 7a that the calculated densities are in substantial agreement with
the experimental results. The final density calculation yielded 23.87 kg/m3, compared
to the experimental finding of 25.47 kg/m3, indicating a relative error of 6.26%. The
temperature at the center of the polyurethane grout was measured and compared to the
experimental data, as shown in Figure 7b. The calculated temperature consistently matched
the experimental data, with a final calculated temperature of 377.15 K, only 0.33% higher
than the highest measured temperature of 376.90 K in the tests. The average relative error
between the calculated and experimental results is 2.25%, indicating a strong agreement
between them. The validity and applicability of the simulation model are verified.
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4. Influence of Composition Ratio on Expansion Behavior

In this analysis, the focus was on evaluating the effects of critical components on
the expansion characteristics of polymer grouting at room temperature and atmospheric
pressure. Variables, such as isocyanate and polyol concentrations, the mass fraction of
the physical foaming agent, and the concentration of the chemical foaming agent, were
examined. The details of all numerical cases pertaining to this study are presented in
Table 4.

Table 4. Numerical cases.

Serial Number Variable C0
NCO/(mol/m3) C0

OH/(mol/m3) r0
BL C0

W/(mol/m3) C0
NCO:C0

OH:C0
W

1 Initial condition 3401.71 381.33 0.06302 713.06 1:0.112:0.21
2

C0
NCO

1360.68
381.33 0.06302 713.06

0.4:0.112:0.21
3 2041.03 0.6:0.112:0.21
4 2721.37 0.8:0.112:0.21
5

C0
OH 3401.71

229.39
0.06302 713.06

1:0.067:0.21
6 305.06 1:0.090:0.21
7 457.59 1:0.135:0.21
8

r0
BL 3401.71 381.33

0
713.06 1:0.112:0.219 0.03151

10 0.09453
11

C0
W 3401.71 381.33 0.06302

356.53 1:0.112:0.105
12 499.14 1:0.112:0.147
13 641.75 1:0.112:0.189
14 784.37 1:0.112:0.231

4.1. Effect of Isocyanate Concentration

Figure 8 presents the evolution of the volume expansion ratio and density over time un-
der various isocyanate concentration conditions, while Table 5 lists the corresponding final
volume expansion ratio and density value. It is evident that the isocyanate concentration
exerts a pronounced effect on the expansion ratio of the grout. At isocyanate concentrations
of 1360.68, 2041.03, 2721.37, and 3401.71 mol/m3, the expansion multiple change rates were,
respectively, measured at 0.2276/s, 0.3483/s, 0.5426/s, and 0.6388/s. The resulting final
volume expansion multiples were 32.04, 33.36, 34.44, and 35.17, with stabilization occurring
at 390 s, 180 s, 165 s, and 150 s, respectively. The latter two conditions exhibited a similar
volume expansion rate and final ratio, with the final volume expansion ratio decreasing
from an initial 1.32 to 0.73. This trend indicates that an increase in isocyanate concentration
led to a higher expansion rate in the grout, an increased final expansion ratio, and a shorter
stabilization time. However, a notable observation is the gradually decreasing incremental
increase in the grout expansion at a higher isocyanate concentration, implying an upper
limit to the effective concentration of isocyanate in the reaction system. When this limit
is approached, further increases in isocyanate concentration do not significantly alter the
final expansion multiple of the grout volume.

The reason behind this pattern lies in the fact that higher isocyanate concentrations
enhance the interaction probability between the chemical foaming agent and isocyanate [29],
leading to increased carbon dioxide gas production and heat release, thereby accelerating
the expansion rate of the grout and raising the final volume expansion multiple. However,
once the isocyanate concentration reaches a saturation point, further increases cease to have
a substantial impact on the final volume expansion ratio of the grout.
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Figure 8. The effect of isocyanate concentration on the expansion multiple and density of high
polymer grouting: (a) expansion multiple; (b) density.

Table 5. The final volume expansion multiple and final density of the grout at different isocyanate con-
centrations.

Serial Number 1 2 3 4

C0
NCO/(mol/m3) 1360.68 2041.03 2721.37 3401.71

Final volume expansion multiple 32.04 33.36 34.44 35.17
Final density/(kg/m3) 25.32 24.34 23.58 23.07

Increase in final volume expansion multiple / 1.32 1.08 0.73

4.2. Effect of Polyol Concentration

Figure 9 displays the volume expansion ratio and density of polyurethan grout over
time under varying polyol concentrations, with the final values presented in Table 6. The red
curve representing 381.33 mol/m3 in Figure 9 is covered by other lines because the volume
expansion ratio and density of polyurethane slurry at different polyol concentrations
are similar. The analysis reveals that under four distinct working conditions, the volume
expansion rate, stabilization time, and final expansion multiple of the polyurethan grout are
comparatively uniform. Initially, the expansion rate is approximately 0.50/s, decelerating
around 50 s, and stabilizing by 130 s, with the final expansion multiple averaging around 33.
Overall, the influence of the polyol concentration on the grout expansion process appears
to be minimal.
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Table 6. The final volume expansion multiple and final density of the grouting under different
polyol concentrations.

Serial Number 1 2 3 4

C0
OH/(mol/m3) 228.79 305.06 381.33 457.59

Final volume expansion multiple 32.46 33.02 33.02 33.28
Final density/(kg/m3) 28.01 27.53 27.53 27.32

This phenomenon is primarily attributed to the role of polyols in the gel reaction of
polyurethane materials. While an increased concentration of polyols can enhance the heat
released during the reaction, thereby impacting the total volume change in the grout, it does
not lead to additional gas production. Since the volume expansion in the reaction system
predominantly arises from the carbon dioxide produced during the foaming reaction and
the gasification of the physical foaming agent, variations in polyol concentration do not
bring about substantial changes in the volume expansion ratio of the grout.

4.3. Effect of the Mass Fraction of the Physical Foaming Agent

Figure 10 presents the grout volume expansion ratio and density trends over time
under various physical foaming agent mass fractions, with the final results detailed in
Table 7. The data clearly indicates that the physical foaming agent significantly affects the
grout expansion process. In the absence of the agent, the volume expansion ratio of the
grout changes at a rate of around 0.4477/s, achieving a final ratio of 21.71 and stabilizing
at about 59 s. When the mass fractions of the physical foaming agent are set at 0.03151,
0.06302, and 0.09453, the expansion rate of the grout changes to 0.4758/s, 0.6437/s, and
0.6544/s, respectively, with final volume expansion multiples of 26.70, 34.14, and 42.87.
The increase in the final expansion multiple is directly proportional to the quantity of the
physical foaming agent. Stabilization times under these conditions are observed at 78 s,
86 s, and 100 s, respectively. When the mass fraction reaches 0.09453, it approaches the
maximum solubility of the physical foaming agent in the mixture at room temperature.
Here, the final expansion ratio is about twice that of grout without the agent, and the
stabilization time is approximately 1.7 times longer. In comparison, the grout without the
physical foaming agent shows a slower expansion rate and a lower final expansion ratio,
yet it stabilizes more quickly. An increase in the mass fraction of the agent results in a
gradual rise in the expansion rate and final expansion multiple, but with a longer time to
reach stabilization.
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Table 7. The final value of the volume expansion multiple and stabilizing time of the grouting under
different mass fractions of the physical foaming agent.

Serial Number 1 2 3 4

r0
BL 0 0.03151 0.06302 0.09453

Final volume expansion multiple 21.71 26.70 34.28 42.87
Increase in final volume expansion

multiple / 4.99 7.58 8.59

Stabilizing time/s 59 78 86 100

The behavior can be attributed to the fact that an increased mass fraction of the
physical foaming agent leads to a proportional rise in gas production from its gasification,
enhancing the volume expansion ratio of the grout. The endothermic gasification process
of the physical foaming agent means that larger additions result in more heat absorption,
which slows the gasification process and reaction rates, thus delaying the completion of the
chemical reaction and the stabilization time of the grout volume.

4.4. Effect of the Chemical Foaming Agent Concentration

Figure 11 shows the volume expansion ratio and density of grout over time under vary-
ing concentration of the chemical foaming agent, with Table 8 detailing the final expansion
ratio and densities. The concentration of the chemical foaming agent under four differ-
ent conditions were 356.53 mol/m3, 499.14 mol/m3, 641.75 mol/m3, and 784.37 mol/m3.
The corresponding rates of change in the volume expansion rate were 0.333/s, 0.4887/s,
0.8702/s, and 0.9236/s, with final expansion ratios of 21.84, 26.66, 37.75, and 39.32, respec-
tively. The reactions stabilized at 62 s, 54 s, 44 s, and 42 s, respectively. It is observed that as
the concentration of the chemical foaming agent increases, there is a corresponding acceler-
ation in the change rate of the grout expansion ratio, an increase in the final expansion ratio,
and a decrease in the stabilization time. Similar curves for the two highest concentrations
suggest an upper limit to the concentration of the chemical foaming agent. When this
threshold is approached, further increases in concentration cease to significantly influence
the final expansion ratio of the grout. The volume expansion multiple curve under varying
conditions features a notable turning point, marking the moment when the volume change
stabilizes. Prior to this point, the grout volume expansion multiple increases approximately
linearly with time.
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Table 8. The final volume expansion multiple and density of the grouting at the concentration of the
chemical foaming agent.

Serial Number 1 2 3 4

C0
W/(mol/m3) 356.53 499.14 641.75 784.37

Final volume expansion multiple 21.84 26.66 37.75 39.32
Final density/(kg/m3) 37.12 30.42 21.49 20.66
Increase in final volume expansion multiple / 4.82 11.09 1.57
Reduction in final density/(kg/m3) / 6.70 8.93 0.83

This phenomenon is explained by the fact that increasing the concentration of the
chemical foaming agent accelerates the rate of carbon dioxide formation in the foaming
reaction, and the increased heat release from reaction hastens the gasification rate of the
physical foaming agent. This results in a gradual increase in the rate of change in the
expansion ratio. Once the chemical foaming agent concentration reaches a certain level,
further increases lead to a diminishing change in the volume expansion ratio of grout [35].

4.5. Analysis of the Influence of Various Factors on the Expansion Performance of
Polymer Grouting

Figure 12 presents the influence of changes in each component concentration on the
expansion ratio of the grout under experimental conditions. It clearly shows that the mass
fraction of the physical foaming agent and the concentration of the chemical foaming agent
have the most pronounced effect on the final volume expansion ratio of the polyurethane
grout. The expansion ratios for these components span from 21.71 to 42.87 for the physical
foaming agent and 21.84 to 39.32 for the chemical foaming agent, with influence ranges
of 21.16 and 17.43, respectively. The isocyanate concentration has a relatively smaller
influence, with an expansion ratio range of 32.04 to 35.17 and an influence range of 5.68.
The polyols concentration impacts the expansion ratio the least, with the upper limits of
volume expansion ratio under the test conditions for each component being 42.87, 33.28,
35.17, and 39.32, respectively.

Materials 2024, 17, x FOR PEER REVIEW 17 of 21 
 

 

smaller influence, with an expansion ratio range of 32.04 to 35.17 and an influence range 

of 5.68. The polyols concentration impacts the expansion ratio the least, with the upper 

limits of volume expansion ratio under the test conditions for each component being 42.87, 

33.28, 35.17, and 39.32, respectively. 

 

Figure 12. Sensitivity analysis of various factors on the final expansion multiple. 

In order to analyze the sensitivity of the grout expansion ratio to the changes in con-

centration of different components, we introduced j-iR  as the rate of change in the grout 

volume expansion ratio when the concentration of different components changed. The 

calculation formula is as follows: 

j i

j-i

i

S S
R

S

−
=  (18) 

where j-iR  is the change rate of the expansion ratio of the grout; jS  is the expansion 

ratio of the grout after the component concentration increases; iS  is the expansion ratio 

of the grout before the component concentration increases.  

According to the formula, the sensitivity of the grout expansion ratio to the concen-

tration of various factors is shown in Table 9. 

Table 9. Grout expansion ratio sensitivity factor to the component. 

Variable The Changes in the Component Concentration  Unit j-iR
 (%) 

0

NCOC  

1360.68→2041.03 

mol/m3 

4.12 

2041.03→2721.37 3.24 

2721.37→3401.71 2.10 

1360.68→3401.71 9.76 

0

OHC  

229.39→305.06 

mol/m3 

1.73 

305.06→381.33 / 

381.33→457.59 0.79 

229.39→457.59 2.53 

0→0.03151 / 22.98 

Figure 12. Sensitivity analysis of various factors on the final expansion multiple.

In order to analyze the sensitivity of the grout expansion ratio to the changes in
concentration of different components, we introduced Rj−i as the rate of change in the
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grout volume expansion ratio when the concentration of different components changed.
The calculation formula is as follows:

Rj−i =

∣∣∣∣Sj − Si

Si

∣∣∣∣ (18)

where Rj−i is the change rate of the expansion ratio of the grout; Sj is the expansion ratio of
the grout after the component concentration increases; Si is the expansion ratio of the grout
before the component concentration increases.

According to the formula, the sensitivity of the grout expansion ratio to the concentra-
tion of various factors is shown in Table 9.

Table 9. Grout expansion ratio sensitivity factor to the component.

Variable The Changes in the Component
Concentration Unit Rj-i (%)

C0
NCO

1360.68→2041.03

mol/m3

4.12
2041.03→2721.37 3.24
2721.37→3401.71 2.10
1360.68→3401.71 9.76

C0
OH

229.39→305.06

mol/m3

1.73
305.06→381.33 /
381.33→457.59 0.79
229.39→457.59 2.53

r0
BL

0→0.03151

/

22.98
0.03151→0.06302 28.39
0.06302→0.09453 25.06

0→0.09453 97.47

C0
W

356.53→499.14

mol/m3

22.07
499.14→641.75 41.60
641.75→784.37 4.16
356.53→784.37 80.04

These results indicate that the mass fraction of the physical foaming agent and the
concentration of the chemical foaming agent are the most influential factors in determining
the final volume expansion ratio of the grout, followed by the isocyanate concentration.

5. Conclusions

This study focuses on a self-developed polyurethane polymer material, utilizing
particle swarm optimization to identify the chemical reaction kinetic parameters of the
grout based on free expansion test results. A chemical reaction model consistent with
these results was established. Subsequent simulation analysis under different working
conditions explored the impact of the composition ratio of isocyanate, polyol, and physical
and chemical foaming agents on the expansion performance of the polyurethane grouting
material. The key findings include the following:

(1) The final volume expansion ratio of the polymer grouting increases with increased
concentration of isocyanate and the physical and chemical foaming agent within
the experimental range. Notably, the mass fraction of the physical foaming agent
and the concentration of the chemical foaming agent significantly affect the final
expansion ratio. The sensitivity of the expansion ratio to the component proportion
was evaluated by analyzing the rate of change in final volume expansion multiple. The
sensitivity coefficients for physical and chemical blowing agents were 97.47 and 80.04,
respectively, indicating a significant impact. In contrast, the effect of isocyanate was
relatively modest, with a sensitivity coefficient of 9.76, while the polyol concentration
had minimal impact, with a sensitivity coefficient of 2.53.

(2) The expansion rate of the grout progressively increases with a higher concentration of
isocyanate and chemical foaming agent. However, the incremental rise in the final
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volume expansion ratio diminishes with the same concentration increment. Each of
these components has an upper limit concentration. In our study, the upper limits
of concentration ratio for isocyanate, polyol, and chemical the blowing agent are
1:0.112:0.231, respectively. Beyond this threshold, there are minimal changes in the
final volume expansion ratio.

(3) The volume increase in the grout is directly proportional to the mass fraction increase
in the physical foaming agent. The solubility of this agent at a given ambient tempera-
ture sets its maximum addition amount and, consequently, its maximal contribution
to the volume expansion ratio of the grout. When the mass fraction of the physical
foaming agent is 0.09453, the solubility reaches its maximum.

This research provides a preliminary insight into the influence of the composition
ratio on the expansion characteristics of the grouting. This was preliminarily studied for
self-made polyurethane polymer grouting materials. Future studies will delve into the
influence of environmental pressure, temperature, and multi-factor coupling on the expan-
sion process of polyurethane materials, aiming to guide the customization of polyurethane
grout with specific expansion performance in geotechnical engineering.
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Appendix A

Table A1. Formula symbol identification.

Formula Parameter Definition

The kinetic equations

XOH The conversion rate of the hydroxyl component
AOH The pre-exponential factor of the gel reaction
EOH The activation energy of the gel reaction

R The ideal gas constant
T The current temperature

C0
OH

The molar concentration of the hydroxyl component at the initial time
C0

NCO
The molar concentration of the isocyanate component at the initial time

C0
W

The initial molar concentration of the water component
XW The conversion rate of the water component
AW The pre-exponential factor of the foaming reaction
EW The activation energy of the foaming reaction
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Table A1. Cont.

Formula Parameter Definition

Energy balance equation

CP The heat capacity of the polymer grouting
CCO2 The heat capacity of carbon dioxide
CW The heat capacity of water
CBG The heat capacity of the gaseous physical foaming agent
CBL The heat capacity of the liquid physical foaming agent
rCO2 The mass fraction of carbon dioxide
rW The mass fraction of water
rBG The mass fraction of the gaseous physical foaming agent

∆HW The heat of the foaming reaction
λ The heat of the evaporation and absorption of the physical foaming agent

Material properties of
polyurethane

r0
W

The initial mass fraction of water
r0

BL
The initial mass fraction of the physical foaming agent

Rg The ideal gas constant
rBG The mass fraction of the gaseous physical foaming agent
rBL The mass fraction of the liquid physical foaming agent
rW The mass fraction of water
MW The molar mass of water
MB The molar mass of the physical foaming agent
ρBL The density of liquid physical foaming agent
ρW The density of water
ρP The density of the polymer mixture

XNCO,gel The conversion rate of the isocyanate gel
λF The thermal conductivity of the grout
ρF The density of the grout

The particle swarm
optimization algorithm

n The population size
d The particle search space range and dimension
c1 Learning factors
c2
t The iteration count
ε The convergence accuracy

ρ0
P

The initial density of the grout
T0 The initial temperature
Tk The test temperature value
Tk

′ The calculated temperature value
Dj The test density value
Dj

′ The calculated density value

Flow control equations

ρ The density
u The velocity vector

u, v, w The velocity components of velocity vector u in the x, y, and z directions
t Time
∇ The symbol of divergence
p The pressure on the fluid element
E Energy
E′ The average energy
λ The weighted average of thermal conductivity
αF The volume fraction of the polyurethane polymer grout

∆hV,BA The endothermic evaporation of the physical foaming agent
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