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Abstract: The sintering of high-performance ceramics with complex shapes at low temperatures has
a significant impact on the future application of ceramics. A joint process of digital light processing
(DLP) 3D printing technology and a nitrogen-gas pressure-assisted sintering method were proposed
to fabricate AlN ceramics in the present work. Printing parameters, including exposure energy and
time, were optimized for the shaping of green bodies. The effects of sintering temperature, as well as
nitrogen pressure, on the microstructure, density, and thermal conductivity of AlN ceramics were
systematically discussed. A high thermal conductivity of 168 W·m−1·K−1 was achieved by sintering
and holding at a significantly reduced temperature of 1720 ◦C with the assistance of a 0.6 MPa
nitrogen-gas pressure. Further, a large-sized AlN ceramic plate and a heat sink with an internal
mini-channel structure were designed and successfully fabricated by using the optimized printing
and sintering parameters proposed in this study. The heat transfer performance of the ceramic heat
sink was evaluated by infrared thermal imaging, showing excellent cooling abilities, which provides
new opportunities for the development of ceramic heat dissipation modules with complex geometries
and superior thermal management properties.
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1. Introduction

Aluminum nitride (AlN) ceramics are attractive for their excellent properties, such as
high thermal conductivity, high resistivity, and low dielectric constant. In addition, they
are endowed with a thermal expansion coefficient matching that of Si [1–4]. Therefore, AlN
ceramics have become one of the most popular thermal management materials in various
fields, including the optoelectronic and semiconductor industries [5,6]. Conventional
ceramic-shaping methods, such as dry pressing, isostatic pressing, slip-casting, tape-casting,
and gel-casting, have been widely used to fabricate AlN ceramics for decades. However,
these manufacturing techniques have limitations when it comes to manufacturing much
more complex-shaped parts. Additive manufacturing (AM) technologies have attracted
increasing scientific interest in recent years for their high degree of freedom in constructing
complex shapes and highly integrated structures, which are expected to provide strong
support for the design and preparation of complex-shaped ceramic parts [7–10]. Digital
light processing (DLP)-based photopolymerization additive manufacturing technology has
attracted much more attention to ceramic materials because it offers high manufacturing
precision and surface quality. Regarding wet molding processing, property control of
ceramic slurries is recognized as one of the most significant issues. A suitable liquid
medium for dispersing AlN particles should be developed first. From the perspective of
environmental protection, aqueous-dispersed AlN slurries have been paid special attention.
However, on the one hand, the hydrolysis of AlN powders in aqueous media always
passively affects the final properties of ceramics. Researchers have made efforts to shield

Materials 2024, 17, 2010. https://doi.org/10.3390/ma17092010 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17092010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-6750-6992
https://doi.org/10.3390/ma17092010
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17092010?type=check_update&version=2


Materials 2024, 17, 2010 2 of 13

the AlN particles from hydrolysis and achieve favorable dispersing properties, generally
by blending appropriate quantities of surface-active agents, such as phosphate-based
and/or carboxylic anionic surfactants [11,12]. On the other hand, water in the slurries
would inevitably volatilize continuously during the long-time construction of green bodies,
disturbing the stability of the slurry. Hence, as compared to the aqueous-based ceramic
slurries, organic-based systems are presently more mature for the preparation of high-
performance AlN ceramics via wet molding processing, especially the DLP-based additive
manufacturing method.

DLP-based additive manufacturing has been extensively applied to fabricate oxide
ceramics [13,14]. Nevertheless, it remains challenging when it comes to nitride ceramics,
such as AlN ceramics, mainly due to the apparently higher refractive index and light-
absorption properties of AlN powders. So far, there have been only a few reports on
DLP 3D-printed AlN ceramics. Sheng et al. [15] integrated powder coating strategy (PCS)
with DLP-based vat photopolymerization (VPP) technology to optimize the rheological
and photo-curing behavior of AlN ceramic suspensions. The thermal conductivity of
as-prepared AlN specimens reached 144.11 W·m−1·K−1. Lin et al. [16] selected three types
of silane coupling agents as modifiers to study the effect on the rheology, stability, and
curing behavior of slurries. The ceramic with a thermal conductivity of 150 W·m−1·K−1

and complex-shaped products (8~13 mm) were finally prepared. Although the researchers
have made fundamental explorations, these complex-shaped ceramic products are small in
size and have low thermal conductivity.

Despite the hydration-resistant treatment, the improvement in thermal conductivity
of AlN ceramics is also closely related to sintering aids and sintering processes, including
temperatures, holding times, and external pressures [17]. Olhero et al. [18] introduced
CaF2/YF3 as a sintering adds, relatively high sintered densities (more than 96% of the
theoretical density) were achieved at low sintering temperature (1750 ◦C) and with a short
holding time (2 h). The interaction between the remaining oxygen and the sintering addi-
tives generated secondary phases, such as yttrium-rich (Y4Al2O9) phases, primarily located
at the triple points, enhancing the thermal conductivity. The sintering of AlN ceramics
mainly includes methods of pressureless sintering, hot pressing sintering, spark plasma
sintering (SPS), and microwave sintering. Virkar et al. [19] used yttrium oxide as a sintering
aid and obtained AlN ceramics with a relative density of 99.1% and a thermal conductivity
of 194 W·m−1·K−1 after sintering at 1850 ◦C via pressureless sintering. Jackson et al. [20]
used lanthanide oxides as sintering aids and found that the thermal conductivity of ce-
ramics sintered at 1850 ◦C reached 184 W·m−1·K−1. Additionally, as the holding time was
extended to 1000 min, the thermal conductivity of AlN ceramics increased to more than
200 W·m−1·K−1. Xu et al. [21] fabricated AlN ceramics with thermal conductivity exceed-
ing 200 W·m−1·K−1 by microwave sintering at 1900 ◦C. Although ceramics with higher
thermal conductivity can be obtained by sintering at higher temperatures or prolonging
the holding time at ultrahigh temperatures, such sintering technology brings challenges for
apparatuses and energy consumption control. Moreover, grain coarsening happens more
easily, leading to poor mechanical properties. The process of obtaining high-performance
AlN ceramics by sintering at a relatively low temperature with a shorter holding time
has always been a critical issue. Kobayashi et al. [22] obtained dense AlN ceramics by
using the spark plasma sintering (SPS) method; the sintering temperature was as low as
1550~1650 ◦C, a constant uniaxial pressure of 50 MPa was applied during the SPS process.
Similarly, Feng et al. [23] used hot pressing sintering to prepare AlN ceramics with high
thermal conductivity (171 W·m−1·K−1) at a low sintering temperature (1750 ◦C), an axial
pressure of 15 MPa was also needed. However, an axial pressure is not suitable for 3D-
printed samples with complex shapes. In addition, it is well acknowledged that the high
density of a degreased green body is beneficial for the diffusion of grain boundaries and the
exclusion of intergranular porosities. Nevertheless, for the DLP-based additive manufac-
turing technology, the solid loading is usually relatively low for the purpose of keeping an
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appropriate viscosity, resulting in a much lower density of the degreased green body, which
brings greater challenges for the densification and thermal conductivity improvement.

A gas pressure-assisted sintering method was developed and verified to be one of
the highly efficient strategies for the densification of nitride ceramics. An example was
found in fabricating Si3N4 ceramics that with the assistance of 2~10 MPa gas pressure, the
decomposition was restrained, and the diffusion of Si and N elements was promoted [24].
However, the high gas pressure has brought challenges for the sintering apparatus and
cost control. In this study, AlN green bodies were prepared using the DLP 3D printing
method. In order to obtain ceramics with high density and thermal conductivity at a
lower sintering temperature, the gas pressure-assisted sintering method (under a lower
nitrogen-gas pressure of <1 MPa) was developed to promote the densification of the DLP
3D-printed AlN ceramic bodies. The influences of the sintering temperature and gas
pressure on the microstructure evolution and thermal conductivity of AlN ceramics were
thoroughly discussed.

2. Materials and Methods
2.1. Materials Preparation

AlN powders (99.8%, Tokuyama Corporation, Tokyo, Japan) were the starting materi-
als, and Y2O3 powders (99.99%, Jiangyin Jiahua Advanced Material Resources Co., Ltd.,
Jiangyin, China) were introduced as sintering aids. Radically photocurable monomers
(Shanghai Curease Chemical Co., Ltd., Shanghai, China), including trifunctional ethoxy-
lated trimethylolpropane triacrylate (ETPTA), ethoxylated pentaerythritol tetraacrylate
(PPTTA), and 1,6-hexanediol diacrylate (HDDA), with a weight ratio of 4:1:5, were chosen
as the photocurable resins, according to the former work in our research group [25]. A small
amount of nonreactive polyethylene glycol (PEG) was involved as a plasticizer. Diphenyl
(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) was selected as the photoinitiator. AlN and
Y2O3 powders were homogeneously dispersed in the photosensitive resins by planetary
ball milling for 12 h, in which the weight of Y2O3 powders accounted for 4%, according
to the former work in our research group [26]. AlN ceramic slurries suitable for DLP 3D
printing were finally obtained after adding the photoinitiator and commercial defoamers
and further ball milling for 1 h.

Figure 1 shows the diagram of the experimental procedure for DLP 3D printing of AlN
ceramic parts. Ceramic slurries were spread out on a release film, with a layer thickness
of about 100 µm, using a scraper blade. As exposed using projected UV light, the green
bodies (circular sheets sized ϕ 19 mm × 2.6 mm and other complex-shaped parts) were
fabricated layer by layer with a layer thickness of 20 µm based on the computer-aided
designed model, using an ADMAFLEX 130 instrument (ADMATEC Europe BV, Goirle, The
Netherlands), during the printing process the room temperature and humidity were kept
around 24 ◦C and 25 RH%, respectively. The appearance of the green bodies can be found in
Figure 1. The as-cleaned green bodies were heat-treated at a rate of 0.3 ◦C/min from room
temperature to 580 ◦C and then held at 580 ◦C for 2 h in a muffle furnace to totally eliminate
organic components to obtain degreased AlN samples. Part of the degreased samples were
further densified by sintering at 1800 ◦C in a pressureless sintering condition (the obtained
ceramics are abbreviated as AlN-0-1800). Some of the rest of the samples were sintered at
different temperatures (1670, 1720, and 1770 ◦C) in a 0.2 MPa pressure-assisted nitrogen
atmosphere (the obtained ceramics are abbreviated as AlN-0.2-1670, AlN-0.2-1720, and
AlN-0.2-1770, respectively) and the others were sintered at 1720 ◦C in gas pressure assisted
nitrogen atmosphere, wherein nitrogen pressures of 0.4, 0.6 and 0.8 MPa were conducted,
respectively (the obtained ceramics are abbreviated as AlN-0.4-1720, AlN-0.6-1720 and
AlN-0.8-1720, respectively). The specimens were double-surface polished to 1 mm for
thermal diffusivity characterizations.
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Figure 1. Schematic diagram of the experimental procedure for DLP 3D printing of AlN ceramic parts.

2.2. Characterization

A stress-controlled rotational rheometer (MCR302, Anton Par GmbH, Graz, Austria)
with a cone (the diameter is 20 mm) was used to characterize the rheological properties
of the photocurable AlN suspensions. Curing depth was determined by collecting the
thickness of three independent printed samples. X-ray diffraction (XRD) measurements
were performed in reflection mode on a Rigaku D/max 2500 powder X-ray diffractometer
(Tokyo, Japan). The microstructures of green bodies, degreased samples, and sintered AlN
ceramics were examined using fracture surfaces by scanning electron microscopy (SEM;
Magellan 400, FEI, Columbia, MD, USA). Sintered AlN samples were tested using a laser
thermal conductivity analyzer (LFA467 HyperFlash, Netzsch, Germany) to determine their
thermal diffusivity and thermal conductivity at room temperature. The density of AlN
ceramics was measured using the Archimedes method.

3. Results and Discussion

The solid loading of the AlN slurry was designed as 54.0 vol.%. The rheological and
absorptance properties of the slurry were tested, as shown in Figure 2. It could be found in
Figure 2a that the slurry exhibited non-Newtonian fluid and satisfied the shear-thinning
behavior. The viscosity at 100 s−1 was about 16.8 Pa·s, which was suitable for spreading
out uniformly but not flowing around on the foil with the scraper’s assistance. The curve in
Figure 2b illustrated that the light absorbance of the slurry was tested to be 1.416 at 405 nm,
which was due to the high light absorptance of AlN particles and the large difference in
refractive indexes between AlN and resin monomers.
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In order to explore the optimum DLP 3D printing parameters for the slurry, square
slices sized 10 mm × 10 mm were cured, and the photo-curing performances were collected
and evaluated, as listed in Table 1. The results showed that as the exposure time was
set as 3 s, the curing depths of all groups, determined by collecting the thicknesses of
three independent slices, were found quite low, even as the exposure energy increased
from 40 to 60 mW·cm−2. The mechanical property was so poor that the photo-cured slices
could not be separated from the release film. As the exposure time increased up to 6 s,
both the curing depth and the mechanical property improved, and the slices could be
successfully separated from the release film. However, mainly due to the high refractive
index and light absorptance of the slurry, the maximum curing depth could not be higher
than 40 µm by simultaneously strengthening the exposure energy and time. It is worth
noting that the mechanical property could be discernibly improved. Specifically, the slice
cured using the parameters of 60 mW·cm−2 and 12 s showed bendable characteristics.
However, as the exposure energy and time were further prolonged, the curing accuracy
decreased to a certain extent. This might be due to the fact that increased parameters of
exposure energy and time may lead to excessive polymerization of the photosensitive
resin, forming unnecessary cross-linked structures, and high exposure energy may cause
light to reflect and scatter in the material, resulting in an unstable transmission path
of light during the printing process, reducing the accuracy of curing. Considering the
comprehensive performance of 3D printed samples, the exposure energy and exposure
time were determined to be 60 mW·cm−2 and 12 s, respectively.

Table 1. The behavior of the photosensitive AlN slurries cured with different parameters of exposure
energy and exposure time (the curing depth was determined by collecting the thickness of three
independent slices).

Sample Exposure Energy
(mW·cm−2)

Exposure Time
(s)

Curing Depth
(µm)

Mechanical
Property

1

40

3 / poor
2 6 40 poor
3 9 40 poor
4 12 40 moderate
5

45

3 / poor
6 6 40 poor
7 9 40 moderate
8 12 40 moderate
9

50

3 / poor
10 6 40 moderate
11 9 40 moderate
12 12 40 moderate
13

60

3 / poor
14 6 40 moderate
15 9 40 moderate
16 12 40 excellent

The AlN green bodies were printed using the optimized print parameters, and the
SEM images of the fracture surfaces of both as-printed AlN green bodies and degreased
samples are shown in Figure 3a,b. According to Figure 3a, it could be observed that the
green body presented a smooth fracture surface, much better than the samples prepared
by Ozóg et al. [27], from which one could observe some layer delamination. The traces
of layer-by-layer interfaces were difficult to find in Figure 3a, which illustrated that the
composition of the photosensitive resin and the curing parameters were well designed.
From an enlarged version in Figure 3b, even tiny defects such as micro-cracks could be
found, indicating that polymerization of the ceramic suspensions was sufficient during
light curing. After being degreased, it could be easily found from the fracture surface
shown in Figure 3c,d that although there were traces of layer-by-layer interfaces, profiting
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from the excellent property of the green bodies and the elaborately designed degreasing
procedure, almost no defects such as separation between layers and cracks penetrating
layers could be observed even after the sample preparation procedure of breaking for
observation, which was the basis for obtaining compact and defect-controlled ceramics. On
the other hand, it should be noted in Figure 3d that the particles were relatively loosely
packed due to the removal of the large volume ratio of organic components. Therefore, the
AlN ceramics were densified.
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Figure 3. SEM images of the fracture surfaces of (a,b) AlN green bodies and (c,d) degreased AlN
samples, (b) and (d) were the enlarged versions of (a) and (b), respectively.

In the present work, a nitrogen-gas pressure-assisted sintering method (under a lower
nitrogen-gas pressure of <1 MPa) was proposed to promote the densification of the 3D-
printed AlN ceramic parts. In order to determine the optimal sintering temperature, the
degreased samples were subsequently densified via sintering at different temperatures of
1670, 1720, and 1770 ◦C for 4 h with the assistance of a nitrogen pressure of 0.2 MPa. For
comparison, a traditional pressure-less sintering method was also conducted at 1800 ◦C
in a flowing nitrogen atmosphere to fabricate dense AlN ceramics. XRD patterns of all
the samples sintered in different conditions are presented in Figure 4. Diffraction peaks
representing AlN and YAlO3 (YAP) phases were found in all of the AlN ceramics fabricated
using different sintering methods; the Y2O3 phase was not detected, indicating that the
added sintering agent Y2O3 participated in the reaction with Al2O3 to form YAP, thus
the densification of AlN ceramics was promoted, and the lattice oxygen was partially
eliminated [28]. The elimination of lattice oxygen was recognized to be of significant
importance to the enhancement of the thermal conductivity of AlN ceramics [29].
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Figure 4. XRD patterns of AlN ceramic samples prepared using pressureless and micro-pressure
assisted sintering methods.

All ceramics’ densities were measured using the Archimedes method, as displayed in
Figure 5a. It could be found that for the samples sintered in a pressure-less condition at
1800 ◦C, the density was measured to be 3.30 g/cm3. For the samples sintered in a 0.2 MPa
nitrogen-gas pressure-assisted condition, the density of the ceramics increased first with
increasing temperature and reached a maximum of 3.32 g/cm3 as the temperature rose to
1720 ◦C, which was even higher than the ceramics sintered at 1800 ◦C. The thermal con-
ductivity of the AlN ceramics also exhibits the highest value (159 W·m−1·K−1) at 1720 ◦C,
which is relatively higher than that of the pressure-less-sintered one (157 W·m−1·K−1), as
shown in Figure 5b. This proved that in spite of the ultra-high sintering temperature, the as-
sisted nitrogen pressure was also beneficial in promoting the migration of grain boundaries
and removal of residual pores, leading to higher density and thermal conductivity. The
reasons accounting for differences in density and thermal conductivity between AlN-0-1800
and AlN-0.2-1720 should be traced back to the microstructures of the as-prepared ceramics.
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Figure 5. (a) bulk density and (b) thermal conductivity of AlN ceramic samples: AlN-0-1800, AlN-
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Figure 6 shows the SEM images of fracture surfaces of the AlN ceramics. Figure 6a
presents the microstructure of the sample sintered in a pressure-less condition; intergranular
pores could be observed. In addition, the grain sizes were about 8 µm, larger than the
ceramic samples fabricated using the micro-pressure-assisted sintering method, wherein
the grain sizes were estimated to be 2, 4, and 5 µm for the samples of AlN-0.2-1670, AlN-
0.2-1720, and AlN-0.2-1770, respectively, as shown in Figure 6b–d. The reason might be
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that a higher sintering temperature contributed to the fast grain growth in a pressure-less
condition. Another obvious phenomenon was that quite a number of pores were distributed
in sample AlN-0.2-1670, as shown in Figure 6b. This might be due to the fact that the low
sintering temperature could not contribute to the migration of grain boundaries with a gas
pressure of 0.2 MPa. Completely developed crystal grains and compact microstructures
are recognized as important factors for high thermal conductivity. Furthermore, it is also
well recognized that characteristics, mainly components and their distributions of grain
boundaries, are another significant factor influencing thermal conductivity. It could be
observed in Figure 6 that the YAP phases were distributed along the grain boundaries or
gathered at the trivalent grain boundaries of AlN, except for the sample of AlN-0.2-1670;
only traces of secondary phases were observed among the AlN ceramic grains, which might
be attributed to the relatively low sintering temperature. As the sintering temperature
increased to 1720 ◦C, residual pores were overwhelmingly removed; as shown in Figure 6c,
the secondary phase of YAP was distributed mainly at the trivalent grain boundaries,
leading to improved density and heat conduction properties of the ceramic. As the sintering
temperature rose to 1770 ◦C, a higher proportion of the secondary phase was distributed
along the AlN grains rather than gathering at the trivalent grain boundaries. Moreover,
more intergranular pores could be observed. This might be due to the fact that, with the
assistance of a micro-pressure atmosphere, an increase in temperature by 50 ◦C contributed
to the fast grain growth as compared to that of the AlN-0.2-1720 ceramic, resulting in
abnormal grain growth and residual pores, which also accounted for the decrease in both
density and thermal conductivity. According to the above phenomena, 1720 ◦C was chosen
as the optimal sintering temperature for further study.
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To investigate the effect of nitrogen pressure on the densification of AlN ceramics, in
the case that the sintering temperature was determined to be 1720 ◦C, another three groups
of degreased samples were sintered with the assistance of 0.4, 0.6, and 0.8 MPa nitrogen
pressure, respectively. It could be observed in Figure 7 that all AlN ceramic samples were
composed of AlN and YAP phases. The relative intensity of the crystalline peaks of YAP
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was the highest for the AlN-0.6-1720 ceramic. However, the XRD results of the sample
sintered at 0.8 MPa showed faint crystalline peaks of YAP.
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1720, and AlN-0.8-1720.

The density shown in Figure 8a displayed a tendency to rise and then fall with the
increase in pressure; the maximum was 3.35 g/cm3 for the AlN-0.6-1720 ceramic. According
to Figure 8b, the curve of the ceramics’ thermal conductivity indicated the same trend
as that of density, which reached the maximum of 168 W·m−1·K−1 for the AlN-0.6-1720
sample. In addition, the densities and thermal conductivities of all micro-pressure-assisted
sintered samples were higher than those of the pressure-less-sintered ones, which proved
that the gas pressure-assisted sintering method could effectively realize the fabrication of
high-performance ceramics at a suitable temperature. However, the thermal conductivity
of the AlN-0.8-1720 sample decreased sharply, which was even lower than that of the
pressure-less-sintered ones. The phenomenon could be further explained by examining the
microstructures of as-prepared ceramics.
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The microstructure shown in Figure 9 further illustrates the role of the gas pressure-
assisted sintering method. With the increase in nitrogen pressure, the AlN grain size became
much smaller. Specifically, as the pressure increased, the secondary phases were found to
be more inclined to gather at the trivalent grain boundaries. As the secondary phase is
continuously distributed along the grain boundaries, the AlN grains are separated, and the
phonon scattering increases, leading to a decline in thermal conductivity. On the contrary,
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as the secondary phase is gathered at the trivalent grain boundaries, more AlN grains can
be in direct contact with each other, leading to higher thermal conductivity. Therefore,
the AlN-0.6-1720 ceramic exhibited the highest thermal conductivity. Nevertheless, the
appearance of the YAP phase decreased obviously as the nitrogen pressure rose to 0.8 MPa,
as shown in Figure 9d. This might be due to the fact that with the increase in nitrogen
pressure, the diffusion ability of the secondary phase was enhanced, which may have led to
the fast accumulation of YAP at the surface of the ceramic sample before it actually played
a role in promoting the densification of AlN ceramics. Therefore, both the density and
thermal conductivity of the ceramics sintered at 1720 ◦C with the assistance of a nitrogen
pressure of 0.8 MPa decreased as compared to the AlN-0.6-1720 sample.
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In order to demonstrate the possibilities opened up by a joint process of DLP 3D
printing and the gas pressure-assisted sintering method, the sintering temperature and gas
pressure were determined to be 1720 ◦C and 0.6 MPa, respectively, large-sized and complex-
shaped AlN ceramic parts were further fabricated. Figure 10a shows the appearance of
a 3D printed AlN green body with a size of 59 mm × 34 mm × 4 mm; the as-sintered
sample shown in Figure 10b has a size of about 49 mm × 28 mm × 3 mm. As can be
observed from the images, the surfaces of the green bodies and sintered components were
uniform without defects such as cracking, transformation, and large amounts of porosity,
demonstrating that the proposed gas pressure-assisted sintering method could be applied
to fabricate 3D-printed large-sized AlN ceramic parts.
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AlN ceramic heat sinks with an internal mini-channel structure were further designed
and successfully fabricated using optimized printing and sintering parameters. The phys-
ical photographs of sintered ceramic are shown in Figure 11a. Further insight from the
thermal imaging figure shown in Figure 11b indicated that almost no macroscopic defects
could be found across the ceramic heat sink, and once the flowing water was pumped from
the inlet into the channels, the surface temperature of the ceramic heat sink dropped rapidly
from higher than 95 ◦C to about 40 ◦C (recorded using the IR camera) as it was attached to
the heating stage of 110 ◦C, indicating that the high-efficiency heat transfer of the ceramic
heat sink could be achieved. Furthermore, although the mini-channels were not elaborately
designed, the temperature distributions were quite narrow before and after the coolant was
pumped, as illustrated in Figure 11c, indicating that the as-fabricated AlN ceramic heat
sinks possessed excellent comprehensive properties, including uniform microstructures
and high thermal conductivity, making them promising for the thermal management of
high power devices.
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Figure 11. (a) The 3D printed AlN ceramic heat sink with an internal mini-channel structure,
(b) infrared thermal imaging of the ceramic heat sink with flowing water attached to the heating
stage at 110 ◦C, and (c) temperature distribution in the rectangular area before and after circulating a
certain flux of 50 mL/min cooling water.
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4. Conclusions

AlN ceramics with high density and thermal conductivity were successfully fabricated
using DLP 3D printing together with a micro-pressure-assisted sintering method. The
optimum exposure energy and time for printing were determined to be 60 mW·cm−2 and
12 s, respectively. The effects of the sintering temperature and nitrogen pressure on the
microstructure, density, and thermal conductivity of the AlN ceramics were thoroughly
investigated. The sintered samples consist of major AlN and minor YAP phases, wherein
the formation of YAP from Y2O3 and Al2O3 contributed to the densification of the AlN
ceramics. The optimum sintering temperature was determined to be 1720 ◦C with the assis-
tance of a low nitrogen-gas pressure less than 1 MPa. Compared with the ceramics sintered
at higher temperatures in a pressure-less condition, the density and thermal conductivity
of the ceramics obtained using the nitrogen gas pressure-assisted sintering method were
extensively improved. This was due to the fact that the diffusion ability of the secondary
phase was enhanced under gas pressure. With properly controlled sintering temperature
and gas pressure, the secondary phases could tend to gather at the trivalent grain bound-
aries, contributing to higher thermal conductivity. The AlN ceramics with a density of
3.35 g/cm3 and thermal conductivity of 168 W·m−1·K−1 were finally obtained by sintering
at 1720 ◦C with the assistance of a 0.6 MPa gas pressure nitrogen atmosphere, verifying
the feasibility of micro-pressure assisted sintering method for promoting densification of
nitride ceramics. Large-sized AlN ceramic plates and heat sinks with internal mini-channel
structures were further successfully designed and fabricated without obvious defects. With
the proper fluid flux of cooling water, the equilibrium temperature of the ceramic surface
could be reduced rapidly from a high-temperature heating source, indicating that the
high-efficiency heat transfer of the AlN ceramic heat sink could be achieved. In the near
future, the technology developed in the present work is promising for the fabrication of
high-performance thermal management materials for high-power or high-power-density
opto-electronic components.
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