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Abstract: A novel high depth-to-width ratio of 15:1 narrow-gap gas metal arc welding technique was
developed for the welding of S500Q steel in a horizontal butt joint. The bead arrangement of the
I groove was optimized to produce a high-quality connection with the upper sidewall of the joint.
The microstructure and mechanical properties were observed and evaluated by optical microscopy,
scanning electron microscopy, tensile testing, and micro-hardness and impact toughness testing at
1/5, 2/5, 3/5, and 4/5 thickness of the joint. The 3/5 T position exhibited the highest strength, which
was attributed to the presence of finer carbide precipitates. The highest micro-hardness appeared at
4/5 T. The highest impact toughness appeared at 3/5 T. The formation of coarse granular bainite was
the major reason for the decrease in impact toughness in other regions. A microscopic fracture at
1/5 T and 3/5 T was further analyzed. It was observed that the width of the fibrous zone at 3/5 T was
significantly larger than that at 1/5 T. The radial zones at 1/5 T were observed to exhibit cleavage,
with secondary cracks on the fracture surface.

Keywords: NG-GMAW; S500Q steel; tensile strength; impact toughness; microstructure

1. Introduction

A pumped storage power station can freely choose the direction of energy conversion.
It can flexibly select operating conditions, referring to the demand of the power grid, and
has functions of peak shaving, valley shaving, frequency regulation, emergency reserve,
and optimal power supply, which have been vigorously developed and widely used.

The stay ring is an important part of a pumped storage unit [1]. The stay ring requires
high-strength and ultra-thick welded structural steel materials. S500Q is a 500 MPa grade
low-alloy, high-strength steel developed in China, which is widely used in hydropower
equipment [2]. As the units increase in capacity, the stay ring experiences an increase in
thickness. Narrow-gap gas metal arc welding (NG-GMAW) is an advanced, highly efficient
technology for joining thick-section metals. NG-GMAW has the advantages of energy
saving, material saving, high efficiency, and a low welding heat input, stress deformation,
thermal damage, etc. [3,4]. Common defects, such as a lack of fusion at groove sidewalls
and porosity in weld joints, are still hard to avoid, especially for joining thick-section
metals. Researchers studied the formation characteristics of welds and the influence of
the oscillation width and sidewall dwell time on the formation process of narrow-gap
welding [5–7]. The basic principle of the oscillating arc is to use the oscillation of the
entire welding torch, the bending of the welding wire, the bending of the contact, the
alternating magnetic fields, and other methods to make the arc oscillate back and forth on
both sides of the groove to ensure sidewall fusion [8–11]. Liu and Fang designed a narrow-
gap gas-shielded three-wired indirect arc welding torch, which greatly improved welding
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efficiency [12–14]. After the narrow-gap three-wired indirect arc, a tungsten electrode arc
was used to make the convex deformation of the weld surface concave. Researchers studied
the technology of planar position laser arc composite welding [15–18]. For narrow-gap
welding, the optimization of welding process parameters, the oscillating arc, rotating arc,
multi-wire welding, composite welding, and other specific methods have been studied to
greatly optimize the weld formation and improve welding efficiency [19–21].

In stay ring welding, as depicted in Figure 1, which is difficult to turn over, it is
necessary to adopt a horizontal welding position. In the horizontal-position welding
process, the key problem is weld defects induced by the downward motion of the molten
metal and poor weld formation [22,23]. Guo showed that the rotating arc process could be
beneficial for the molten pool control of narrow-gap horizontal welding [24]. Cui controlled
the horizontal weld formation of a molten pool by reducing the heat input and changing
the effect of arc force and droplet impact on the molten pool [25]. However, the efficiency is
greatly reduced. The rotating arc welding process must be carried out under the precise
control of a small current (200–220 A) and the position of the welding torch. Otherwise,
a slight deviation may lead to the instability of the welding process and even cause a
huge disaster [26,27]. The multi-layer double-pass welding process has low position-
accuracy requirements, good adaptability to groove size tolerance and thermal shrinkage
during the welding process, a relatively wide selection range of welding parameters, a
reduced production cost and operational complexity, and considerable advantages in
practical applications.
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Figure 1. The stay ring in the horizontal welding position.

However, the existing research studies are focused on the technical realization of
thick-plate connections and the microstructure of specific locations, including the base
metal (BM), weld metal (WM), and heat-affected zone (HAZ). There are few studies on
narrow-gap welding for a high-depth-to-width-ratio horizontal NG-GMAW of more than
200 mm thickness. No attention has been paid to the microstructural inhomogeneity of
the weld joint along the thickness direction and its influence on the properties of the weld
joint. This paper aims to study the formation of inhomogeneous microstructures and
analyze the effect of mechanical properties on the welding performance of S500Q steel
with a 225 mm thickness. It is expected that the findings will contribute to promoting a
better understanding of the microstructure development and mechanical properties of the
NG-GMAW ultra-thick plates of the stay ring.

2. Materials and Methods

The dimensions of the welded specimen were 500 mm × 300 mm × 225 mm. The
narrow-gap welding assembly dimensions were 500 mm × 614 mm × 225 mm, with an
approximate bevel surface angle of 1◦, as shown in Figure 2. The groove of the welded
specimen was type I, with a 14–16 mm gap and a depth-to-width ratio of 15:1. The
BM was S500Q steel, which exhibited a high strength and toughness [28]. S500Q is a
European standard material grade, which specifies the mechanical properties and chemical
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composition of steel plates below 150 mm thickness in EN10025-6:2004 [29]. In order to
match the requirement for thick plates above 200 mm of the stay ring, this paper applied
the S500Q steel developed in China. The S500Q steel was manufactured by Nan Yang Han
Ye Special Steel Co., Ltd., Nanyang, China. Table 1 presents its mechanical properties, and
Table 2 displays its chemical composition [30]. According to EN10025-6:2004, S500Q steel
evaluates the impact toughness at −20 ◦C without special requirements. Due to the power
station being located in the northeast of China and the ambient temperature being lower
than −20 ◦C, the impact toughness at −40 ◦C was studied in this paper.
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Table 1. Mechanical properties of S500Q steel.

Yield Strength
(MPa)

Tensile Strength
(MPa)

Elongation
(%)

Impact Energy at −40 ◦C
(J)

470~492 576~590 19.5~24 77~193

Table 2. Chemical compositions of S500Q steel.

C Si Mn P S Ni Cr Ti Mo Als Nb Fe

0.09
~0.16

0.15
~0.45

0.08
~1.45

≤
0.012

≤
0.003

0.8
~1.3

0.35
~0.65

0.010
~0.030

0.35
~0.65

0.015
~0.050

0.015
~0.045 balance

AWS ER90S-G wire with a diameter of 1.2 mm was used as the welding wire. Tables 3
and 4 present its chemical composition and mechanical properties, respectively. As shown in
Figure 3, the welding system was composed of an NG-GMAW torch and a Fronius (TransPuls
Synergic-500i, Fronius, Pettenbach, Austria) welding power supply equipped with a Fanuc
M-20iA robot (Fanuc, Yamanashi, Japan). The bead arrangement is illustrated in Figure 4.
The arrangement of two welding paths per layer was adopted, and the upper weld path was
supported by the lower weld path.
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Table 3. Chemical composition of AWS ER90S-G welding wire.

C Si Mn S P Ni Mo Cu Fe

0.09
±0.016

0.54
±0.108

1.51
±0.025

0.008
±0.0023

0.008
±0.0006

0.98
±0.156

0.25
±0.117

0.12
±0.029 balance

Table 4. Mechanical properties of AWS ER90S-G welding wire.

Yield Strength
(MPa)

Tensile Strength
(MPa)

Elongation
(%)

Impact Energy at −40 ◦C
(J)

601 ± 34 685 ± 35 26 ± 3 104 ± 11
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Figure 4. The bead arrangement and electric arc position characteristics.

In narrow-gap horizontal welding, the filler wires of the upper weld path and lower
weld path were fixed at an angle and did not swing. When the distance between the wire
and the sidewall was greater than 2.5 mm, it was easy to produce a lack of fusion, as shown
in Figure 5. When the distance between the wire and the upper sidewall was smaller than
1.5 mm, it caused the molten pool to roll and flow, as shown in Figure 6.
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Thus, the distance from 1.5 to 2.5 mm was used in this study to promote a high quality
of high-depth-to-width-ratio horizontal NG-GMAW for S500Q steel, and the detailed
parameters were as shown in Table 5.

Table 5. Welding parameters.

Lower Path
Welding
Current

(A)

Upper Path
Welding
Current

(A)

Welding
Voltage

(V)

Welding
Speed

(cm/min)

Gas Flow
Rate

(L/min)

Wire
Extension

(mm)

Inter-Pass
Temperature

(◦C)

Contents of
CO2 in

Shielding
Gas

260 240 26 20 26 15–17 130–150 22%

According to ISO 4136-2022 [31], the tensile specimens were prepared at room temper-
ature (20 ◦C). The layout of the tensile specimens is shown in Figure 7a. In the WM, there
were 16 through-thickness cross-weld tensile specimens marked as CW1–16. Specimens
CW1 and CW9 were located 15 mm from the top surface. The dimensions of the tensile
testing specimens are shown in Figure 7b.
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The experiments were conducted at four different points along the thickness direction
of the joint: 1/5T, 2/5T, 3/5T, and 4/5 T, as shown in Figure 8a. Standard impact specimens
with dimensions of 10 mm × 10 mm × 55 mm were prepared to evaluate the Charpy
V-notched impact toughness at −40 ◦C. The impact testing was performed according to
ISO 9016-2022 [32]. The bending test at room temperature (20 ◦C) was performed according
to ISO 5173-2023 [33]. The layout of the specimens for bending and impacting is shown in
Figure 8b. The dimensions of the bending specimens are shown in Figure 8c. The values of
tensile strength, bending, and impact toughness were obtained from the average of three
repeated tests.
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Metallographic specimens with dimensions of 20 mm × 20 mm × 20 mm were taken
at corresponding positions. After grinding and polishing, the microstructure was etched
with a 4% nitrate alcohol solution. The microstructures and the fracture morphology of
the specimens were observed by optical microscopy (OM, ZEISS Observer A1m, Carl
Zeiss, Jena, Germany) and scanning electron microscopy (SEM, HITACHI S-3700N, Hitachi,
Tokyo, Japan). The hardness distribution along the cross-section of the weld joint from
the low BM to the top BM was measured at 1/5 T, 2/5 T, 3/5 T, and 4/5 T. The hardness
distribution of the weld center at corresponding positions was compared. The hardness
test was measured by a Vickers micro-hardness machine with a test load of 500 g and a
dwell period of 15 s.

3. Results and Discussion
3.1. Tensile and Micro-Hardness Testing

Figure 9 presents the tensile properties along the thickness using cross-weld tensile
specimens. All specimens fractured at the HAZ, indicating that the welding joint has high
strength-matching characteristics. The results showed that the tensile strength of all parts
of the weld joint was above 595 MPa. The strength decreased at 1/5 T, then increased
at 2/5 T and 3/5 T, and then dropped at 4/5 T. The tensile strength at 3/5 T was about
615 MPa, greater than other positions.
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Figure 9. Through-thickness tensile properties of the welding joint.

Figure 10 shows the hardness distribution along the cross-section of the weld joint.
The HAZ had a higher hardness value than the WM, and the BM presented the lowest
hardness. Notably, in the HAZ, there existed significantly higher hardness values, with an
average reading of 318.8 HV0.5, indicating hardening phenomena occurring in this region.
And the results showed that the hardness of the HAZ was increased by 38% compared with
the BM. In addition, the average hardness of the WM was 293.6 HV0.5, which was 27.1%
higher than that of the BM. The hardness of the upper WM was higher than the lower WM
because of the lower heat input.

Figure 11 shows the micro-hardness of the WM at 1/5 T, 2/5 T, 3/5 T, and 4/5 T.
Overall, the micro-hardness had the highest values at 4/5 T, compared with those at 1/5 T,
2/5 T, and 3/5 T. In addition, with the increase in thickness from 1/5 T to 2/5 T, the micro-
hardness slightly decreased, while from 2/5 T to 4/5 T, the micro-hardness significantly
increased from 285 HV0.5 to 307 HV0.5.



Materials 2024, 17, 2056 8 of 16
Materials 2024, 17, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 10. The hardness distribution along the cross-section of the weld joint from low sidewall to 
top sidewall. 

Figure 11 shows the micro-hardness of the WM at 1/5 T, 2/5 T, 3/5 T, and 4/5 T. Over-
all, the micro-hardness had the highest values at 4/5 T, compared with those at 1/5 T, 2/5 
T, and 3/5 T. In addition, with the increase in thickness from 1/5 T to 2/5 T, the micro-
hardness slightly decreased, while from 2/5 T to 4/5 T, the micro-hardness significantly 
increased from 285 HV0.5 to 307 HV0.5. 

 
Figure 11. The hardness distribution along the cross-section of the WM. 

3.2. Bend and Impact Testing 
At room temperature (20 °C), a bending test was performed on S500Q steel weld 

joints with a bending center diameter of 80 mm and a bending angle of 180°. As shown in 
Figure 12a,b, there were no microcracks observed in both the weld zone and the HAZ, 
indicating an excellent plastic deformation capacity and fusion quality throughout the en-
tire weld joint. 

(a)  (b)  

Figure 12. Bending test specimens of weld joint: (a) bending angle; (b) bending surface. 

Figure 10. The hardness distribution along the cross-section of the weld joint from low sidewall to
top sidewall.

Materials 2024, 17, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 10. The hardness distribution along the cross-section of the weld joint from low sidewall to 
top sidewall. 

Figure 11 shows the micro-hardness of the WM at 1/5 T, 2/5 T, 3/5 T, and 4/5 T. Over-
all, the micro-hardness had the highest values at 4/5 T, compared with those at 1/5 T, 2/5 
T, and 3/5 T. In addition, with the increase in thickness from 1/5 T to 2/5 T, the micro-
hardness slightly decreased, while from 2/5 T to 4/5 T, the micro-hardness significantly 
increased from 285 HV0.5 to 307 HV0.5. 

 
Figure 11. The hardness distribution along the cross-section of the WM. 

3.2. Bend and Impact Testing 
At room temperature (20 °C), a bending test was performed on S500Q steel weld 

joints with a bending center diameter of 80 mm and a bending angle of 180°. As shown in 
Figure 12a,b, there were no microcracks observed in both the weld zone and the HAZ, 
indicating an excellent plastic deformation capacity and fusion quality throughout the en-
tire weld joint. 

(a)  (b)  

Figure 12. Bending test specimens of weld joint: (a) bending angle; (b) bending surface. 

Figure 11. The hardness distribution along the cross-section of the WM.

3.2. Bend and Impact Testing

At room temperature (20 ◦C), a bending test was performed on S500Q steel weld
joints with a bending center diameter of 80 mm and a bending angle of 180◦. As shown
in Figure 12a,b, there were no microcracks observed in both the weld zone and the HAZ,
indicating an excellent plastic deformation capacity and fusion quality throughout the
entire weld joint.
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Figure 13 shows the impact toughness of the WM at different positions. Overall, the
impact-absorbed energy had the highest values at 3/5 T, compared with those at 1/5, 2/5
and 4/5 T. In addition, with the decreasing thickness, the impact-absorbed energy slightly
increased from 4/5 T to 3/5 T and then decreased from 3/5 T to 1/5 T. Also, at a testing
temperature of −40 ◦C, the impact-absorbed energy of the WM dropped from 88 J at 3/5 T
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to 35.3 J at 1/5 T, which was a 59.9% decrease, indicating that the impact toughness was
sensitive to the position of the thickness.
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Figure 13. Low-temperature toughness test results of S500Q steel.

3.3. Microstructure and Fractography Analysis

The macroscopic morphology of the narrow-gap GMAW weld joint of S500Q steel is
illustrated in Figure 14. The fusion line had a good fusion quality with the top and the
low sidewalls. Each layer of the lower path had a width of about 9.4 mm and a thickness
of about 6.8 mm, while the upper path had a width of about 7.4 mm and a thickness of
about 6.2 mm. The size of the lower path was larger than that of the upper path. The
darker-colored area represents the HAZ, resulting from thermal cycling during the welding
process, with its width about 1.7 mm. It can also be seen from Figure 14 that the fusion line
with the low sidewall was more optically distinct. This could be attributed to the wider
hardened area, due to a higher heat input during the welding process.
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Figure 15 shows the OM microstructure analysis of the weld joint. Figure 15a shows the
BM, fine-grained zone, coarse-grained zone, fusion line, and WM in sequence. Figure 15b
shows that the microstructure of the WM was composed of granular bainite, tempered
soxhlet, and a small amount of upper bainite. Figure 15c shows that the microstructure
of the BM was primarily composed of granular bainite, along with small amounts of
massive ferrite and sorbite. The inter-crystalline δ-ferrite near the fusion line was heated
and coarsened, which resulted in the formation of the HAZ, as shown in Figure 15d. The
microstructure of the HAZ was composed of a fine-grained zone and coarse-grained zone.
The WM uniformly transitioned to the coarse-grained zone, where the grain boundary was
fine and the grain was not obviously coarsened. The coarse-grained zone uniformly transi-
tioned to the fine-grained zone, which was a completely recrystallized zone. The grains in
the completely recrystallized zone were uniform and fine. A coarse-grained transition zone
between the fine-grained zone and the BM was an incompletely recrystallized zone, and the
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structure was a mixture of granular bainite and soxhlet, with some tretenite precipitates at
the grain boundary. The precipitation was due to the different cooling rates. The tristenite
would precipitate along the original austenite grain boundary with a slow cooling rate
during the welding process. Figure 15d shows that martensitic structures were evident near
the fusion line. Acicular ferrite was predominantly interspersed with minor reticulation
in the WM, and the composition was formed by the combination of semi-reticulated first
eutectic ferrites and bainite. Acicular ferrites formed nuclei and grew in crystals, and the
grain size was refined, thereby improving the toughness of the WM and HAZ.
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Figure 16 presents the OM and SEM images of the weld joint specimens at various
positions. As presented in Figure 16a,e,i, the microstructure of the WM at 4/5 T consisted of
a few dendritic crystal zones (DCZs), characterized by granular bainite and acicular ferrite.
The larger carbides were precipitated in the WM and HAZ along the grain boundaries. In
Figure 16b,f,j, the microstructure of the WM at 3/5 T consisted of a few columnar crystal
zones (CCZs), characterized by granular bainite, acicular ferrite, and a little pro-eutectoid
ferrite, which could be explained by the thermal gradient and the cooling rate. A large
number of fine and dispersed granular carbides were precipitated in the grained region. In
Figure 16c,g,k, the microstructure of the WM at 2/5 T consisted of a few CCZs, characterized
by granular bainite, acicular ferrite, and more pro-eutectoid ferrite. The larger carbides
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were precipitated in the WM. Martensite–austenite constituents were precipitated at the
ferritic grain boundary in the HAZ. In Figure 16d,h,l, the microstructure of the WM at 1/5 T
consisted of a few DCZs, characterized by granular bainite, acicular ferrite, and a little
pro-eutectoid ferrite. At 4/5 T and 1/5 T, the heat dissipation after welding existed as body
heat dissipation and surface heat dissipation. At 3/5 T and 2/5 T, it was mainly based on
body heat dissipation, and the direction of the thermal gradient was more obvious, where
CCZs were represented.
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Figure 16. The OM and SEM at various positions of the WM: (a–d) OM; (e–h) SEM of WM; (i–l) SEM
of HAZ; (a,e,i) 4/5 T, (b,f,j) 3/5 T, (c,g,k) 2/5 T, (d,h,l) 1/5 T.

In summary, during the welding process of NG-GMAW with low heat input, the
cooling rate at the 4/5 T position was correspondingly fast, so a granular bainite structure
was formed [34,35]. The hardness at 4/5 T was greater, with a large number of carbides,
which was consistent with the micro-hardness results shown in Figure 11. With the increase
in the thickness at 3/5 T, the cooling rate decreased. The carbide was dissolved during
heating, and then dispersed and precipitated during the cooling process. The fine granular
carbides pierced and hindered the movement of the dislocations. Fine granular carbides
promoted the nucleation and growth of acicular ferrite, thereby improving the toughness
of the joint [36,37]. It was consistent with the impact toughness results shown in Figure 13.
There were a large number of dispersed carbide phases at 2/5 T and 3/5 T playing a
dispersion-strengthening role, and the tensile strength of the weld increased. It was
consistent with the tensile strength results shown in Figure 9. When the thickness of the
joint continued to increase, close to the welding surface, the cooling rate increased, and the
carbides were reduced. Coarse granular bainite reduced the toughness at 1/5 T.

A energy-dispersive spectrometer (EDS) was further utilized to analyze the microstruc-
ture at various positions. Figure 17 shows the EDS mapping of the materials at various
positions. From Figure 17a–d, it is clear that the elemental distribution, Fe, Mn, Ni, was
uniform. The four positions exhibited numerous carbides, but the density of the carbides at
3/5 T was substantially lower than that at 1/5 T, 2/5 T, and 4/5 T, as shown in Figure 17b,f.
And the carbides at 3/5 T were more diffuse. The characteristics were more obvious along
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the grain boundaries at 1/5 T, 2/5 T, and 4/5 T. The type of carbide was mainly Fe3C [28,38].

Materials 2024, 17, x FOR PEER REVIEW 12 of 16 
 

 

A energy-dispersive spectrometer (EDS) was further utilized to analyze the micro-
structure at various positions. Figure 17 shows the EDS mapping of the materials at vari-
ous positions. From Figure 17a–d, it is clear that the elemental distribution, Fe, Mn, Ni, 
was uniform. The four positions exhibited numerous carbides, but the density of the car-
bides at 3/5 T was substantially lower than that at 1/5 T, 2/5 T, and 4/5 T, as shown in 
Figure 17b,f. And the carbides at 3/5 T were more diffuse. The characteristics were more 
obvious along the grain boundaries at 1/5 T, 2/5 T, and 4/5 T. The type of carbide was 
mainly Fe3C [28,38]. 

 

 

 
Figure 17. EDS-mapping analyses: (a,e) 4/5 T, (b,f) 3/5 T, (c,g) 2/5 T, (d,h) 1/5 T. 

A microscopic fracture of 1/5 T and 3/5 T was further analyzed. Figure 18 displays 
the impact fracture morphologies of the WM and HAZ at 1/5 T and 3/5 T. The fracture 
surface exhibited fibrous zones, radial zones, and shear lips, as shown in Figure 18 a–d. In 
the WM, as shown in Figure 18a,e,i, the fibrous regions at 3/5 T contained more deep and 
big dimples. The fibrous zones at 1/5 T displayed shallow and small dimples, along with 
cleavage facets on the fibrous zone, as shown in Figure 18d,h,l. In the HAZ, as shown in 
Figure 18b,f,j, the fibrous regions at 3/5 T contained more deep and big dimples. The fi-
brous zones at 1/5 T displayed shallow and small dimples, along with cleavage facets on 
the fibrous zones, as shown in Figure 18c,g,k. The presence of large and deep dimples 
indicated that more energy would be consumed for deformation. The fibrous zones at 3/5 
T accounted for 21.9% of the WM and 26.4% of the HAZ. The fibrous zones at 1/5 T ac-
counted for 14.8% of the WM and 10.6% of the HAZ. It was observed that the width of the 
fibrous zone at 3/5 T was significantly larger than that at 1/5 T. Wider fiber zones are less 
prone to destabilize fractures in the material. This means that the higher the proportion of 
the fibrous zone, the better the impact toughness of the material. It was considered that 
the change in fibrous zone areas and fracture mode could be attributed to the presence of 
different microstructures and precipitations. A higher impact toughness was observed in 
the presence of a fine carbide distribution and acicular ferrite microstructure. 

Figure 17. EDS-mapping analyses: (a,e) 4/5 T, (b,f) 3/5 T, (c,g) 2/5 T, (d,h) 1/5 T.

A microscopic fracture of 1/5 T and 3/5 T was further analyzed. Figure 18 displays
the impact fracture morphologies of the WM and HAZ at 1/5 T and 3/5 T. The fracture
surface exhibited fibrous zones, radial zones, and shear lips, as shown in Figure 18 a–d.
In the WM, as shown in Figure 18a,e,i, the fibrous regions at 3/5 T contained more deep
and big dimples. The fibrous zones at 1/5 T displayed shallow and small dimples, along
with cleavage facets on the fibrous zone, as shown in Figure 18d,h,l. In the HAZ, as shown
in Figure 18b,f,j, the fibrous regions at 3/5 T contained more deep and big dimples. The
fibrous zones at 1/5 T displayed shallow and small dimples, along with cleavage facets
on the fibrous zones, as shown in Figure 18c,g,k. The presence of large and deep dimples
indicated that more energy would be consumed for deformation. The fibrous zones at
3/5 T accounted for 21.9% of the WM and 26.4% of the HAZ. The fibrous zones at 1/5 T
accounted for 14.8% of the WM and 10.6% of the HAZ. It was observed that the width of
the fibrous zone at 3/5 T was significantly larger than that at 1/5 T. Wider fiber zones are
less prone to destabilize fractures in the material. This means that the higher the proportion
of the fibrous zone, the better the impact toughness of the material. It was considered that
the change in fibrous zone areas and fracture mode could be attributed to the presence of
different microstructures and precipitations. A higher impact toughness was observed in
the presence of a fine carbide distribution and acicular ferrite microstructure.
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In this study, the radial zones at 1/5T were observed to exhibit cleavage, with sec-
ondary cracks on the fracture surface, indicative of a brittle fracture mode. However, the
radial zone at 3/5 T was found to display a ductile fracture with dimples and an absence of
secondary cracks on the fracture surface.
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4. Conclusions

In this study, the microstructure and mechanical properties of a high-depth-to-width-
ratio horizontal NG-GMAW joint, through the entire thickness of S500Q steel, were studied.
The main conclusions are as follows:

Compared with the 1/5 T, 2/5 T and 4/5 T positions, the 3/5 T position had the
highest strength, with a tensile strength reaching about 615 MPa. This was attributed to the
formation of finer carbide precipitates.

At −40 ◦C, the impact toughness of the WM decreased by 59.9% from 88 J at 3/5 T to
35.3 J at 1/5 T, indicating that the impact toughness is sensitive to the thickness position.
The microstructure at 3/5 T was mainly granular bainite, acicular ferrite, and fine dispersed
granular carbides. The microstructure at 1/5 T was mainly coarse granular bainite, acicular
ferrite, and a little pro-eutectoid ferrite. The coarse granular bainite was the essential reason
for the decrease in impact energy.

The fibrous zone of the impact fracture at 3/5 T showed a ductile fracture. The
radiation zone at 1/5 T showed a combination of a brittle fracture and a ductile fracture.
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Nomenclature

NG-GMAW narrow-gap gas metal arc welding
GMAW gas metal arc welding
SEM scanning electron microscopy
WM weld metal
HAZ heat-affected zone
BM base metal
OM optical microscopy
DCZs dendritic crystal zones
CCZsdu columnar crystal zones
EDS energy-dispersive spectrometer
CW cross-weld tensile specimen
1/5T 1/5 thickness from weld surface
2/5T 2/5 thickness from weld surface
3/5T 3/5 thickness from weld surface
4/5 T 4/5 thickness from weld surface
M-A martensite-austenite constituents
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