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Abstract: The effects of the sintering duration and powder fraction (Ag-coated Cu/SnAgCu) on the
microstructure and reliability of transient liquid phase sintered (TLPS) joints are investigated. The
results show that two main intermetallic compounds (IMCs, Cu6Sn5 and Cu3Sn) formed in the joints.
The Cu6Sn5 ratio generally decreased with increasing sintering time, Cu powder fraction, and thermal
treatment. The void ratio of the high-Cu-fraction joints decreased and increased with increasing
sintering and thermal stressing durations, respectively, whereas the low-Cu-fraction counterparts
were stable. We also found that the shear strength increased with increasing thermal treatment time,
which resulted from the transformation of Cu6Sn5 and Cu3Sn. Such findings could provide valuable
information for optimizing the TLPS process and assuring the high reliability of electronic devices.

Keywords: thermal interface materials; intermetallic compounds; thermal cycling test; high-temperature
storage; shear strength

1. Introduction

In the electronics industry, transient liquid phase sintering (TLPS) is a common method
for bonding electronic components at a low processing temperature and pressure. During
sintering processes, the metal with a low melting point covers its high-temperature coun-
terparts [1–5]. Liquid–solid diffusion then occurs, leading to the formation of intermetallic
compounds (IMCs). TLPS of a Ag and Sn powder mixture was conducted to bond Cu sub-
strates and metalized Si chips [2]. Cu–Sn and Ag3Sn IMCs were found in the sintered joint.
The microstructure evolution and mechanical strength of the Ag/Sn/Cu TLPS joints during
aging were investigated [3]. It was found that almost no deterioration of the joints occurred
during the aging tests. Cu–Sn and Ag-Sn IMCs were also observed [3]. Recently, various TLPS
metallic couples have been proposed [6–11], but among those systems, Cu-Sn-Ag [12,13] and
Cu-Sn [14–17] are the most popular solders. These solder structures can ensure good thermal
conductivity and high mechanical strength [12–17]. However, the reliability issues related to
the void formation and brittle nature of such solders are still in need of consideration.

Additionally, the establishment of atomic-level bonds during liquid–solid diffusion
is a slow process compared to the rapid melting and solidification via traditional sol-
dering. TLPS thus is accompanied with a long bonding time [18–20]. Many approaches
have been employed to accelerate the sintering time such as high-temperature/pressure
bonding [19,21,22], incorporation of reactive additives [23–26], surface modification [27,28],
and electric/laser-assisted bonding [29–34]. For instance, Ramli et al. employed TiO2
particles to reduce the thickness of the interfacial IMCs for the enhancement of the shear
strength and hardness of the solder joints [24]. Bhogaraju et al. used a novel approach of
surface modifications to enhance the sinterability of the Cu flakes, which facilitated the
formation of a dense and close-packed structure [26]. An electroless nickel, palladium,
and immersion gold multilayer was also developed to enhance the bonding strength of
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BiTe-based modules [28]. A laser-assisted bonding technique was applied to minimize the
thermal damage to the electronic components [31]. A thinner IMC layer formed, and the
void volume was lower compared to that of the solders produced by a traditional reflow
process. However, this can increase the fabrication expenditure and generate challenges in
achieving a homogeneous mixture of the sintered pastes, limiting their commercialization.

In the semiconductor industry, Cu and Sn are widely considered as low-cost metals
in electronics [35,36]. The diffusion reactions forming IMCs can occur at a relatively low
temperature [37–41]. Such characteristics are beneficial for electronic packaging technology,
suppressing the risk of thermal damage to sensitive electronic devices. During Cu-Sn
sinter bonding, Cu6Sn5 and Cu3Sn IMCs commonly form in the sintered joints [42–44].
Such a process leads to the complete formation of a liquid phase of the low-melting-
temperature metal and IMC transformation. However, the sintered metals may remain,
which can degrade the bonding strength of the solder joints. To obtain the desired bonding
strength and fully sintered features, it is crucial to explore the sintering parameters and
material compositions.

The Cu-SnAgCu sintered joints can be adopted as the die attach layer for high-power
device packaging. Currently, pastes of Ag particles are commonly used for this layer [45–48].
Sputtered (111)-oriented Ag films are also under investigation [49–52]. Cu-Sn powders/pastes
may also serve as die attach materials because the Cu-Sn reaction rate is very fast and its
thermal conductivity is good. However, studies on the application of sintered Cu-SnAgCu
as a die attach layer and its bonding reliability are limited. In this study, fully sintered joints
were fabricated, and the effects of the Cu/Sn powder fraction and sintering time on the
microstructures and bonding strength of the sintered joints were then investigated. The
reliability was also correlated with the formation of voids and IMCs using high-temperature
storage (HTS) and thermal cycling tests (TCTs). This study offers a full understanding of the
bonding behaviors of different Cu powder fractions and sintering durations, which is essential
for the optimization of the fabrication process and assuring the good reliability of electronic
interconnects for packaging applications.

2. Materials and Methods

Ag-coated Cu (Cu94.0Ag6.0) and Sn-Ag-Cu solder (Sn96.5Ag3.0Cu0.5) powders with
diameters of 0.8~3.5 µm and 2~11 µm, respectively, were mixed with specified weight
fractions (50/50 and 40/60). During sinter bonding, the complete formation of the liquid
phase of the low-melting-temperature metal and IMC transformation are achieved. With
a high ratio of Cu powders, Cu powders may abundantly remain, which significantly
degrades the bonding strength of the solder joints. Therefore, the weight fractions of Cu
powders (50/50 and 40/60) were selected to explore the effects of sintering duration and
powder fraction on the microstructure and reliability of the sintered joints. In electronic
packaging, the sintering time is typically a few minutes at temperatures ranging from 200 ◦C
to 250 ◦C. Such a sintering duration can establish atomic-level bonds during liquid–solid
diffusion processes. Thus, in this study, the sintering temperature of 250 ◦C was maintained
for 5 or 10 min. They were then blended at a weight fraction of 85/15 to form a solder paste
for wetting. The TLPS pastes were then spread on various dies using a stainless steel sheet
and heated in an oven for 30 min. This pre-baking step served to volatilize and remove
the flux from the pastes. The schematics of the TLPS joints and sintering profile are shown
in Figure 1. The top dies consisted of a Cu under bump metallization (UBM), which was
sputtered on the Si substrates for connecting the dies with the solder, as shown in Figure 1a.
The samples were then hot-pressed to bond with Cu plates with a pressure of 12.68 MPa.
The sintering temperature was increased to 250 ◦C with a heat rate of 3.75 ◦C/min and
maintained at that temperature for a certain time (5 min or 10 min). After the sintering, the
samples were then cooled down to room temperature with a cooling rate of 1.5 ◦C/min.

The reliability of the sintered joints was assessed by HTS and TCTs. The HTS tests were
conducted at 150 ◦C for 1000 h, whereas the TCTs were performed at a temperature range
of −40 to 125 ◦C for 1000 cycles. The heating and cooling rates were 15 ◦C/min. In addition,
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the bonding strength of the samples before and after the HTS and TCTs was characterized
by shear tests. These tests aimed to provide insights into the reliability performance and
potential microstructural changes in the sintered joints under various environmental factors
that exist in electronic devices. The joints were then cross-sectioned and analyzed by an
optical microscope (OM). Scanning electron microscopy (SEM, JSM-7800F, JEOL Ltd., Tokyo,
Japan) and energy-dispersive X-ray (EDX, JSM-7800F, JEOL Ltd., Tokyo, Japan) analyses
were also performed to characterize the microstructures of the initial powders and IMC
compositions of the sintered joints.
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Figure 1. Schematic of the (a) TLPS joints and (b) sintering profile. The sintering temperature (250 ◦C)
was held for 5 or 10 min.

3. Results and Discussion

The microstructures of two initial powders were analyzed using SEM and EDX. The SEM
images and EDX spectra of the Ag-coated Cu (Cu94.0Ag6.0) and Sn96.5Ag3.0Cu0.5 powders are
shown in Figures 2 and 3, respectively. The size of the Ag-coated Cu powders ranged from 0.5
to 2.1 µm, whereas the Sn96.5Ag3.0Cu0.5 powders were spherical with a size range of ~0.2 to
5.2 µm. The former type of powder (Figure 2a) was more uniform than the latter (Figure 3a).
Additionally, the EDX mappings show the uniform distributions of the elements in the powders
and the high purity of the powders. As shown in Figure 2c,d, the Cu powders were dominant
and uniformly embedded with Ag. The Sn96.5Ag3.0Cu0.5 powders mostly consisted of spherical
Sn with some small amounts of Ag and Cu, as shown in Figure 3c–e. These powders were
then mixed with different weight fractions and sintered to form TLPS joints.
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The SEM images of the upper and lower locations of the sintered joints with their
elemental compositions are shown in Figures 4 and 5. Most of the Cu powders reacted
with the SnAgCu solders. Two main IMCs (Cu6Sn5 and Cu3Sn) and voids were detected in
the sintered joints. We also found the significant IMC transformation of Cu6Sn5 to Cu3Sn
as the sintering time was extended. The cross-sectional OM images of the sintered joints
are shown in Figure 6. Voids and IMCs can be clearly observed. The ratios of the voids
and IMCs observed in the cross-sections were acquired using image processing software
that the OM was equipped with. It can be seen that the voids are randomly distributed
in the sintered joints. The voids formed in the joints (Figure 6a,b) sintered for 5 min with
Cu powder fractions of 50% and 40% accounted for 1.72% and 1.13%, respectively. As
the sintering time was prolonged to 10 min, the ratio of the voids in the 50%-Cu-fraction
joints significantly decreased to 0.64% (Figure 6c). However, no obvious difference in the
void ratio was found in the joints sintered with 40% Cu powders (Figure 6d). Additionally,
the Cu6Sn5 and Cu3Sn IMCs could be clearly observed in the OM images (Figure 7). The
Cu6Sn5 and Cu3Sn IMCs are denoted by the light and dark grays, respectively. We also
detected some remaining Cu powder (orange) in the joints after the sintering (Figure 7a,c).
The remaining Cu powders in the joints indicated the incomplete sintering of the powders
with a 50% Cu fraction. However, no Cu powders were found in the 40%-Cu-fraction joints.

The Cu6Sn5 IMC accounted for 45.90% of the 50%-Cu-fraction joints sintered for 5 min
(Figure 6a). This proportion markedly increased to 73.22% as the weight fraction of the Cu
powders was reduced to 40% (Figure 6b). The ratio of the Cu6Sn5 IMC slightly decreased as
the sintering time was prolonged to 10 min (Figure 6c,d). Generally, the interaction between
Cu and Sn, forming the IMCs, increases with the increase in the reaction time [53,54];
however, the opposite trend was found here. This could be attributed to the effect of the
Cu/Sn fraction during sintering. The variations in the initial Cu/Sn amounts could result in
different formation mechanisms of the IMCs, hindering the increase in Cu6Sn5, but, rather,
benefitting the increase in Cu3Sn [55–57]. After the sintering reaction, almost all of the Sn
atoms reacted with Cu to form Cu6Sn5 and Cu3Sn. Yet, the supply of Cu could have been
from the unreacted Cu powders or from the Cu substrate, according to the reaction below:
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Cu6Sn5 + 9Cu → 5Cu3Sn (1)
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powders for 5 and 10 min. The remaining Cu powders and Cu6Sn5 and Cu3Sn IMCs are represented by
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The Cu6Sn5 IMCs prefer to transform into Cu3Sn IMCs after the SnAgCu solders are
consumed completely and the supply of Cu is still abundant.

The reliability evaluations on the sintered joints were performed using HTS and
TCT tests. The cross-sectional OM images of the sintered joints after the reliability tests
are shown in Figures 7–10. No Cu powders were found in the joints after 500 h or 1000 h
of HTS tests (Figures 7 and 8). This indicated that the remaining Cu powders completely
interacted with the solders and fully transformed to IMCs after the HTS tests. The thermal
energy of such a high temperature could facilitate Cu/Sn diffusion and fulfill the sintering
process, resulting in the complete transformation of the IMC. However, some Cu powders
still remained in the 50%-Cu-fraction joints when subjected to thermal cycling, as shown in
Figures 9a and 10a. The energy of the thermal cycling was insufficient to fully transform
the remaining Cu powders in the 50%-Cu-fraction joints.

Additionally, it can be seen that an IMC layer formed at the solder–Cu substrate
interface during solid state aging (Figures 7–10). The Cu6Sn5 IMCs near the interface
preferred to transform into Cu3Sn IMCs, according to the reaction (1). The abundant supply
of Cu could be from the Cu substrate. The systematic study of the IMC transformation at
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the solder–Cu substrate interface could be an interesting topic in the future. The ratios of
the Cu6Sn5 IMC at some specific periods of the reliability tests are shown in Figure 11. It
can be seen that the Cu6Sn5 ratio significantly decreased under HTS and TCTs, whereas the
Cu3Sn ratio showed the opposite trend (Figure 11a,b). This indicated that the Cu6Sn5 IMC
significantly transformed into the Cu3Sn IMC during the reliability tests. However, the IMC
ratios in the joints sintered for a longer time (10 min) remained almost unchanged during
the HTS and TCTs (Figure 11c,d). The Cu6Sn5 IMC almost reached its equilibrium state.
The results suggest that the longer sintering time stabilized the sintered joints, making
them less susceptible to microstructural and mechanical changes under thermal stress.
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The void ratios in the sintered joints after HTS and TCTs are shown in Figure 12. It
can be seen that the void ratio in the 50%-Cu-fraction joints significantly decreased (1.73 to
0.64%) as the sintering time was prolonged from 5 to 10 min (Figure 12a,c). However, the
void ratio in the 40%-Cu-fraction joints did not obviously change with the sintering time
(Figure 12b,d). Regarding the joints fabricated from the powders with a 50% fraction of Cu,
the void ratio generally increased with increased HTS duration and thermal cycling cycles
(Figure 12a,c). However, no obvious changes in the void ratios of the 40%-Cu-fraction joints
were found. The results indicate that the formation of voids in the low-Cu-fraction joints
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was relatively stable and not affected by the thermal stressing. As aforementioned (Figure 6),
some Cu powders remained in the 50%-Cu-fraction joints whereas no Cu powders were
found in the 40%-Cu-fraction joints. The changes in the void ratios could be attributed to
the presence of the remaining Cu powders subjected to thermal stressing.
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It is noted that the molar volumes of the reactant elements (Cu and Sn) and the formed
IMCs (Cu3Sn and Cu6Sn5) are 7.1, 16.1, 34.8, and 117.7 cm3/mol, respectively. The specific vol-
ume shrinkage after the Cu-Sn soldering reactions (6Cu + 5Sn → Cu6Sn5; 3Cu + Sn → Cu3Sn)
could be estimated as 4.4% and 7.1%, respectively. This indicates that the shrinkage of the
joints with a higher amount of the resultant Cu3Sn IMC was larger than that with the Cu6Sn5.
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Additionally, according to Equation (1), one mole of Cu6Sn5 (117.7 cm3) reacts with nine moles
of Cu (63.9 cm3) to form five moles of Cu3Sn (174.0 cm3) when the Cu powders are abundant.
This leads to volume shrinkage (4.1%). During the HTS and TCTs, the IMC transformation
from Cu6Sn5 to Cu3Sn could result in the formation of a porous-type Cu3Sn IMC [57] and
thus lead to the obvious increase in the void ratios of the 50%-Cu-fraction joints, as shown in
Figures 11a,c and 12a,c.

Shear tests were also performed to evaluate the bonding strength of the sintered joints
before and after the reliability tests. The shearing strength of the sintered joints before and
after the HTS and TCTs are shown in Figure 13. We found that the shear strength of the
50%-Cu-fraction joints increased with increasing sintering time (Figure 13a,c), whereas an
opposite trend were observed in the 40%-Cu-fraction joints (Figure 13b,d). This could be
attributed to the differences in the IMC and void ratios of the sintered joints. The void ratios
in the 50%-Cu-fraction joints significantly decreased (Figure 6a,c) as the sintering time was
extended, favoring the bonding strength of the joints. Note that the IMCs formed in the
sintered joints are naturally brittle. Thus, excessive IMC formation could negatively weaken
the joint strength over prolonged sintering (Figure 6b,d). Additionally, we found that the
shear strength of the joints generally increased with increasing thermal stress (Figure 13).
As shown in Figure 11, the ratio of the Cu6Sn5 IMC decreased during the reliability tests
due to the transformation to the Cu3Sn IMC. It has been reported that the mechanical
strength of the Cu3Sn IMC is typically higher than that of its Cu6Sn5 counterpart [42,58,59].
Thus, a larger ratio of the Cu3Sn IMC could be attributed to the higher shear strength of
the sintered joints. Additionally, we found some cracks at the edges of the joints that were
sintered using 50 wt% (Figure 14a) and 40 wt% (Figure 14b) Cu powders for 5 and 10 min,
respectively, after subjecting them to 1000 thermal cycles. No cracks were observed in the
other joints. This indicated the weak strength of those joints under thermal cycling, as
shown in Figure 6b,d. In addition, the shear strength of the joints was compared with that
of the sintered joints reported in recent studies [60–69]. Clearly, the joints showed a high
shear strength and good reliability, showing their potential for packaging applications.
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4. Conclusions

In summary, the effects of the Cu powder fraction and sintering time on the void and
IMC ratios of the sintered joints are analyzed. Some findings are drawn from the current
study as follows:

During the sintering process, Sn reacted with Cu powders and transformed into two
main (Cu6Sn5 and Cu3Sn) IMCs. The ratio of Cu6Sn5 formed decreased as the sintering
time was extended. It significantly increased with decreasing Cu powder fraction. The
changes in the initial Cu/Sn supply could cause the different formation mechanisms of the
IMCs, suppressing the growth of the Cu6Sn5 IMC, but, rather, facilitating Cu3Sn growth.

Some remaining Cu powders were also found in the high-Cu-fraction joints, which
indicated incomplete sintering. We found that the void ratio of the high-Cu-fraction
joints markedly decreased with increasing sintering time. However, the void ratio in the
low-Cu-fraction counterparts remained unchanged.

HTS and TCTs were also performed to evaluate the reliability of the joints. The
void ratio of the high-Cu-fraction joints increased with increasing thermal stressing time,
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whereas the low-Cu-fraction ones were stable. The shear strength of all the sintered
joints increased with increasing thermal treatment, which could be attributed to IMC
transformation between Cu6Sn5 and Cu3Sn.
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