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Abstract: This article explores the enhancement of material surface properties of Ti6Al4V, potentially
applicable to dental implants, through ultra-short pulse laser systems. This study investigates
potential connections between surface wettability and biocompatibility, addressing the challenge
of improving variability in material properties with specific laser treatment. Several designed
microstructures were manufactured using a picosecond laser system. After that, the wettability
of these structures was measured using the sessile drop method. The basic behavior and growth
activity of biological cells (MG-63 cell line) on treated surfaces were also analyzed. While the
conducted tests did not conclusively establish correlations between wettability and biocompatibility,
the results indicated that laser treatment of Ti6Al4V could effectively enlarge the active surface to
better biological cell colonization and adhesion and provide a focused moving orientation. This
outcome suggests the potential application of laser treatment in producing special dental implants to
mitigate the issues during and following implantation.

Keywords: Ti6Al4V; laser machining; wettability; biocompatibility; dental implants; surface
microstructure

1. Introduction

Modern dentistry almost cannot be imagined without dental implantology. For suc-
cessful implementation of implants, the implant itself with its specific properties and the
implant acceptor, i.e., a living organism with all its properties (genetic and epigenetic),
play a crucial part [1–3]. Each type of implant can be characterized by its biocompatibility.
Biocompatibility refers to the ability of substances to interact with the biological environ-
ment harmoniously. Their key feature is the ability to minimize toxic emissions, not irritate
tissues, not induce carcinogenicity, and resist corrosion and wear. These materials are often
regarded as optimal for promoting cell growth and tissue integration [4]. It is necessary
to describe the basic reaction between live cells and the material of implants. This is very
simple: either the cell is rejected by the material and the life of the cell ends, or the bioactive
cell is accepted by the material, in which case a population of cells colonizes the free surface
area. However, the step from rejection to acceptance in the case of so-called biocompatible
materials is very wide, because it depends on the material’s chemical composition, energy,
roughness and topography (each acting separately or synergistically) [4,5]. Thus, it can be
assumed that a biological cell’s ability to adhere to the surface will depend on its ability
to make some form of contact with the substrate; in the simplest form, this could be focal
contact or some form of other adhesion [6]. However, this may mean that the formation of
adhesive zones depends on the interaction of the cell surface with another surface. Because
this is a very dynamic process, it is easier to focus only on one indicator, which is the
mobility of the cell on the surface of the substrate. If the surface is altered in some way (for
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example, if specific macroporous structures are formed on it) [7], it can be assumed that the
formation and dynamics of the cell’s adhesive properties will be affected. Peri-implantitis,
an inflammatory condition disturbing the soft tissue surrounding the implant interface,
plays an essential role in causing implant failure [8].

Plasma spraying, laser ablation, sandblasting, or electron beam structuring are tech-
nologies used to modify the surface properties [9–11]. As for the dental implants themselves,
their surfaces are commercially treated by several methods besides laser ablation: etching,
electrochemical anodization processes, blasting and etching, hydroxyapatite coating, and
plasma spraying [12].

Laser micromachining represents a useful tool for manufacturing specific microstruc-
tures with various shapes on biocompatible materials [13,14]. Using ultrashort pulse lasers,
various shapes of microstructures can be produced. One of the benefits of laser microma-
chining is the possibility of machining various materials without the occurrence of residual
heat in the machined material [15]. However, shape and dimension specifications are
crucial for the biocompatible properties of implants, such as dental implants.

Available scientific articles focus on finding suitable parameters for the preparation
of highly biocompatible surfaces. The main subject is still a common phenomenon called
osseointegration, during which the healing of the dental implant into the bone occurs. A
high level of osseointegration can be associated with a strong connection between bone and
dental implants. This phenomenon is caused by the integration of cells on the surface of the
implant and the cultivation of culture, which is connected to the material and bone. These
types of connections can have different levels of stability, mechanical load capacity, and
lifetime [1]. Different types of surface microstructures benefit the adhesion and growth of
the biological cells on the surface, especially the structures of grooves. Martínez et al. [16]
reported that the optimal depth and width of the grooves depend on the type of cell selected
for the cultivation. The examined widths of the grooves were from 200 nm to 10 µm, and
the depths were from 300 nm up to 5 µm. The authors describe how these microstructures
can also affect the direction of adherence of the biological cells. The motivation for having
specific oriented and placed cells is to form a cell culture where the cells must have a specific
position to ensure they can proliferate and communicate. It was also discussed that surface
biocompatibility is influenced not only by the dimension of the surface microstructures but
also by the surface’s wettability.

Wettability is a material property that reduces surface tension and allows a liquid to
spread across its surface [17]. Whether the surface is wetted with liquid or not is determined
by the size of the contact angle (CA/Θ) between liquid and surface. The contact angle can be
determined by direct (goniometric) or indirect (tensiometric) methods of measurement [18].
Using the parameter of the contact angle, the surfaces can be divided into four main
groups, which are hydrophilic (CA < 90◦), neutral (CA = 90◦), hydrophobic (CA > 90◦),
and superhydrophobic (CA > 150◦) [19]. Amongst the superhydrophobic surface belongs,
for example, the surface of lotus leaf, which can be higher than 160◦ C [20]. Hydrophilic
surfaces (CA < 90◦) and surfaces with higher roughness enhance osteoblast proliferation,
which can lead to better tendencies to osseointegrate [8,21]. As the wettability is well
discussed, it is possible to find several academic publications that focus on the production
of surface microstructures that are changing the wettability of the treated surface using
ultrashort pulse laser systems [22–29].

There are relatively few scientific articles that focus on the connection between surface
wettability and biocompatibility of the materials; therefore, this topic is explored in this
publication. In particular, the effect of laser machining of Ti6Al4V material on the behavior
of biological cells will be investigated.

2. Materials and Methods
2.1. Materials

The biocompatible material Ti6Al4V was used for the testing of the influence of laser
treatment of material on the behavior of biological cells. This alloy was chosen because of
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its availability on the market and its high popularity in the implant industry; also, this type
of material has specific mechanical and chemical properties such as excellent corrosion
resistance or high specific strength, which can be beneficial for biomedical metallic implants.
The range of use of Ti6Al4V alloys in the implant industry can be increased by adding
passive layers or biocompatible stabilizers [30]. For the experiment, a sample of the material
was purchased in the shape of a rod, which was divided by a conventional turning machine
and then cut into smaller parts using a bandsaw. The shape of these samples was a quarter
of a cylinder with a radius of 90 mm and a height of 20 mm (Figure 1). Also, the roughness
of the samples was measured using the Mitutoyo SURFTEST SJ-301 (Mitutoyo, Sakado,
Japan) device, and the average value of Ra roughness of the samples was measured as
0.38 µm.
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Figure 1. Ti6Al4V sample.

2.2. Laser System

For the experimental examination, the picosecond pulse Nd:YAG laser was used.
Specifications of this laser system are listed in Table 1.

Table 1. Laser source and optical path specification.

Laser System Data

Laser source Atlantic, Ekspla (Ekspla, Vilnius, Lithuania)

Galvo-scanner IntelliScan, ScanLab (ScanLab, München,
Germany)

Wavelength 532 nm
Maximum pulse energy 60 µJ

Pulse repetition rate 0.2–1 MHz
Duration of laser pulse 13 ps

Laser beam spot ~25 µm
Focal length 160 mm
Beam quality M2 ≤ 1.3
Polarization lineal/circular

This laser system works on the principle of direct laser ablation (DLA), a non-contact
versatile structuring technology that can be applied to fabricating a wide range of surface
elements [31]. Two configurations can be used when working with DLA technology. Both
configurations use a laser beam expander to adjust the size of the laser diameter spot size
subsequently. The first configuration operates using focusing optics that are placed on the
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vertical axis. The transmission of the laser beam to the sample surface is enabled by the
movement of the sample itself in the XY axis. The second one uses a scanning head (e.g.,
a Galvo scanner (ScanLab, München, Germany) that moves in the plane of the XY by the
laser beam on a stationary sample. This second type was used in the experimental part
of this article. One of the disadvantages of DLA technology is relatively low productivity
(compared, for example, to DLIP technology [32]), which is limited because it uses only
one focused laser beam. However, its potential lies in its wide versatility.

The specific positions of the machined Ti6Al4V samples were determined using multi-
axis stages (Aerotech, Pittsburgh, PA, USA). The representation of the configuration of the
stages A, C, X, Y, Z) and optical axes of the galvo-scanner is shown in Figure 2.
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Figure 2. Scheme of the laser kinematics [33].

2.3. Surface Microstructures and Processing Parameters

Considering available scientific literature and previous experience in the field of
laser surface structuring and in addition to minimizing the time needed for evaluation
experiments, four types of surface microstructures were designed (Line, Line + LIPSS, Cross,
Platex) whose specific shapes should lead to changes in the wettability and bioactivity of
treated surfaces. The shapes and dimensions of these microstructures are listed below.

• Line

This microstructure consists of parallel grooves with a width of 15 µm, a pitch of
20 µm, and a depth of 10 µm (Figure 3).
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Microstructure Line was made in two modifications (Line and Line + LIPSS) with
different setups of the laser system. The modifications differed in the use of linear or
circular polarization. Different setups of polarization can be used to control a phenomenon
called laser-induced periodic surface structures (LIPSS). LIPSS is a phenomenon observed
when a material is treated with a high-intensity polarized laser—typically with picosecond
or femtosecond pulse lengths. The changing of the polarization angle can be utilized to
control the direction of the LIPSS [34]. This process spontaneously generates a repeating
pattern of structures (their size is in the order of nanometers) on the material’s surface,
altering its optical properties and enabling the formation of holograms. Additionally, LIPSS
can create unique features that can lead to uneven hydrophobicity, which can be used to
control liquid flow on the surface [35].

For the first modification of the surface microstructure line, circular polarization was
used to suppress the formation of the LIPSS. For the second modification (Line + LIPSS),
linear polarization was used, which resulted in the spontaneous generation of nanoscopic
structures with specific orientation on the bottom of the fabricated grooves, contrary to the
structure Line.

• Cross

This microstructure consists of parallel grooves and also grooves which are shifted by
90◦ with a width of 15 µm, a pitch of 20 µm and a depth of 23 µm (Figure 4).
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• Platex

This microstructure consists of holes that are arranged in the grid with a radius of
8 µm, a pitch of 11 µm, and a depth of 15 µm (Figure 5).
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The described picosecond laser system was used to produce the designed surface
microstructures.
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For the production of each designed surface microstructure exact laser processing
parameters were set. The values of these processing parameters are shown in Table 2.

Table 2. Processing parameters used to create designed microstructures.

Surface Microstructure Power [W] Frequency [kHz] Pulse Energy [µJ] Number of Repetitions Polarization

Line 800 500 1.6 140 circular
Line + LIPSS 800 500 1.6 140 linear

Cross 800 500 1.6 290 circular
Platex 500 200 2.5 800 circular

The microstructures were fabricated in the shape of squares whose dimensions were
7 × 7 mm. After fabrication, each surface microstructure was washed in an ultrasonic
cleaner with pure isopropyl alcohol and then measured using an Olympus Lext (software
version 2.1.2.8087) confocal microscope (Olympus, Tokyo, Japan) to verify the fabrication
accuracy and compliance with each structure’s designed dimensions.

2.4. Evaluation Methods

Two methods were used to evaluate the fabricated samples. The first one was the
so-called sessile drop method, which is the standard method for determining wettability.
In this technique, a precise volume of distilled water, typically ranging from 1 to 10 µL, is
carefully dispensed onto the sample surface using a specialized syringe [36]. The interface
between the water droplet and the surface was then recorded in real-time using a video
camera. A software program was employed to measure the contact angle formed by the
droplet, which served as an indicator of surface-wetting behavior.

The second method used to determine the biocompatibility of the surface structures
(in vitro) consisted of several steps. Firstly, it was necessary to cultivate the cell culture
before using it. The cultivation procedure before testing consists of incubation of the cells
in a CO2 thermostat set to a 5% CO2/air mixture at 37 ◦C and 95% relative humidity.
This environment served as the mother culture from which the necessary number of cells
for experimental cultivation was harvested using conventional trypsinization techniques.
Then, the experimental cultivation involves growing cells on the sample surface, typically
for three days or approximately three consecutive cell division cycles. Following this
incubation period, the cell culture is halted, and the cells are treated with fixation and
coloring techniques. The area covered by the cells is subsequently quantified or determined.
The SEM method was used to determine the result. As a cell culture, the MG63 (human
osteosarcoma) was chosen, and the cultivation medium was EMEM medium with 10% fetal
bovine serum, antibiotics, antimycotics, and glutamine.

To elucidate the inherent variability present in the obtained results, it is necessary to
determine the standard deviation (SD). This statistical parameter quantifies the extent to
which values are distributed around the mean and is calculated as the square root of the
variance [37].

3. Results

All four designed microstructures were first fabricated using a picosecond ultrashort
pulse laser system with specific setup and processing parameters (see Section 2.3). After
fabrication, each surface microstructure was washed in an ultrasonic cleaner with pure
isopropyl alcohol and then measured using an Olympus Lext confocal microscope (Olym-
pus, Tokyo, Japan) to verify the fabrication accuracy and compliance with each structure’s
designed dimensions.

Based on these measurements, it was verified that the dimensions of the individual
microstructures corresponded to the designed dimensions (Figure 6).
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Figure 6. Examples of fabricated microstructures ((A)—Platex, (B)—Line, (C)—Cross).

After that, the evaluation of the wettability was processed. For this measurement, the
sessile drop method was used (Section 2.4). Distilled water was chosen as a medium, and
this whole process of measurement of wettability was performed using a Krüss DSA30E
(Krüss, Hamburg, Germany) device. Utilizing the device’s programmable features, mea-
surements were automated for optimal precision in repetition. This entailed depositing
three consecutive drops onto each 7 × 7 mm area (each surface microstructure), with each
drop (volume of 5 µL) precisely measured for 30 s and repeated exactly 30 times (Figure 7).
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Additionally, as illustrated in Figure 8, droplet angles were measured from both sides
to capture left and right angles.
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Subsequently, mean values and overall averages were calculated (Table 3).

Table 3. Values of CA for all surface microstructures.

Surface Microstructure Average from Mean Values CA [◦] Difference of CA from
Reference Surface [◦]

Lines 85.32 (±23.9) +6.45
Lines + LIPSS 38.95 (±22.2) −39.92

Cross 15.44 (±2.94) −63.43
Platex 11.18 (±1.79) −67.6

The wettability testing showed that the laser fabrication of surface microstructures
on the surface of the test samples resulted in a change in the wettability properties. It can
also be observed that the production of different microstructures (different shapes and
dimensions) leads to different values of CA. The most hydrophobic surface was the surface
with the microstructure of Lines (CA = 85.32◦), and the most hydrophilic microstructure
was the microstructure of Platex (CA = 11.18◦).

The last set of tests focused on the evaluation of biocompatibility of surface structures.
The adherence, locomotion, and colonization of the biological cells were examined in par-
ticular. For this type of testing, the cell line MG63 was used in three types of generation,
indicating that the optical evaluation of the percentual coverage of the surface with biolog-
ical cells was completed after 24, 48, and 72 h (Section 2.4). Regarding the evaluation, a
total of 12 samples were tested (3 samples of each surface structure). The measurements
of one sample involved capturing images at 16 distinct locations using a linear electron
microscope (SEM). These images were subsequently subjected to image analysis (Figure 9).

Within the scope of this analysis, the percentage of image coverage by biological cells
was calculated. Picture analysis of the size of the area covered by the cells was performed by
adding the size of the areas bordered in red and subtracting the size of the areas bordered
in yellow from the resulting size. Subsequently, the maximum, minimum, and mean values
of percentage surface coverage were calculated for each image, and then the average value
of mean values across all three tested samples was calculated. This measurement was
repeated after 24, 48, and 72 h of cell growth. The average of the mean values of the
percentage surface coverage by biological cells for all surface structures were plotted in a
graph with the measurement’s standard deviation (Figure 10).
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The percentage surface coverage by biological cells was also tested on the samples
without laser treatment. In this measurement, six samples were measured only after 72 h
of growth. The resulting average value of mean values of percentage surface coverage for
laser untreated samples was 21.48%. This result suggests that using a picosecond laser
system for the treatment of the Ti6Al4V surface can lead to potential changes in the view of
biological cell colonization, especially the manufacture of Line + LIPSS surface structure,
and it can be noted that some surface structures have a bigger impact than others.

Based on these tests (wettability and biological cell colonization), it can be observed
that a strong correlation between wettability and cell colonization has not been fully es-
tablished (Figures 8 and 10). It can be observed that over time, there is an increase in the
number of biological cells on the test samples; it can also be noted that the production of
different types of surface structures will affect the cell growth rate differently; however,
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there is not much difference between the most hydrophobic structure and the most hy-
drophilic structure in terms of biological cell coverage. However, it should be noted that
the analysis of the acquired images had its limitations, which consisted of the impossibility
of measuring the area under the cell that adhered to the top of the formed structures
(Figure 11). So, it was not clear how many cells could be lying on top of each other.
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Figure 11. Cell adherence to surface microstructures.

Nevertheless, new insights have been revealed, particularly in the relationship between
cells and the morphology of microstructures. It was observed that cells generally tend
to take up positions within grooves (Figure 12) and, in some cases, even lie on top of
each other so that they overlap. From this point of view, the influence of the fabricated
microstructure can be seen as a differentiating factor since the resulting active area that
the cells can occupy is higher. At the same time, the cells are targeted to be oriented into
the grooves.
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4. Discussion

The main idea of this article was to investigate the behavior of biological cells on tita-
nium alloy (Ti6Al4V), which was treated by an ultrashort pulse laser. Several publications
suggest that laser surface treatment of biocompatible materials can lead to improvements in
their mechanical and physical properties. The use of these materials with special properties
can play a key role in the field of medical implants.

In this study, several experiments were undertaken. For these experiments, a picosec-
ond pulse Nd:YAG laser was used. Firstly, four different surface microstructures were
designed with detailed dimensions and shapes for the creation of surface structures that
influence the wettability of the surface because there is a view, according to available
studies, that there is a link between wettability and surface bioactivity. Several tests were
conducted to set up ideal laser parameters for the ideal fabrication of designed surface
microstructures. These parameters were laser power, frequency, repetition, and overlap
of laser pulses. The correctness of the fabrication of designed surface microstructures
was verified by using the optical microscope Olympus Lext. The dimensions of all four
designed surface microstructures were fabricated with sufficient accuracy.

Regarding wettability testing, it was observed that the creation of surface microstruc-
tures leads to a change in surface wettability. The biggest CA was measured on the surface
microstructure of Lines (85.32◦), and the smallest was on the microstructure of Platex
(11.18◦). This indicated that with the defined shapes and dimensions of the structures, it is
possible to control the surface wettability of the treated surface in a targeted manner.

This was followed by the measurement of bioactivity on the treated surfaces and
its colonization with the cells of the MG63 cell line. Unfortunately, a strong correlation
between wettability and biocompatibility of the surface was not observed. This may have
been due to the fact that surface wettability is only one of many surface characteristics that
can affect the behavior of the bioactive cells, such as the chemical properties of surfaces.
Verification of this hypothesis may be the aim of further work. However, the results of
the colonization of these surfaces revealed several new phenomena. First, the trend in per
cent coverage did not consistently increase over the time of cell generation (one generation
corresponds to a 24-h cycle). For example, this phenomenon can be explained by the cells
triggering a mechanism that accelerates the whole process in the first hours of colonization
at the expense of later activity. Another interesting phenomenon was that the grooves
leading from the polished surface guided the individual cells within the grooves. The
difference occurred at points along the grooves, where the cells found it very difficult to
cross the grooves in a direction perpendicular to the longitudinal axis of the grooves, and
their number was significantly reduced with each successive groove.

5. Conclusions

In the course of this comprehensive study, significant observations emerged regarding
the effects of laser treatment on surface properties. It was observed that specific surface
microstructures can be used in the fabrication of different medical implants, such as dental
implants. Using this knowledge, it is possible to manufacture such implants with specific
areas that can have different properties regarding wettability, cell colonization, or even cell
locomotion. This specification of the implant could increase the chances of tissue acceptance
and possibly even prolong its lifespan. To conclusively verify this assumption, conducting
additional tests is essential. These tests should examine, for example, different cell lines and
explore the fabrication of these structures on flat surfaces and across varied topographies.
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