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Abstract: The fact is that hundreds of holes are drilled in the assembly process of furniture sets, so
intelligent drilling is a key element in maximizing efficiency. Increasing the feed rate or the cutting
speed in materials characterized by a higher machinability index is necessary. Smart drilling, that
is, the real-time adjustment of the cutting parameters, requires the evolution of cutting process
variables. In addition, it is necessary to control and adjust the processing parameters in real time.
Machinability is one of the most important technological properties in the machining process, enabling
the determination of the material’s susceptibility to machining. One of the machinability indicators is
the unit cutting resistance. This article proposes a method of material identification using the short-
time Fourier transform in order to automatically adjust cutting parameters during drilling based on
force signals, cutting torque and acceleration signals. In the tests, four types of wood-based materials
were used as the processed material: medium-density fiberboard, chipboard, plywood board and
high-pressure laminate. Holes with a diameter of 10 mm were drilled in the test materials, with
variable feed rate, cutting speed and thickness of cutting layer. An innovative method for determining
the value of unit cutting resistance was proposed. The results obtained were used to determine the
machinability index. Based on the test results, it was shown that both the selected signal measures in
the time and frequency domains and the unit cutting resistance are constant for a given material of a
workpiece and do not depend on the drilling process parameters. In this article, the methodology is
proposed, which can be used as an intelligent technique to support the drilling process to detect the
material being machined using data from sensors installed on the machine tool. The work proposes
the fundamentals for material identification based on the analysis of force signals and the magnitude
of force derivatives. The proposed methodology shows effectiveness, which proves that it can be
used in intelligent drilling processes. Hybrid wood-based material structures consisting of different
materials are becoming more and more common in building structures for strength, economic and
environmental reasons. Due to the difference in the machinability of interconnected materials, cutting
parameters must be optimized in real time during machining. Currently, with the rapid development
of Industry 4.0, the on-line identification of parameters is becoming necessary to improve the process
flow in industrial reality. The proposed methodology can be used as an intelligent technique to
support the drilling process in order to detect the material being processed using data from sensors
installed on the machine tool.

Keywords: cutting resistance; drilling; material identification; permutation entropy; smart drilling

1. Introduction

Wood-based panels are becoming more and more widely used in many areas of indus-
trial production [1–4]. Their growing popularity is determined by numerous advantages
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over natural wood [5]. Wood-based materials are much cheaper, more homogeneous and
isotropic, more resistant to fungi, insects, etc. [4,6,7]. Moreover, they allow the creation of
flat surfaces of any dimensions—which is impossible in the case of solid wood. Therefore,
the fact that the capabilities of modern wood-based panels can be adapted to specific
applications, along with their strength properties and affordable price, make them a real
solution for reducing the demand for solid wood [5,8–11].

The use of wood-like panels in the furniture industry or other industrial fields involves
machining them, primarily drilling [12,13]. Therefore, currently, testing the machinability
of wood-based panels when drilled seems to be a significant issue [14,15]. Only on the
basis of (strictly defined and experimentally determined) relative machinability indices can
the machinability of different materials be compared—not only qualitatively, but also quan-
titatively. This type of comparison, made for different types of wood-based panels, seems
to be very important from the point of view of designers, producers and potential users,
especially when an innovative wood-based material is to be developed [16–18]. Unlike
metalworking, there are no standardized machinability tests for wood-based panels. There
are relatively few studies comparing the machinability of different materials with different
properties. Manufacturers of wood-based materials usually only provide their mechanical
properties. As a rule, there is no clear (quantified) information on the machinability of
these materials, while the machinability aspect of any structural or decorative material is
an important factor that can influence various phases of production, including product
design and the planning of production processes.

The hybrid structure of wood-based materials has become essential in building struc-
tures for economic and environmental reasons. Due to the different materials combined
in composite structures, the cutting parameters must be changed during machining to
enable machining optimization [19–21]. In the past, the procedure of optimizing cutting
parameters was omitted in the production process. Currently, with the rapid development
of the Industry 4.0 concept, the identification of parameters in real- time conditions is
becoming necessary to improve the machining process in industrial practice [22,23].

Smart factories are a key feature of the Industry 4.0 concept. The Industry 4.0 approach
focuses on creating intelligent products, processes and procedures [24] with an emphasis
on sustainable development [25,26]. The essence of the process is comprehensive factory
management, which allows for the reduction of erroneous factors. In such an environment,
there is more efficient production and communication between people, machines and
resources, in accordance with the principles of a social network [27,28]. In Industry 4.0, it is
assumed that standard jobs will be replaced by artificial intelligence and robots [21,29]. The
vision of the future of the European industry resulted in the inauguration of the Industry 5.0
Community of Practice (CoP 5.0) on 16 November 2023, which places even greater emphasis
on putting the wellbeing of the worker at the center of the production process [30].

The enormous and continuous increase in the possibilities of using computers since
the early 1990s and the simultaneous decline in their prices have resulted in more and
more manufacturers using IT techniques to control all phases of the production process.
There are many ways to process wood-based panels [7,31,32], so the machinability of these
materials can be tested in many ways. Nevertheless, the machinability of any type of
wood-based panel when drilled is one of the most important issues from a practical point
of view. This general belief can be proven in many ways, but it seems that two basic
arguments suffice. Firstly, resistance to axial screw removal is one of the most important
technical parameters characterizing wood-based panels. The experimental procedure re-
quires drilling an appropriate hole in order to install the screw, which is why drilling
is a very basic form of chipboard processing. Secondly, drilling is now not only used
to make holes in the furniture industry. Drilling tests are widely considered the most
convenient (fastest and most economical) method for the relative assessment of the machin-
ability of any wood or wood-based materials [33,34]. Any scientific study of machinability
must be strictly experimental. In general, it has long been known that any attempts to
theoretically determine machinability based on the mechanical properties of the mate-
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rial are imprecise [31,35]. This may contradict the belief that, for example, knowledge
of the tool geometry, cutting parameters and standard material properties allow for the
theoretical determination of the cutting forces. Previous investigations show that real
machining processes, such as drilling, are too complex from a physical point of view to
find a direct relationship between the cutting forces and the tensile or shear strength of
the processed material [31,32,35]. We are simply forced to conduct experimental research.
Unfortunately, there is no generally accepted standard that can be directly applied to
testing the machinability of wood-based materials. One of the most reliable test proce-
dures (which can be used for drilling wood-based panels) was proposed and tested by
Podziewski et al. [31]. The procedure takes into account two basic aspects (criteria) of machin-
ability: hole quality and cutting force. This is due to the fact that Podziewski et al. [31] (after
consulting scientists dealing with cutting theory and woodworking engineers) concluded
that these are the only two basic criteria that are important when drilling in wood-based
materials. The problem of machining quality may significantly limit the scope of applica-
tion of the construction material, and excessive drilling resistance may result in the need to
limit the feed rate and reduce machining efficiency.

This article proposes methods for identifying the material being processed in the
process of drilling four types of wood-based materials using the short-time Fourier trans-
form (STFT) analysis of the acceleration signals measured in the X, Y and Z directions.
A simplified method for determining the value of the unit cutting resistance is also pro-
posed, which can be used in the process of identifying the cut material. Additionally,
using the permutation entropy measure of the time series of thrust force, its effectiveness
and usefulness in identifying the machined material is demonstrated. The aim of the
research was to propose the basis of an approach to the automatic (on-line) adjustment of
cutting parameters during machining based on selected signal measures in the time and
frequency domains.

2. Experimental Procedure
2.1. Test Materials

In the tests, four types of wood-based materials were used as the test materials:
medium-density fiberboard (MDF), chipboard, plywood board and high-pressure laminate
(HPL). Figure 1 shows the materials processed during the tests. The first three materials are
the most frequently used materials in the furniture industry. HPLs, on the other hand, are
composed of pressurized wood fiber laminated layers, which, thanks to high density and
hardness, are very resistant to damage. HPLs are characterized by a durable coating and
resistance to fading and mechanical damage. This, in turn, makes it suitable for a wide range
of applications in the furniture industry. Before starting the basic research, measurements
of the selected mechanical and physical properties of the processed materials were carried
out. The density of the HPL was measured in accordance with the ISO 1183-1 [36] standard,
and, for the other materials, the EN 622-5 [37] standard was used. Mechanical properties
for HPL were determined in accordance with the EN ISO 178 [38] standard, and, for the
other materials, the EN 310 [39] standard was used.
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The Janka hardness value (Figure 2) was determined using a Janka ball test with a
steel ball with a diameter of 11.28 mm, according to ASTM D 1037 [40] standard. The load
was applied continuously throughout the test, with a uniform speed of movement of the
moving crossbar of the universal testing machine of 5 mm/min. As a measure of hardness,
the maximum load required to push the ball into the wood to a depth of half the ball’s
diameter was recorded. The materials used in the research are characterized by a clear
variation in material density in the cross-section [41], which results from their characteristic
multi-layer structure.
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Figure 2. Results of the Janka ball test: (a) research methodology, (b) research results.

In order to visualize the structure and analyze the chemical composition, the test ma-
terials were analyzed using a TESCAN® scanning electron microscope (TESCAN, MIRA3,
Brno, Czech Republic). Before starting measurements using a scanning electron microscope
(SEM), it was necessary to properly prepare the samples. Due to the fact that the materials
are dielectrics, it was necessary to apply (spray) a thin layer of electrically conductive
material on them. Samples of test materials were placed in a Memmert forced-air drying
oven (Memmert GmbH, Buchenbach, Germany) for 15 min at a temperature of 60 ◦C to
evaporate the acetone used to clean the samples and prepare the samples for the sputtering
process. Then, the acetone-dried samples were placed in a Q150 (Quorum, San Jose, CA,
USA) high-vacuum sputtering machine in order to apply a thin layer of copper to the
surface of the samples, which helps to improve electrical conductivity (Figure 3) during
SEM examination. The samples were sputtered with copper for 60 s, the current intensity
during sputtering was 60 mA. The sputtered samples were placed in a SEM equipped
with an EDS (energy dispersive X-ray spectrometer) from TESCAN® (MIRA3, Brno, Czech
Republic), and qualitative and quantitative measurement of the chemical elements were
carried out. The results of the tests are presented in Table 1. As can be seen, the materials
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used in the tests are characterized by quite significant differences in mechanical properties.
The mechanical properties of materials are fundamental to understanding the behavior of
materials in machining processes.

Figure 3. High-vacuum sputtering machine Q150.

Table 1. Selected mechanical and physical properties of the test materials (values in parentheses are
standard deviations).

Test Material Density
(kg/m3)

Bending Strength
(MPa)

Elasticity Modulus
(MPa)

Janka
Hardness

(N)

Plywood board 650 (32) 85 (9) 5600 (261) 3228 (189)
MDF 730 (23) 38 (4) 2530 (176) 4932 (245)
HPL 1470 (29) 110 (13) 9250 (349) -

Chipboard 690 (19) 12 (3) 1850 (138) 2367 (153)

The structures of the processed materials differ from each other. Figure 4 shows the
different arrangements of the structures and the differing densities, which translate into,
among other things, the hardness of the material. The HPL is characterized by a uniform
arrangement of layers. For the plywood board, layers of varying density can be noticed.
MDF has a medium-density structure. The internal structure of chipboard is irregular.
After the EDS analysis (Figure 5), it can be seen that the following elements are present
in all the materials: oxygen, carbon, iron and sulfur. For HPL, the percentage of carbon
is the highest compared to other materials and is approximately 47.5%. The presence of
magnesium was noticed in the composition of the HPL material.
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2.2. Cutting Tool

The tests used a typical cutting tool intended for wood-based materials, a single-edge
drill with a diameter of 10 mm with polycrystalline diamond (PCD) blades from Leitz® Dia-
master PRO (Leitz, Oberkochen, Germany). The drill marking is DP/D10/NL30/S10x27/
GL70/RL. This drill is used in processing materials such as wood, chipboards, resin boards,
plastics and reinforced plastics. As in the case of the machined material, a spectral analysis
of the elements constituting the cutting tool material (Figure 6a,b) was performed using a
TESCAN® SEM (TESCAN, MIRA3, Brno, Czech Republic).

After the EDS analysis (Figure 6d), it can be seen that the dominant elements are
carbon, nickel, cobalt and tungsten. PCD is a material produced by polymerizing diamond
micropowder with metallic binders (such as Co, Ni, etc.). During the sintering process,
thanks to the addition of additives, a connecting bridge is created between PCD crystals,
the main components of which are Co, Mo, W, WC and Ni (Figure 6c), and the diamond is
permanently embedded in the strong skeleton resulting from bonding.
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2.3. Equipment and Machining Conditions

The drilling process was carried out on an EMCO® CNC vertical milling machine
(EMCO GmbH, Hallein, Austria). A schematic diagram of the configuration of the mea-
surement track and the measurement data archiving system is shown in Figure 7. During
the drilling process, acceleration signals in the directions ax, ay and az, thrust force Ft and
cutting torque Ms, and an additional acoustic emission signal AERMS were recorded with
an integrating constant τ = 0.12 ms.
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As part of the research, holes were drilled on a CNC milling machine in prepared
samples (Figure 1), cut from plywood board, MDF and chipboard, with dimensions of
130 × 30 × 18 mm. The thickness of the HPL was 10 mm. The acceleration signal value
in three mutually perpendicular directions was measured using a KISTLER® 8763B piezo-
electric acceleration sensor (KISTLER, Winterthur, Switzerland), which was mounted on
the workpiece (Figure 7). The thrust force Ft and cutting torque Ms were measured using
a KISTLER® 9345B sensor (KISTLER, Winterthur, Switzerland). The acoustic emission
signal was measured using a KISTLER® 8152C sensor (KISTLER, Winterthur, Switzerland).
Signals from the sensors were recorded on the hard drive of a personal computer in digital
form via a National Instruments® 6034E (Austin, TX, USA) analogue-to-digital card. The
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sampling frequency of signals during the experiments was 50 kHz, and the measurement
resolution of the card was 16 bits.

Tables 2 and 3 summarize the cutting parameters used during the drilling experiments.
Three repetitions were performed for each set of cutting parameters. The studies were
divided into two groups. In the first group, holes were drilled in the solid material with the
parameters shown in Table 2, recording all signals (Figure 7) measured during the cutting
process. However, in the second group (Table 3), first, a hole with a diameter of 3 mm was
drilled and then, redrilling was carried out with a drill with a diameter of 10 mm. In this
case, only the thrust force and cutting torque signals were recorded. The above-described
research methodology was repeated for all four types of materials machined with both
groups of adopted cutting parameters. This allowed for the experimental determination of
the cutting resistance. Figure 8 shows the distribution of cutting forces during redrilling.

Table 2. Machining parameters of the drilling process.

Cutting Speed vc (m/min) Feed Per Tooth fz (mm) Feed Rate vf (mm/min) Rotational Speed of Tool n (rpm)

78
0.15 375

25000.20 450
0.25 525

94
0.15 500

30000.20 600
0.25 700

109
0.15 625

35000.20 750
0.25 875

Table 3. Machining conditions during redrilling.

Thickness of the Cutting
Layer b (mm) Feed Per Tooth fz (mm) Feed Rate vf (mm/min)

0.05 0.07 177
0.10 0.14 354
0.15 0.21 530
0.20 0.28 707
0.25 0.35 884
0.30 0.42 1061
0.35 0.49 1237

Materials 2024, 17, x FOR PEER REVIEW 8 of 27 
 

 

 

Figure 7. Experimental set-up and schematic of the data acquisition system. 

As part of the research, holes were drilled on a CNC milling machine in prepared 

samples (Figure 1), cut from plywood board, MDF and chipboard, with dimensions of 130 

× 30 × 18 mm. The thickness of the HPL was 10 mm. The acceleration signal value in three 

mutually perpendicular directions was measured using a KISTLER® 8763B piezoelectric 

acceleration sensor (KISTLER, Winterthur, Switzerland), which was mounted on the 

workpiece (Figure 7). The thrust force Ft and cutting torque Ms were measured using a 

KISTLER® 9345B sensor (KISTLER, Winterthur, Switzerland). The acoustic emission signal 

was measured using a KISTLER® 8152C sensor (KISTLER, Winterthur, Switzerland). Sig-

nals from the sensors were recorded on the hard drive of a personal computer in digital 

form via a National Instruments® 6034E (Austin, TX, USA) analogue-to-digital card. The 

sampling frequency of signals during the experiments was 50 kHz, and the measurement 

resolution of the card was 16 bits. 

Tables 2 and 3 summarize the cutting parameters used during the drilling experi-

ments. Three repetitions were performed for each set of cutting parameters. The studies 

were divided into two groups. In the first group, holes were drilled in the solid material 

with the parameters shown in Table 2, recording all signals (Figure 7) measured during 

the cutting process. However, in the second group (Table 3), first, a hole with a diameter 

of 3 mm was drilled and then, redrilling was carried out with a drill with a diameter of 10 

mm. In this case, only the thrust force and cutting torque signals were recorded. The 

above-described research methodology was repeated for all four types of materials ma-

chined with both groups of adopted cutting parameters. This allowed for the experimental 

determination of the cutting resistance. Figure 8 shows the distribution of cutting forces 

during redrilling. 

  
(a) (b) 

Figure 8. (a) Distribution of the cutting forces during redrilling and (b) parameters of the cutting 

layer. 

  

Figure 8. (a) Distribution of the cutting forces during redrilling and (b) parameters of the cutting layer.

After a preliminary analysis, it was determined that, in the case of redrilling in wood-
based materials, an effective solution would be to carry out the redrilling process using
different thicknesses of the cutting layer. It was assumed that, to determine the cutting
resistance for each of the test materials, it would be optimal to determine seven values
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of the thickness of the cutting layer, starting at 0.05 mm and increasing successively in
0.05 mm steps up to 0.35 mm. For each cutting depth, the feed per tooth and the feed rate
increased similarly (Table 3).

Before starting the research, the basic geometry of the drill cutting edge was deter-
mined. The drill lip clearance was κr = 45◦, which means that sinκr = 0.707. Then, the width
of the cutting layer (b) was determined, which was a constant parameter for all the drilling
tests: b = ap/sinκr = 4.95 mm. To carry out the tests, it was necessary to calculate the feed
per tooth fz and feed rate vf for each cutting layer thickness (Table 3).

3. Results
3.1. Cutting Resistance

Machinability is a concept describing a set of indicators and criteria determining
the machinability of a material under specific conditions, while the ability of a tool to
perform machining is defined by the cutting ability. Both parameters depend primarily
on the type of cutting process, the blade geometry, and the material of the workpiece.
Machinability and cutting ability indicators are selected to suit specific needs. So far, no
clear quantitative indicator of machinability has been developed. The basic and most
frequently used indicators include the cutting speed and the surface roughness parameters
Ra and Rz. A material that is well machinable is one that can be processed at a high periodic
cutting speed while maintaining low surface roughness during finishing. These criteria are
often contradictory. Therefore, durability and smoothness indicators are usually treated
separately. The method of determining machinability using the cutting resistance is used
especially in drilling, in particular when drilling small holes. In this case, care should
be taken to reduce the cutting resistance, for example, by selecting the appropriate blade
geometry. The main reason for this is the tight balance between the cutting torque and the
strength of the tool, which can lead to tool damage.

The forces acting in the shear zone do not depend directly on the tool type, but only
on the workpiece material, so it is worth trying to determine this relationship. Based
on measurements of the force parallel to the shear plane Fs and the cutting force Fc per
millimeter of the width of the cutting layer as a function of the length of shear zone ls,
Das and Tobias [41] noticed that these lie along a straight line for a wide range of cutting
parameters, blade geometry, blade material, and other cutting conditions. It was found that
the forces Fs and Fc depend only on the material being processed. Equations of straight
lines can be presented in the following form [34]:

Fs = Fsw + Fsk = kswAs + Kskb (1)

Fc = Fcw + Fck = kcwAs + Kckb (2)

where As = b × ls is the area of the shear plane; Ksk is the unit component of the cutting
force (per 1 mm of the cutting edge length), projected onto the direction of the shear plane;
ksw is the unit shear force (per 1 mm2 of shear surface area), representing specific shear
resistance; Kck is the unit component of the cutting force (per 1 mm of cutting edge length),
projected onto the direction of cutting speed; and kcw is the unit cutting force (per 1 mm2

of shearing surface area), representing main shear resistance.
As could be expected, the cutting forces are proportional to the length of the cutting

edge (equal to the width of cutting layer), and the forces resulting from the process of
turning the cutting layer into a chip are proportional to the area of the shear plane. The
specific shear resistance ksw can, therefore, be considered, to some approximation, as a
material constant [33].

The main shear resistance kcw is, like the specific shear resistance ksw, approximately,
a material constant. The ratio kcw/ksw is therefore also constant for a given workpiece
material, and it has been called the universal machinability index D [34]:

D =
kcw

ksw
= const (3)
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The area of the shear plane depends on the cross-sectional area of the cutting layer
and the shear angle ∅ [34]:

As = bls = b
h

sin∅
(4)

Substituting (4) into (2), we obtain the physical formula for the cutting force:

Fc = Fcw + Fck = bh
kcw

sin∅
+ bKcw (5)

The orthogonal force Fo, according to the Das and Tobias model, is described by
the formula [41]

Fo =
Dcos∅ − 1

Dsin∅
(6)

The specific cutting resistance kc is defined as the ratio of the main component of the
cutting force Fc to the cross-sectional area of the cutting layer AD:

kc =
Fc

AD
(7)

To understand the dependence of the specific cutting resistance kc on the thickness of
the cutting layer, the specific cutting resistance can be represented by two components:

kc =
Kck
h

+
kcw

sin∅
= kc1 + kc2 (8)

The first of these, being the ratio of the force Kck per millimeter of the active length
of the cutting edge to the thickness of the cutting layer h, plays an important role only
for small thicknesses of the cutting layer. For larger thicknesses of the cutting layer, this
component is insignificant, and the main role is played by the second component, which
depends on the shear angle ∅. As it is known, the shear angle increases with the thickness
of the cutting layer, which results in a slight reduction in shear resistance. The specific
cutting resistance is not determined by Equation (8), but experimentally, directly from
Equation (7), along with the approximation by a power law function. The power function
used to approximate kc(h) has the general form

kc = kc1.1h−mc (9)

where kc1.1 is the cutting force needed to remove the cutting layer with a thickness of
h = 1 mm and a width of b = 1 mm (unit cutting force), and mc is the exponent deter-
mined experimentally using the least squares method based on the results of the force
measurements as a function of the thickness of the cutting layer.

Substituting (9) into (7) gives an engineering formula for the cutting force, the so-called
Kienzle equation [42]:

Fc = kc1.1bh1−mc = kc1.1bhyc (10)

Equation (10) is used by engineers when determining, for example, the cutting power
for selecting a machine tool, based on the constants from available catalogues or online
calculators offered by tool manufacturers. It should be noted that Equation (10) can be
used regardless of the type of machining process and blade geometry, which makes this
equation universal.

Analyzing the course of the thrust force Ft and cutting torque Ms recorded during the
tests (Figure 9), it can be noticed that the signals contain characteristic fragments respon-
sible for the entry and exit of the tool from the material, at which the signals increase or
decrease accordingly.
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Force fluctuations related to the passage of the cutting tool through layers of the
workpiece material of different densities can be distinguished in the signal. It was noticed
that, during drilling, characteristic fragments of the thrust force Ft signal could be extracted.
The first fragment is the area where the chisel edge of a grill enters the workpiece material;
thus, the thrust force increases. Then, the drill starts cutting the outer layer of the material
with the highest density. For HPL, this does not occur because the density of the material
is similar throughout the entire cross-section of the board. When the drill leaves the area
of the material with increased density, the force decreases because the drill cuts into the
middle layer of lower density. Then, there is a signal fragment in which the drill penetrates
to a depth equal to the height of the drill’s cutting blades. This is cutting with a constant
cross-section of the cutting layer in the middle layer of the workpiece. This results in
stabilization of the thrust force value. At the beginning of the next fragment of signal, the
value of the thrust force begins to increase due to the fact that the drill begins to penetrate
the outer layer of the material with a higher density.

When pressing the drill into the workpiece, the value of the cutting torque signal
is approximately equal to 0. After the cutting process begins, the cutting torque value
gradually increases until the maximum cross-section of the cutting layer is reached. After
this stage, the torque signal stabilizes during cutting with a constant cross-section of the
cutting layer. Finally, as the drill approaches the outer layers of materials with increased
density, the cutting torque increases slightly.

When determining the cutting resistance, we must take into account the cutting torque
Ms values during the drilling process (Figure 9). An application in the LabVIEW program
was developed that allows the cutting torque value to be automatically determined from
specific signal locations.

Using the cutting parameters shown in Table 3, drilling tests were performed on four
workpiece materials. Figure 10 shows the distribution of forces occurring in the drilling
process adopted in the research. In our case, there was only one force vector Fc resulting
from the drill geometry shown in Figure 6a (one cutting edge).



Materials 2024, 17, 2033 12 of 26

Figure 10. Distribution of the forces in the drilling process.

As mentioned earlier, the specific cutting resistance is defined as the ratio of the cutting
force to the cross-sectional area of the cutting layer (Equation (7)). To determine the cutting
resistance kc for the tested materials, it was necessary to determine the instantaneous value
of the cutting torque Ms occurring in the drilling process. The cross-sectional area of the
cutting layer was variable, depending on the feed speed values used. The cutting width
b remained constant, while the thickness of the cutting layer changed depending on the
drilling parameters; therefore, before determining the specific resistance, it was necessary to
calculate the cross-sectional area of the cutting layer for all drilling tests using the equation

Ad = h · · · b (11)

Knowing the values of the cutting force Fc and the Ad, the values of specific cutting
resistance were determined at given drilling parameters for all the tested materials. For
this purpose, the distribution of the cutting resistance values depending on the considered
point on the cutting edge was described (Figure 11).

Figure 11. Distribution of the cutting resistance along the cutting edge of the drill.

As can be seen from Figure 11, the cutting resistance kc(ρ) acting on the infinitesimal
element dAd of the cross-section of the drill cutting edge gives the elementary torque dMs
relative to the drill axis:

dMs = kc(ρ)·ρ·dAd (12)

where kc(ρ) is the cutting resistance at considered radius ρ, and dAd is the elementary area
of the cutting layer.

The equilibrium conditions show that the sum of these elementary moments collected
over the entire length of the cutting edge of the drill must be equal to the moment Ms acting
on the drill:

Ms =
∫

Ad

dMs =
∫

Ad

kc(ρ)·ρ·dAd (13)

Taking into account the distribution of the cutting resistance along the cutting edge of
the drill,

kc(ρ)

kc
=

ρ

ρmax
(14)
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We determine kc(ρ) and, after substituting into Equation (13), we get

Ms =
∫

Ad

kc·
ρ

ρmax
·ρ·dA (15)

The radius R as a constant for the entire integration area and the maximum cutting
resistance kc can be taken before the integral sign, and then,

Ms =
kc

ρmax

∫
Ad

ρ2·dA (16)

The elementary surface area dAd can be expressed as

dAd = dρ·h (17)

where h is the thickness of the cutting layer.
Substituting the Equation (17) into Equation (16), we get

Ms =
kc·h
ρmax

R∫
r

ρ2·dρ (18)

In our case, the radius ρmax is equal to the radius of the drill, and then,

Ms =
kc·h

R

R∫
r

ρ2·dρ (19)

Integrating Equation (19) we get

Ms =
kc·h
3·R

(
R3 − r3

)
(20)

After transforming Equation (20), we obtain the relationship determining the cutting
resistance:

kc =
3·Ms·R

h·
(

R3 − r3
) (N/mm2) (21)

The cutting torque values, on the basis of which the specific cutting resistance was
determined, are presented in Table 4. The cutting torque increased with the increase in the
thickness of the cutting layer.

Table 4. Cutting torque values.

Test Material
Thickness of the Cutting Layer (mm)

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Cutting torque (Nm)

Plywood board 0.21 0.32 0.28 0.40 0.47 0.66 0.71
MDF 0.08 0.12 0.15 0.17 0.20 0.24 0.28
HPL 0.45 0.62 0.80 0.87 0.99 1.08 1.18

Chipboard 0.11 0.15 0.22 0.23 0.26 0.31 0.33

The procedure for determining the cutting resistance from Equation (21) was repeated
for all the tested materials. In this case, it was possible to obtain the value of the unit cutting
resistance kc1.1 and the exponent mc for each tested material. The charts and the parameters
existing in Equation (9) are presented in Figure 12.
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Figure 12. The unit cutting resistance in the drilling process: (a) MDF, (b) chipboard, (c) plywood
board and (d) HPL.

Table 5 presents the values of the unit cutting resistance determined in the conducted
tests. As can be observed, the value of the specific cutting resistance is strongly dependent
on the type of material.

Table 5. The value of the unit cutting resistance kc1.1 and the exponent mc.

Workpiece Material kc1.1 (N/mm2) mc

MDF 56 −0.42
Chipboard 72 −0.44

Plywood board 138 −0.43
HPL 248 −0.52

Knowing the value of the unit cutting resistance allows the determination of the value
of the force Fc based on the Kienzle equation (Equation (10)).

3.2. Dynamic Characteristics of the System

An important stage in the analysis of the acceleration (Acc.) signal in the frequency
domain is to determine the frequency characteristics of the analyzed system. When the
system is excited by excitation x, we obtain the response y of the system to the existing
excitation (Figure 13).

Figure 13. Data flow in a dynamic system.
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The Dirac pulse (called the Dirac delta function) was used to determine the impulse
response of the system (Figure 14). The Dirac delta function is approximated by a rectangu-
lar pulse, but it can have any shape, provided that the unit value of the integral

∫ +∞
−∞ δ(t)dt

is maintained at 1 with the duration approaching zero.
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Figure 14. Dynamic analysis of the MHC system: (a) excitation of the MHC system using modal
hammer and (b) the main natural frequencies of the MHC system.

The Fourier transform is a basic tool for spectral analysis, which entails searching for
components with different frequencies in a signal. The Fourier transform can be interpreted
as the correlation of the analyzed signal x(t) with the complex function e−j2πft, containing
harmonic signals (cosine and sine) with frequency f: e−j2πft = cos(2πft) – jsin(2πft).

A dynamic analysis of the machine-holder-cutting tool (MHC) system was carried
out. For this purpose, the system was excited by an excitation in the form of a Dirac pulse
(modal hammer) (Figure 14a). Knowing the forcing force signal and the system’s response
in the form of acceleration, a modal analysis was performed to determine the natural
frequency of the system (Figure 14). The onset of a single hit was then determined. This is
recognized in the strength signal as exceeding a threshold that is five times the maximum
value of the first 100 signal samples. Then, 750 samples are extracted [43]. Figure 14b shows
an example of time waveforms and their spectra extracted from the entire signal.
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3.3. Analysis of Short-Time Fourier Transform Signals

The acceleration signal was measured in both the transverse X, Y and axial Z directions.
Acceleration signals on the analyzed directions contain information regarding the following:

• The vibrating length of the drill in the transverse and axial directions does not change
during the drilling process, thus maintaining a rather constant frequency,

• Natural frequencies in the lateral and axial directions of the MHC system during
drilling are essentially insensitive to the drill diameter, which simplifies monitoring
for a wide range of drill sizes,

• The vibration in the X, Y and Z directions is influenced by the cutting torque and
thrust force, which are the main sources of excitation during drilling.

3.3.1. Signal Analysis in the Time Domain

Figure 15 shows the thrust force and torque signals, and the accelerometer (Acc)
signals in the time domain in the X and Y (lateral) and Z (vertical) directions, recorded for
the selected sample.
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Figure 15. Acceleration signals (left) and signals of the thrust force and torque (right) in the time
domain, registered for cutting speed 94 m/min and feed rate 700 mm/min.

Drilling was carried out with the spindle speed of n = 3000 rpm, the feed rate of
vf = 750 mm/min and the drill diameter of 10 mm. As can be seen, the vibration signals can
be characterized as consisting of short high–low frequency oscillatory transients occurring
randomly over the duration of drilling. As the density of the cutting material increases, the
amplitude of these signals increases. The excitation frequency of the MHC system in the
drilling process is independent of cutting conditions such as feed rate and cutting speed.
The majority of vibration signals consist of frequency components related to the dynamics
of the cutting system.

Figure 16 illustrates the idea of three known signal analysis methods: time, frequency
and time–frequency (short-time Fourier transform—STFT). It is clearly visible that, in the
STFT method, the time–frequency resolution is fixed over the entire time/frequency plane
(Figure 16c). When analyzing the signal using the fast Fourier transform (FFT), we do not
have any information about changes in the frequency of the signal being examined over
time (Figure 16b). In some cases, this information is very helpful.
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Figure 16. Comparison of analysis methods: (a) time (observation of signal properties in the time
domain), (b) frequency (observation of signal properties in the frequency domain), and (c) STFT
(observation of signal properties in the time–frequency plane).

STFT allows the recovery of the time information that is lost when using FFT. STFT is
characterized by a relatively short computation time. By selecting the appropriate sampling
time and the length of the time window, it is possible to optimize the method to obtain
the greatest ‘sensitivity’ in the frequency area on which the analysis is focused. The main
disadvantage of the method is the fixed size of the time window. This results in the quality
of time information being inversely proportional to the quality of the frequency information,
which means that a higher resolution of one parameter worsens the accuracy of the other.

STFT enables the extraction of information from a signal about how its spectrum
changes over time, that is, the simultaneous observation of signal properties in both the
time and frequency domains. The signal window (samples in the range L) intended for
analysis is divided into segments, and each segment is independently analyzed spectrally.
Successive ‘shifting of the time window’ allows the localization of the spectral parameters
of the signal in time (Figure 17).

Figure 17. A floating time window.

The use of a floating (movable) time window allows the determination of the phase
content of a signal as it changes over time. Mathematically, STFT can be written as

STFT{x(t)} = X(τ,ω) =
∫ ∞

−∞
x(t)ω(t − τ)e−jωτdt (22)

where x(t) is the analyzed signal and ω(t) describes the time window function.
By moving the window in time along the signal, its spectral content is determined

within a time interval whose length is determined by the window width. The shape of the
time window plays a key role in STFT. The product of the window width (L) in the time
domain and the window width in the frequency domain is a constant value for a given
window. Hence, by improving the resolution in the time domain, it will deteriorate in the
frequency domain and vice versa. Therefore, the window width is chosen as a compromise.
STFT provides information about whether and when a given frequency component is in
the time domain. However, this information has limited precision depending on the size of
the time window in which the analysis is performed.

The square of the STFT amplitude a”lows’us to obtain the spectrogram function:

spectrogram{x(t)} = |X(τ,ω)|2 (23)

To analyze the recorded acceleration signals, a custom application was created in the
LabVIEW program to enable the determination of selected values of the recorded signals at
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selected time intervals. The application worked by automatically determining the values of
recorded signals at precisely defined time intervals.

It is obvious that most of the recorded acceleration signals do not show clearly char-
acteristic features related to the transition from drilling in the MDF board to drilling in
the HPL. However, after analyzing the acceleration signals in the frequency domain, a
characteristic frequency range could be observed, where an increased value of the am-
plitude signal was the dominant feature depending on the material being processed. To
obtain frequency ranges characteristic for the type of material being processed, short time
intervals were analyzed and the signal spectra were determined. ‘Windowing’ involves
the convolution of the input signal and the time window function in the time domain. The
result of the above operation is a change in the signal amplitude as a window function.
The time window is a function that describes how samples are obtained from the analyzed
signal. Assuming that a certain signal s(n) is given in a finite time interval, then the result
of observing such an impulse in the time window will be the function g(n) described by
the following formula:

g(n) = s(n)w(n), n ∈ (−∞;+∞) (24)

where w(n) is the mentioned window function.
A special example of a time window is the Hamming window. Developed by R. W.

Hamming, it minimizes the maximum value of the nearest side lobes and is characterized
by the following formula:

w(n) = α− βcos
(

2πn
N − 1

)
(25)

where α = 0.54, β = 1 – α = 0.46 and N is the number of signal samples.
Obtaining a spectrogram enabling effective signal identification requires the appro-

priate selection of parameters such as window width, window function and time domain
resolution. The highest resolution in the time domain can be obtained by using an overlap
of N – 1 samples, but moving the window in each step by only one sample is associated with
a significant increase in the time required for the calculations. Therefore, in the conducted
research, an overlap of 50% of the window length was used. The proper selection of the
window length is a slightly more complex issue. The highest efficiency was achieved when
the ratio of the mean square frequency of length A to the duration B was equal to the ratio
of the frequency increase to the time during which the increase took place:

A
B

=
∆f
∆t

(26)

The problem of selecting the type of window function and its parameters should be
a compromise between the signal quality obtained at the output and the time necessary
to perform the calculations. Two basic parameters are used to evaluate the properties of
the windows used in the STFT transform: the main lobe width and maximum height of
side lobes of their spectrum determined using the basic Fourier transform. It should also
be noted that the selection of the window function itself is a compromise between the
width of the main lobe, the level of the first side lobe and the speed of change of side lobe
height with increasing frequency. Therefore, it is a compromise between the accuracy of
the amplitude value and the frequency.

3.3.2. Vibration Spectra in the Transverse X and Y Directions

Figures 18 and 19 show the power spectra of vibration signals generated in the X
and Y directions during drilling in various types of workpiece materials. The cutting
parameters were n = 3000 rpm and vf = 750 mm/min. As shown in the figures, the
maximum amplitude of the vibration signal in the frequency range varies in the range from
2 to 22 kHz, depending on the type of material being processed. It can be seen that, when
drilling in plywood board (Figures 18a and 19a), the power spectrum has characteristic
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increases in amplitude at frequencies of approximately 10 kHz in the X direction and
11 kHz and 12.5 kHz in the Y direction. When drilling in HPL (Figures 18b and 19b), the
power spectrum has characteristic increases in amplitude at frequencies of approximately
19 kHz in the X direction, and 19 kHz in the Y direction. When drilling in the MDF material
(Figures 18c and 19c), the power spectrum has characteristic increases in amplitude at
frequencies of approximately 10 kHz in the X direction and 7.5 kHz in the Y direction.
When drilling in a chipboard (Figures 18d and 19d), the power spectrum has characteristic
increases in amplitude at frequencies of approximately 2.5 kHz in the X direction and
2 kHz in the Y direction. Comparing the obtained values of the amplitude of the dominant
frequency, depending on the material being processed, it can be concluded that there is
a significant impact of the processed material on the range of the dominant frequency of
the signal. It can also be observed that there is a correlation between the hardness of the
workpiece material and the dominant frequency range in the vibration signal. For example,
for the HPL, the value of the dominant frequency is approximately 19 kHz (material with
the highest hardness) and, for chipboard, it is approximately 2.5 kHz (material with the
lowest hardness).
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Figure 14b shows the main natural frequencies of the MHC system obtained during
dynamic analysis of this system. It is obvious that the high-frequency components in
the vibration signals observed in the signals do not correspond to one or more of the
natural frequencies of the machine spindle and the frequencies of the workpiece mounting
system [43]. The above analysis did not consider the effect of cutting edge wear on the
vibration signal signature.

3.3.3. Vibration Spectra in the Z Direction

Figure 20 shows the power spectra of the vibration signal in the Z direction ob-
tained for the different materials processed in the drilling process. The cutting conditions
were the same as those used in the tests in the X and Y directions. The vibration spec-
tra resulting from the type of material being machined in the Z direction are different
from those obtained in the X and Y directions. As shown in Figure 20, different areas of
frequency ranges were excited during drilling. Two characteristic amplitude peaks are
visible in the analyzed signals. When drilling in plywood board (Figure 20a), the signal of
power spectrum has characteristic increases in amplitude at frequencies around 8 kHz and
22 kHz. When drilling in HPL (Figure 20b), the power spectrum has characteristic increases
in amplitude at frequencies around 4 kHz and 22 kHz. When drilling in MDF material
(Figure 20c), the power spectrum has characteristic increases in amplitude at frequencies
around 3 kHz and 8 kHz. When drilling in a chipboard (Figure 20d), the power spectrum
has a characteristic increase in amplitude at frequencies of approximately 2.5 kHz in the
Z direction.
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By comparing the values of the amplitude of the dominant frequency, a significant
influence of the processed material on the dominant frequency range in the signal can
be distinguished. It is not as clear as in the case of the signal spectra in the X and Y
directions (Figures 18 and 19). However, a significant correlation between the hardness of
the processed material and the dominant frequency range in the vibration signal can no
longer be observed.

In general, the vibration signals measured in the X, Y and Z directions are influenced
by the type of material being processed. The results clearly show that vibration spectra can
be used to identify the workpiece material. Various types of information can be extracted
from the analysis of vibration signals in both the time and frequency domains. These
results show that there are specific differences related to the material removal mechanism
between drilling processes of different materials, detectable by acceleration signals. This
means that evaluating the signal in the frequency domain will enable clear identification of
the material.

3.4. Permutation Entropy

Measuring the time series complexity of a dynamic system is an interesting topic
in science and engineering because its complexity is related to complex internal patterns
hidden in the system’s dynamics. If there is no recognizable structure in a system, it
is considered stochastic. Permutation entropy (PermEn) refers to the local order of the
structure of a time series that gives quantitative measures of complexity. The mathematical
details of the PermEn method can be found in [6,44]. The concept of PermEn was introduced
by Bandt and Pompe [44] to arrange subsequent values of a time series, neglecting the scale
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of the differences between them. Moreover, Keller et al. [45] described the permutation
analysis approach.

The permutation entropy of a time series is the Shannon entropy of the distribution of
order patterns in the time series [46]. Such ordinal patterns, describing the ordinal types
of vectors, are encoded by Permutations. Let us denote the set of permutations {1, . . ., d}
for d belonging to the natural numbers by Πd. We say that the vector X defined by the
elements x(1), x(2), . . ., x(d) has the ordinal formula π = (π1, . . ., πd) ∈ Πd, which orders
these elements:

x(π1) < x(π2) < . . . < x(πd) (27)

If x(i) = x(j), we determine that x(i) < x(j), when i < j. The elements of the set Πd are
divided into overlapping vectors of length d according to the following scheme:

(x(1), . . ., x(d)), ((x(2), . . ., x(d+1)), . . ., (x(N − d+1), . . ., x(N)) (28)

A specific pattern is assigned to each vector according to Equation (27), thanks to
which we obtained a distribution of ordinal patterns. The number of possible patterns
of length d is d!. The main application of pattern decomposition is to calculate entropy
as a measure of the disorder of a system, that is, PermEn. The distribution of PermEn is
determined empirically by counting the probability of each pattern occurring in the entire
sequence N of data according to the formula

p(π) =
|{n : 0 ≤ n ≤ N − d + 1, (x(n), x(n + 1), . . . , x(n + d − 1))is type π}|

N − d + 1
(29)

The PermEn formula is based on the Shannon entropy formula, but instead of the
probability distribution of events, the following pattern of probability distribution was used:

PermEn = −
d!

∑
i=1

p(πi) ∗ ln p(πi) (30)

The normalized PermEn (Hp) is, therefore [47],

Hp =
Hp(d)
ln(d!)

(31)

The highest possible value of Hp is 1, which means that all permutations have equal
probability. The smallest possible value of Hp is 0, which means that the time series is
very regular. In short, the smaller the value of Hp, the more regular the time series. The
choice of n and d depends on the time series. Equation (31) indicates that the obtained
probability distribution can be characterized by parameter d (dimension). It plays an
important role in assessing the appropriate probability distribution because d determines
the number of available states given by d!. Furthermore, to obtain reliable statistics and
a proper distinction between stochastic and deterministic dynamics, it is necessary that
N ≫ d! [48]. For practical reasons, Bandt and Pompe [44] suggested choosing the parameter
d in the range 3 ≤ d ≤ 7 d. Permutation entropy can be used to distinguish chaotic data
from noise in timescale identification [49].

The PermEn for the thrust force signal for the processed materials was calculated in
a window of 1000 elements, moving in increments of 200. Changing the signal frequency
affects the PermEn value. It increases linearly with the increase in the signal frequency.
PermEn is very sensitive to adding noise of different strengths. To eliminate the effects
of unexpected noise in the signal, filters were used to process the signal’s features before
applying it to detect the change in the workpiece material in the drilling process.

Figure 21 shows the thrust force signal and its PermEn Hp. The PermEn Hp values are
low for materials with a homogeneous structure under normal cutting conditions because
the force signal is similar to a regular periodic signal. However, the thrust force signals have
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different waveforms due to various effects, including different material density, hardness,
and coefficients of friction in different positions. The Hp values changed within relatively
small limits in the drilling processes of the materials tested. Table 6 shows the change in
Hp values for the processed materials. The results show that the PermEn of thrust force
signals can be applicable and indicate a material change in the drilling process.
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Table 6. Normalized PermEn Hp.

Test Material Hp

MDF 0.32
Chipboard 0.53

Plywood board 0.48
HPL 0.21

4. Conclusions

This paper presented the results of the investigations on the possibility of material
identification in the drilling process of wood-based materials based on selected measures
of the thrust force and the cutting torque signals, as well as the vibroacoustic signal. Based
on the research results obtained, the following can be concluded:

• Identification of the material being processed during the drilling process is possible
based on both cutting force Fc, cutting torque Mc and acceleration signals.

• Identification based on the cutting force and cutting torque signals is based on the
value of the unit cutting resistance kc1.1 and on the basis of the change in the value of
PermEn Hp.

• Identification based on STFT analysis of the acceleration signals in specific directions
X, Y and Z uses the assessment of the dominant frequency amplitudes depending on
the material being processed. There is no need to know the signal history to be able to
identify the processed material.

• This article presents the usefulness of the cutting torque signal in the drilling process
of wood-based materials, with the aim of identifying the material during the cutting
process. As expected, the unit cutting resistance kc1.1 varied in value depending on the
type of material being processed, which allowed for a clear distinction between mate-
rials. The results show that the proposed methodology can be used as an intelligent
technique in the drilling process to identify machined materials.

• Additionally, the applied material identification based on changes in the PermEn
Hp value of the cutting force Fc signal during the drilling process worked reliably
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for all processed materials analyzed. This measure turned out to be insensitive to
the combinations of drilling parameters used in the investigations. The proposed
method enables the reliable detection of tool contact with the workpiece material and
identification of the material during the drilling process.

• There are no clearly visible differences in the recorded vibroacoustic signals in the
time domain when changing the processed material. However, after transforming
the signal into the frequency domain, characteristic frequency ranges with dominant
amplitude can be observed depending on the material being processed.

• A methodology is proposed that can be used as an intelligent technique to support the
drilling process in order to detect the material being processed using data from sensors
installed on the machine tool. Typically, in the woodworking industry, processing
parameters are selected to correspond to the most difficult to process material in stacks
at runtime, which increases cutting time, efficiency and processing quality. Intelligent
machining techniques contribute to the real-time adaption of cutting parameters to
the identified material.
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26. Vrchota, J.; Řehoř, P.; Maříková, M.; Pech, M. Critical success factors of the project management in relation to Industry 4.0 for
sustainability of projects. Sustainability 2020, 13, 281. [CrossRef]

27. Mabkhot, M.M.; Al-Ahmari, A.M.; Salah, B.; Alkhalefah, H. Requirements of the smart factory system: A survey and perspective.
Machines 2018, 6, 23. [CrossRef]
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