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Abstract: The Linear Hinges Model (LHM) is an efficient approach to flexible and robust one-
dimensional curve fitting under stringent high-noise conditions. However, it was initially designed
to run in a single-core processor, accessing the whole input dataset. The surge in data volumes,
coupled with the increase in parallel hardware architectures and specialised frameworks, has led
to a growth in interest and a need for new algorithms able to deal with large-scale datasets and
techniques to adapt traditional machine learning algorithms to this new paradigm. This paper
presents several ensemble alternatives, based on model selection and combination, that allow for
obtaining a continuous piecewise linear regression model from large-scale datasets using the learning
algorithm of the LHM. Our empirical tests have proved that model combination outperforms model
selection and that these methods can provide better results in terms of bias, variance, and execution
time than the original algorithm executed over the entire dataset.

Keywords: one-dimensional piecewise regression; non-linear regression; curve fitting; ensemble
model; model selection; model combination; model parallelism

1. Introduction

In the dynamic landscape of contemporary data science, the prevalence of massive
datasets poses a compelling challenge and opportunity for adapting traditional machine
learning algorithms. As data volumes continue to surge, ranging from gigabytes to
petabytes, the traditional paradigms of algorithmic processing have been reshaped. In many
cases, these datasets have become untreatable for conventional data mining techniques, usu-
ally requiring a shift in the approach to data. While both big data techniques and traditional
data mining aim at ’discovering interesting or valuable structures in large-scale datasets’ [1],
the extraction of knowledge from very large data demands a distinctive approach.

Furthermore, at the same time, there has also been a technological breakthrough, with
more and more powerful computers, multi-core CPUs+GPUs, distributed systems, and
specialised frameworks that emerge as powerful tools to deal with huge datasets. An
interesting review of this can be seen in [2]. This context presents a novel challenge for
statisticians because of the difficulty in handling and analysing these large-scale datasets
when computing needs exceed the capabilities of their computing resources. Many tradi-
tional machine learning algorithms were designed to run sequentially, considering that all
the data fit in memory (see, e.g., [3,4]) and require adaptation to this new paradigm. The
growth in interest in big data analytics has led to the development of a new set of redefined
learning algorithms and strategies to enable their concurrent execution. Some general
strategies and practical examples can be found in [5]. These strategies may be required
when the dimension of the input vector is very high (see, e.g., [6], that propose separable
Gaussian-radial-basis neural networks), when the number of observations is too large (see,
e.g., [7], that deals with probability density function estimation thorough adaptive data
partitioning and stitching), or even when the model parameters do not fit in local internal
storage (see, e.g., [8], dealing with convolutional neural networks parallelisation).
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In this context, regression methods are clearly not an exception. They usually require
iterative calculations, and therefore, scaling them up is not straightforward. Even in the
case of basic multivariate regression applying ordinary least squares (OLS), the matrix
operations that must be carried out can be infeasible in terms of memory, and some efficient
matrix decompositions have been proposed (e.g., see [5], chapter 5).

Specifically, in the context of one-dimensional non-linear regression (such as polynomi-
als, smoothers, or splines), the Linear Hinges Model (LHM), proposed in [9], is an efficient
approach to one-dimensional curve fitting under high-noise conditions, that automatically
estimates the number and position of the knots of a piecewise linear model. However, its
iterative nature over all the training dataset makes it unsuitable for large-scale problems,
and it must be adapted in order to enable their concurrent execution.

This paper presents some ensemble alternatives, based on model selection and combi-
nation, that allow for obtaining a piecewise linear model from a large-scale dataset that did
not fit in memory. First, the problem is defined in Section 2, then Sections 3 and 4 describe
how to estimate the parameters of these models from small and big datasets, respectively.
After that, Section 5 presents the proposed methods for large-scale datasets, and finally,
Section 6 consists of several empirical analyses of those methods in different problems and
our final results.

2. Continuous Piecewise Linear Regression

Continuous piecewise linear regression has been found to be helpful since it is a
powerful and flexible modelling technique that allows for obtaining different functional
forms. Its simplicity, together with its adaptability to any problem, have made it a very
popular tool.

One-dimensional regression can be easily understood thinking about curve fitting
from scatter plot data (e.g., see Figure 1, top). Consider a dataset of N points (i = 1, 2, ..., N)
made by a one-dimensional input x and an output variable y. In addition, we will consider
that each data point can have a weight wi, that is one in the standard case. The output
variable is generated through the relationship (see, e.g., chapter 2 of [4])

yi = f (xi) + ϵi, (1)

where f (x) is the true underlying function and ϵi is normally distributed random noise
with zero mean and constant variance σ2. The objective is to find a simple enough model
f̂ (x) of the true function of Equation (1) by minimising the error, measured by the overall
(weighted) mean squared error (MSE).

MSE =
1

∑N
i=1 wi

N

∑
i=1

wi[yi − f̂ (xi)]
2. (2)

Model Definition

As shown at the top of Figure 1, this model can be defined as a continuous set of
straight lines, linked in the knots. A model with K knots, will be made up of K − 1 straight
lines, with the knots being placed in the coordinates (k j, hj).

These linear piecewise models can also be understood as linear B-splines and, therefore,
expressed as a linear combination of triangular-shaped basis functions (see chapter 2 of [4]):

f̂ (xi) =
K

∑
j=1

hjBj(xi), (3)

where each Bj is a triangular basis function, possibly non-symmetric and non-zero, in the
interval (kj−1, kj+1). Therefore, the output is obtained by scaling these bases by different
amounts hj, and adding them all up. Figure 1 shows a complete example of this. The
continuous piecewise linear model at the top is completely defined by the combination
of the set of basis functions shown at the bottom and the hj of each knot. Therefore, the
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model can be expressed as a set of 2K parameters, the coordinates (k j, hj) of all the knots.
Changing these 2K parameters, many different shapes can be generated, with more or less
flexibility depending on the value of K.
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Figure 1. Continuous piecewise linear regression model. Top: Scattered data (N = 150 points) and
fitted piecewise linear regression model, composed of K = 6 knots, plus and minus pointwise 99%
standard error bands. Bottom: Set of six linear basis functions corresponding to the top model. The
broken vertical lines indicate the x-positions of the knots.

3. Parameter Estimation from Small Datasets

As already mentioned, the previous model is completely defined by the pairs of
coordinates (k j, hj) of the knots. Hence, there are three main groups of parameters to fix:
the number of knots (K), that will determine the complexity of the resulting model; their
x-coordinates (k j), that will set the basis functions Bj; and their y-coordinates (hj).

In the simplest case, let us assume that the number and the x-positions of the knots are
fixed, and the only parameters that must be estimated are the hj. Given the scattered data,
this problem can be directly solved by using OLS, or in the more general case, when dealing
with weighted input data, by applying weighted least squares (WLS). In matrix terms,

h = A−1BTWy = (BTWB)−1BTWy, (4)

where h = (h1, h2, ..., hK)
T , B is an N ×K matrix containing all the basis functions evaluated

in every x-coordinate of the dataset, y = (y1, y2, ..., yN)
T , and W is an N × N diagonal matrix

with the weights of all the points.



Algorithms 2024, 17, 147 4 of 27

Having estimated the parameters h by using Equation (4), their standard error can be
also estimated as

se(h) = A−1BTWσ2
y WTBA−1y, (5)

where σ2
y is the variance of the output variable y.

In Figure 1, the confidence band around the piecewise linear model represents an esti-
mated 99% pointwise standard error band, calculated in this way by applying Equation (5).

In the second case, when the number of knots (K) is given but their x-positions are
unknown, there is no straightforward technique to fix them optimally. However, there are
several different approaches in the literature, from the simplest ones, such as placing them
uniformly in x or in its quantiles [10], to more sophisticated methods, such as [11,12].

Finally, the most complex case is the one in which both the complexity (K) of the model
and x-position of the knots (k j) must be estimated. According to [4], this situation changes
the regression problem from a straightforward linear problem, solved by standard least
squares, to a combinatorially hard non-linear problem. In order to deal with it, greedy
algorithms or two-stage processes are required.

This last case is addressed in [9], where the LHM is presented. The LHM is a con-
tinuous piecewise linear model, given by Equation (3), in which all the parameters are
automatically estimated by applying a stage-wise greedy approach. A new version of
its learning algorithm has been developed in this paper to be used as the fundamental
piece of the models shown in the following sections. This new version follows the same
strategy and steps as the former one, adding some performance improvements, but the
major change that has been introduced is the possibility of using weighted data. In the
Appendix A, a brief summary of the LHM’s learning algorithm is included, as well as some
additional references.

4. Parameter Estimation from Large-Scale Datasets

Previous approaches share a common practical constraint: all of them require that the
entire dataset is allocated in the main memory (RAM). Thus, they are no longer valid when
dealing with very large datasets. Several recent approaches can be found in the literature
that adapt algorithms when data or even model parameters do not fit in the memory (see,
e.g., [6–8]).

In the simplest case, when K and the x-position of all the knots are fixed, applying
OLS or WLS would require performing operations with huge matrices. In this case, there
is a large amount of straightforward solutions to scale up these matrix operations, as
can be seen, for example, in [5] (chapter 5), [13–16]. Furthermore, some general-purpose
mathematical programming languages and frameworks parallelise these matrix operations
internally, without having to be aware of how to split them efficiently (e.g., see [17–19]).

However, when K and k j must also be estimated, how to scale up these methods is
not so obvious. The iterative nature of the entire dataset of the algorithms that are usually
applied makes them extremely difficult to parallelise and requires new approaches. For
example, in [7], a new methodology for estimating a probability density function for large
datasets, using adaptive partitioning and stitching is proposed. A scaling-up strategy is
also required for the learning algorithm of the LHM.

There are several ways, from the most naïve to the most complex ones, to scale up the
LHM learning algorithm to large-scale datasets. Among possible alternatives, in this paper,
we focus on model selection and combination techniques. The first general approach would
be using simple random sampling, where a (small) sample of size n << N, constrained
by the available memory, is used as input for the traditional algorithm. This solution
would have the advantage of being the simplest and fastest one. However, it has an
important drawback: it would not be taking advantage of the richness of the data. In the
case of a problem with a very complex structure, or with a lot of noise, the sample size
can be insufficient to determine K properly, and therefore, the final model can have a high
generalisation error.
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Model selection techniques aim at choosing a model from a set of candidates. Based on
the previous approach, after taking several samples and estimating the parameters in each
one, we could apply a selection technique, such as BIC [20], AIC [21], or cross-validation
to decide the best model in terms of both complexity and accuracy. This option would
be better than taking only one sample, but it shares with that approach the problem with
complex underlying structures and noisy datasets.

Model combination consists of building a series of sub-models, each with a data
partition, and finally combining them somehow. Model combination has been proven to be
a good solution to deal with the uncertainty of model selection and has been demonstrated
empirically to outperform it [22]. Applied to regression analysis, many combination
methods, such as bagging or boosting, have been proposed. Bagging consists of combining
by averaging several bootstrap samples (with replacement and of the same size as the input
dataset), and its main goal is to reduce variance [23]. On the other hand, boosting [24] aims
at iteratively improving a weak model to reduce bias and variance. These methods, initially
designed to improve the accuracy of a model, are suitable tools when dealing with very
large datasets of size N. They allow for taking advantage of the full dataset by improving
the models that can be obtained from samples of size n << N.

5. Proposed Methods

In this section, we present the proposed and tested approaches in order to obtain a
piecewise linear regression model from a very large dataset using the learning algorithm of
the LHM. All the implemented methods are based on the same idea (see Figure 2): take
several sub-samples of the dataset, constrained by the available memory, fit an LHM to each
one using the standard learning algorithm described in [9], and finally, collecting all the
sub-models, build a unique model. Note that there is not a clear approach to obtain a final
model from this set of sub-models. As mentioned in the previous section, we could simply
choose one by applying a model selection technique or combine them in a more elaborate
way. Furthermore, there are many different possibilities to combine these piecewise linear
models. Figure 3 shows an illustrative example, where several sub-models have been built
from sub-samples of n = 1000 data points. It can be seen that, in spite of the fact that all of
them have similar shapes and are also similar to the true underlying function, there is a lot
of uncertainty in the position of the knots.

Finally, a combination of these two approaches may be advantageous in some cases.
For example, in [22], the authors discuss whether to use model selection or combination,
and propose a combination method for linear regression models that incorporates an initial
screening step to exclude very poor models from the subsequent combination.

In addition to selecting a proper way to obtain a model from these sub-models, there
are two other important parameters that must be previously selected and also affect the
final result. First, the sub-sample size n is decisive due to the fact that it can lead to poor
sub-models when n is not large enough to be a representative sample. Second, the number
of sub-samples is also relevant since increasing M will lead to more robust models.

In the following subsections, several approaches to model selection and combination
are presented. Subsequently, Section 6 presents empirical results using these methods, as
well as an analysis of the impact of changing M and n in the final result.
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Figure 2. Overall structure of all the considered methods.

Figure 3. Piecewise linear models: a set of 50 sub-models built with the LHM algorithm from
50 sub-samples (scattered data (n = 1000), representing one of them) and the true underlying function.
The red ticks on the x-axis represent the positions of the knots.

5.1. Model Selection (MS)

This approach can be considered the simplest one: the parameters of the resulting
model will be fixed by the best model selected from the set of candidate sub-models, each
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one estimated using a different sub-sample. In order to select it, first an extra sample
is reserved as test set (TS), and then, the Bayesian information criterion (BIC) [20] is
used, because it provides a good compromise between error and complexity. The BIC is
a statistical measure used for model selection that balances goodness of fit with model
complexity, penalising overly complex models to prevent over-fitting. For each sub-model,
it is defined as

BIC(LHMs, TS) = log(MSE(LHMs, TS)) +
Ks

n
log(n), (6)

where MSE(LHMs,TS) is the MSE of sub-model s calculated by applying Equation (2) over
the TS, and Ks its complexity (number of knots). Applying this method, the BIC of each
sub-model is calculated, and the one that presents the lowest value is finally selected.

5.2. Model Combination (MC)

In this subsection, the proposed combination methods are presented. In all of them, the
sub-models have been considered equally relevant. According to Figure 2, once calculated,
the M sub-models LHM1, LHM2, ..., LHMM build a unique piecewise linear regression
model by combining them somehow. Let us denote Ks the complexity of the sub-model
s, and let ks = (ks

1, ks
2, ..., ks

Ks
)T and hs = (hs

1, hs
2, ..., hs

Ks
)T be the x- and y-coordinates of its

knots, respectively. The final model (LHM) will be defined by the sets of coordinates (k, h),
having K knots.

5.2.1. Output Averaging (MC1)

This combination approach can be considered the naïve one since it consists of simply
averaging all the set of sub-models in several points. As shown in Figure 3, once the M
sub-models have been obtained there is a lot of uncertainty about the number and position
of the knots. In this method, the knots are fixed to a predefined number of equally spaced
points. In our simulations, a grid of 10,000 points has been used. Therefore, fixing the
number (K) and x-positions (k j) of the knots of the final model, their y-positions can be
calculated as

hj =
1
M

M

∑
s=1

LHMs(k j), (7)

where LHMs(k j) is the output of sub-model s evaluated in the x-coordinate k j. Note that
since the data noise has been previously filtered by applying the LHM to each sub-sample,
this model will not have over-fitting, even when it is over-parameterised. It is also worth
mentioning that this combination method produces non-structured models. Instead, a
look-up table with the expected output at several values of x is given. Due to the high
value of K, little effort has been made to remove useless knots. In fact, pruning them in a
traditional greedy way would be computationally expensive.

5.2.2. Model Averaging with Complexity Reduction and Refitting (MC2)

This approach, unlike the previous one, selects the number and position of the knots
in a more clever way by taking into account the location of the knots of the M sub-models.
In this way, the zones where f (x) changes more rapidly or has greater curvature will
present a higher number of knots than those that can be easily represented by a reduced
number of straight lines. The overall strategy resembles the original learning algorithm of
the LHM, consisting of three consecutive stages. First, an initial model is built from the
sub-models using a straightforward growing approach (based on model averaging). Then,
the irrelevant knots are iteratively pruned, and at the end, the pruned model is refitted to
obtain the final one.

In order to build the initial average model, an initial set of knots is fixed as

kI = (k1 ∪ k2 ∪ ... ∪ kM) = (kI
1, kI

2, ..., kI
KI )

T , (8)
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where K I is the complexity of this initial model. Once the number of knots and their x-
positions are fixed, their hI

j are calculated by applying Equation (7) to each x-coordinate of

kI . This model is usually over-parameterised and requires a pruning step. A new pruning
algorithm has been developed in order to address this problem. The main idea of this
approach is to reduce iteratively the complexity of the average model, taking into account
the dispersion of the set of sub-models in each knot, estimated as

se(hI
j ) =

√√√√ 1
M · (M − 1)

M

∑
s=1

(hI
j − LHMs(kI

j ))
2. (9)

This pruning step aims at selecting a subset of the initial knots (kI , hI), taking into
account the dispersion of the set of sub-models at each one. Thus, a pruning sequence of
models of decreasing K is iteratively built, removing the less relevant knots one by one, and
then, the best model of the sequence is selected according to the p-values of their knots. The
general procedure of the pruning algorithm is described in Algorithm 1. Let us denote as h∗j
the y-coordinate obtained from evaluating the line that connects the points hI

j−1 and hI
j+1 in

kI
j (see Figure 4). Assuming that the y-coordinate of each knot of the initial model follows a

normal distribution of mean hI
j and standard deviation se(hI

j ), the relevance of each knot is
determined by the p-value of the point h∗j given the previous normal distribution. In each
iteration, the knot with the highest p-value calculated in that way is pruned. An example
of one iteration of this method can be seen in Figure 4, where the knot (kI

j , hI
j ) would be

pruned due to the fact that the value of h∗j is very close to hI
j .

Algorithm 1 Pruning algorithm of MC2.

PART I: Generate the pruning sequence
(a) initialisation
k = kI , h = hI

PMm=KI = {k, h}, Km=KI = K I

for m = (K I − 1) down to Kmin do
(b) calculate the p-value of each knot
for j = 2 to (Km − 1) do ▷ for all the internal knots

h∗j =
kj−kj−1

kj+1−kj−1
· (hj+1 − hj−1) + hj−1

pj = p-value(h∗j ) with N(hj, se(hj))

end for
(c) prune the knot with the highest p-value
k = k − {kd}, h = h − {hd} where d = arg max

j
pj

PMm = {k, h}
(d) save the p-value of the pruned knot (pm) and Km
Km = Km+1 − 1, pm = pd
(e) calculate the slope of the p-value curve in m
slm = pm+1−pm

Km+1−Km
end for
PART II: Select the final PM and K
(a) calculate the maximum slope that is allowed

slmax =
0.05−pKmin
K0.05−Kmin

(b) find the elbow of the p-value curve
f = sl > slmax
(c) select the final K and PM
K = K f (1), PM = PM f (1)
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Figure 4. Example of one iteration of the pruning algorithm: the p-value associated with each knot is
calculated in this way, and the one with the highest value is removed. In this example, where only
the standard error of two knots is plotted for simplicity, the knot j would be pruned.

Given the maximum complexity (K I) and fixing the minimum one to the lowest Ks
of the sub-models (Kmin = min(K1, K2, ..., KM)), the pruning sequence of the models is
built by pruning the knots one by one in that way. In each iteration m, the pruned model
(PMm) is saved, as well as its complexity Km, and the p-value of the last knot that has been
pruned (pm). Therefore, once the pruning procedure has finished, a set of K I − Kmin models
is obtained, each one associated with the p-value of the knot that has been pruned in its
iteration. Figure 5 shows the p-value sequence for each PM after the whole pruning process.
It can be observed that, as expected, the p-value of the knots decreases during the process,
pruning from the most irrelevant knots with p-values near 1 to some of them with p-values
very close to 0.

>

Figure 5. Example of a complete pruning sequence of the method MC2. The zoom in the interest area
shows how the elbow of the curve has been determined, and the selected K value.

Once the pruning sequence has been built, the final complexity K is selected by looking
for the elbow of the p-value curve (see Figure 5). Specifically, the last point of the curve
with a lower slope than the one given by the line that connects the end point of the pruning
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sequence and the point of p-value = 0.05 is chosen. The selected model after the pruning
step is the PM of the sequence with that value of K.

Finally, a refitting step is carried out to improve the knots’ positions. For this, a new
cloud of points is created, evaluating the sub-models in several x-coordinates. Constrained
by the available memory, the number of points for this final step (Q) is fixed. In this paper,
Q is fixed to 500 k. Then, each sub-model is evaluated in a random set of x-coordinates
of size Q/M. These points are uniformly generated over the x-range to avoid repetition
in different x-coordinates as much as possible. Once this new dataset is generated, the
refitting step of the original LHM algorithm is executed (its details can be seen in [9]), fixing
the final position of the knots of the model.

5.2.3. Applying the Learning Algorithm of the LHM to the Set of Sub-Models (MC3)

This combination approach is based on the reference algorithm and treats the sub-
models as a new learning set. Using the new dataset of size Q described in the previous
method, made by evaluating the M sub-models in random sets of x-coordinates of size
Q/M, the reference algorithm is fitted to these data. Figure 6 shows an example of this: the
50 sub-models fitted with n = 1000, and shown in Figure 3, are used to build the new input
dataset, and after applying the reference algorithm, the plotted piecewise linear model
is obtained.
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Figure 6. Piecewise linear model obtained by combining the 50 sub-models (n = 1000) of Figure 3 using
the MC3 method. The ticks on the x-axis represent the positions of the knots of all the sub-models
(red) and the knots of the combined model (black), respectively.
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5.3. Improving MC by Means of OLS

In spite of the fact that all the proposed methods provide a continuous piecewise linear
regression model that could be considered the final one, the position of their knots can
be improved, due to the fact that a final OLS can be carried out. Note that this approach
can produce better models only if the model is not over-parameterised, i.e., when the
model’s flexibility has been explicitly limited by selecting the lowest complexity, providing
an acceptable generalisation capability. Clearly, this is not the case of the output averaging
method (MC1). Thus, the proposed MS, MC2, and MC3 can take advantage of this final
optimisation. Once the basis functions Bj have been fixed, using a model selection or
combination method, their final hj can be estimated by using OLS (Equation (4)) with
the full dataset, by applying efficient matrix decompositions. The next section presents a
comparative analysis of all the proposed methods, where the effect of performing this final
optimisation step is also tested.

6. Empirical Results

In order to test all these different approaches, a Windows server with an Intel Xeon E5-
2660 (2.6 GHz) processor (10 cores), 144 GB of RAM, and an SSD of 500 GB was used. All the
implementation was carried out in Matlab R2022b, using the Parallel Computing Toolbox.

As shown in Table 1, four different problems with different sizes and complexities were
used for testing. Following Equation (1), additive random error (ϵ) was generated according
to a normal distribution of zero mean and standard deviation σ = 0.2 · range( f (x)). Figure 7
shows an example of each problem. The empirical results of the proposed methods in all
these problems are shown at the end of this section (see Section 6.5), but for simplicity, and
in order to illustrate their behaviour, only the simplest (PR1) and the most complex one
(PR4) are used in the other subsections.
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Figure 7. Input datasets used in the simulations: scattered data (N = 1000) and true underlying
functions of the problems shown in Table 1.
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Table 1. Problem definition for testing the proposed methods.

Problem True Function

PR1 f (x) = x + 2x2

PR2 f (x) = 40/(1 + ex)
PR3 f (x) = 10 − sin((π · x)/2)
PR4 f (x) = 10 + x3 · sin(π · x)

For each problem, 30 independent datasets with 10 million instances were generated as
scattered learning sets (SLSs), as well as an independent one of 500 k points for the scattered
test set (STS). In addition, to measure the error with the true underlying function, a set of
50 k data without noise was used as the true test set (TTS). All this section’s quantitative
results and graphs are calculated from these 30 replications.

In order to test the performance of all the proposed methods, their results are compared
with the ones obtained with the reference algorithm (LHM) executed over the full datasets
of 10 million data. The combination and selection methods are based on sub-samples of
sizes (n) between 1 k and 1 M data, and different values of M.

6.1. Performance of the Reference Algorithm

Since the selection of the size of each sub-sample is determinant in the final result, an
initial analysis of the performance of the standard LHM learning algorithm when varying
the number of points was carried out. It is clear that for the same noise level, the more
input data we use as the training set, the lower error we achieve.

First, in order to illustrate the differences between the models obtained from different
values of N, Figure 8 shows LHMs obtained from a small and a big sample size. It can
be seen that by increasing N from 1 k to 100 k, we can reach a great improvement in
the accuracy of the model. Using a small SLS, we obtain a ’weak’ model, whereas with
N = 100 k both the accuracy and complexity (K) of the model increase.
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Figure 8. LHMs obtained in one replication using two different sample sizes: Problems PR1 (top) and
PR4 (bottom), with datasets of N = 1 k (left) and N = 100 k (right). The black curve represents the
true underlying function.
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This increasing complexity of the LHM with N is systematic in those problems. Accord-
ing to Figure 9, K continuously grows with N. Note that its growth ratio decreases with N,
i.e., larger increments in N are required to produce an effective increase in K. Furthermore,
for a given sample size, there is a small dispersion around the median value of K, so it
can be concluded that the learning algorithm of the LHM estimates the complexity in a
robust way.
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Figure 9. Distribution of K when varying the sample size N (calculated from 30 replications), for
problems PR1 (top) and PR4 (bottom). For each N a compact boxplot shows the distribution of K.
The red line connects their median values.

Regarding the error of these models, Figure 10 shows their MSE over the different
datasets. It can be seen that, as expected, the MSE(TTS) decreases with increasing N, and
both MSE(SLS) and MSE(STS) stabilise around the variance of the noise. Despite having
more and more knots when N increases, these models are not over-fitted, being more and
more accurate. Therefore, we can conclude that the reference algorithm does a reasonable
job by adapting the estimated model’s complexity to the underlying structure’s complexity
and the amount of available data.

Finally, in order to achieve a deeper knowledge of the performance of the reference
algorithm, the MSE can be broken down more finely. It is well known that the MSE over
the TTS can be decomposed in two terms (see, e.g., [4]):

MSE(TTS) = bias2 + variance. (10)

The first term is the bias2, and it measures how closely the average model (given the
set of models estimated from different samples of the same size) matches the true function.
The second term represents the variance of those models from the average one, and it
measures the certainty of the estimated models for a given sample size.

Figure 11 shows this decomposition of the MSE(TTS) of the LHMs when varying N. It
can be seen that in both problems, most of the error is due to the variance, especially when
the SLS is small. Furthermore, the bias and variance decrease rapidly when N increases.
Comparing the results obtained from the different problems, it can be observed that the
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simplicity of PR1 results in a much lower error than the one obtained in PR4. In PR4, for
very small sample sizes, a high bias is obtained due to the fact that the algorithm is not
able to recover the most complex part of the underlying structure. However, in PR1 the
bias obtained even with small values of n is quite small compared with the total error.
This empirical evidence shows that, in terms of accuracy, there is room for improvement,
especially by means of reducing the LHM variance. The proposed combination methods
take advantage of this fact.
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Figure 10. Distribution of the MSE when varying the sample size (calculated from 30 replications),
for problems PR1 (top) and PR4 (bottom). For each N, three compact boxplots show the distribution
of the MSE calculated over the SLS, STS, and TTS. A solid line shows the trend in each MSE. The
black dashed line represents the true variance of the noise.
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Figure 11. Bias–variance decomposition of the MSE(TTS) when varying the sample size N (calculated
from 30 replications). Top: Problem PR1. Bottom: Problem PR4.
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6.2. Selection of n and M

This section will focus on the behaviour of the different selection and combination
methods varying n and M. As shown in the previous section, it is clear that the sample size
is determinant in the accuracy and complexity of the LHM. Furthermore, different levels
of noise and problem complexities will require different sample sizes in order to obtain
models of the same quality. Since the LHM always improves its accuracy with increasing
N, the sample size should be large enough to allow the learning algorithm to separate the
noise from the underlying structure of the problem. On the other hand, for a fixed n, an
increase in the number of sub-samples (M) also produces more and more accurate models.

Figure 12 summarises the performance of all the combination methods when changing
the sub-sample size as well as the number of sub-samples. It can be seen that in order to
reduce the bias an increase in n is required, always constrained by the available RAM. In
addition, we can achieve a variance reduction by increasing the number of sub-samples.
This would result in an increase in CPU-time or, since they are independent processes, the
number of threads if concurrent execution is available.

M
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+ variance
- time/threads

- variance
+ time/threads

+ RAM
- bias

+bias
-RAM

Figure 12. Impact of the parameters M and n on the accuracy of the combination models, and
implications in terms of execution time and computing resources.

In order to assess empirically the impact of these two parameters in the final model,
the performance of all the methods was compared, varying n and M in each problem. For
example, Figures 13 and 14 show their systematic behaviour when changing these parame-
ters. As expected, according to the results of the reference algorithm, higher values of n
also bring better results in terms of accuracy when combining several LHMs. Furthermore,
the method based on model selection (MS) always has flatter error curves than the ones
based on combination. In spite of the fact that the bias is reduced by increasing n (in the
same way as for the reference algorithm in Figure 10), the MS method does not reduce the
variance in the reference algorithm since it is calculated in the same way. Regarding the
combination methods, it can be observed that the shapes of their error curves are quite
similar in every case.

Further insight about the origin of these reductions in the MSE can be found in its
bias–variance decomposition. Following Equation (10), the MSE(TTS) was decomposed in
these terms. Figures 15 and 16 show that, as expected, an increase in n causes a decrease
in both bias and variance. In addition, increasing M significantly reduces the variance,
whereas the bias remains approximately constant.
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Figure 13. Comparison of the performance of the proposed methods when varying the sub-sample
size (n) and the number of sub-samples (M) in the problem PR1 (calculated with 30 replications).
Top: Distribution of the MSE over the TTS. Bottom: Distribution of the number of knots (K). The
black dashed lines represent the 25th and 75th percentiles of the results obtained with the reference
algorithm and a sample size of N = 10 M.

Figure 14. Comparison of the performance of the proposed methods varying the sub-sample size
(n) and the number of sub-samples (M) in the problem PR4 (calculated with 30 replications). Top:
Distribution of the MSE over the TTS. Bottom: Distribution of the number of knots (K). The black
dashed lines represent the 25th and 75th percentiles of the results obtained with the reference
algorithm and a sample size of N = 10 M.
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Figure 15. Bias–variance decomposition of the MSE(TTS) of the proposed methods in the problem
PR1. For each method: Top: Bias and variance varying n, with fixed M = 50. Bottom: Bias and
variance varying M, with fixed n = 500 k. The background area represents the decomposition of the
MSE(TTS) of the reference algorithm for this problem and a training dataset of N = 10 M.

Regarding the impact of n and M in the complexity of the final models, the bottom of
Figures 13 and 14 show the K curves when varying those parameters. As shown in Figure 9,
the reference algorithm fixes higher and higher complexities when increasing the sample
size. Therefore, a similar behaviour is expected from the methods MS, MC2, and MC3 (the
number of knots of MC1 is always fixed). However, the effect of changing the number
of samples is not so obvious a priori, with the exception of the method based on model
selection: since the reference algorithm is robust in fixing K given n, having more candidate
sub-models will not change the final K too much.

Comparing methods MC2 and MC3, it can be seen that they have a very different
behaviour with n and M when deciding the number of knots. Method MC2 provides
larger and larger values of K when increasing M, whereas MC3 has flatter complexity
curves, being more stable in fixing the number of knots. Furthermore, note that MC2
requires a larger number of sub-samples to reach the complexity fixed by the reference
algorithm and presents higher dispersion in its complexity curves (see Figure 14, bottom),
so that it seems to be less robust when fixing K. On the other hand, MC3 systematically
overcomes the complexity of the reference algorithm, even for small values of M. Due to
the fact that, as is shown in Figure 2, these methods are not over-fitted even with higher
complexities than the reference algorithm, obtaining larger values of K usually provides
more accurate models. This confirms that we can obtain models with higher complexities
than the reference algorithm, with even less generalisation error.
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Figure 16. Bias–variance decomposition of the MSE(TTS) of the proposed methods in problem PR4.
For each method: Top: Bias and variance varying n, with fixed M = 50. Bottom: Bias and variance
varying M, with fixed n = 500 k. The background area represents the decomposition of the MSE(TTS)
of the reference algorithm for this problem and a training dataset of N = 10 M.

6.3. Comparative Analysis of the Proposed Methods

As summarised in Figure 12, all the tested combination approaches behave in the same
way when increasing n and M: they improve in terms of bias and variance. The model
selection, as expected, does not take advantage of increasing values of M to reduce variance,
and it only improves with increasing n in the same way that the reference algorithm did.

This section aims at comparing the performance of the proposed methods. In particular,
Figures 17 and 18 present the error and complexity curves of the methods for a small and a
large sub-sample size. Both figures clearly show that MS is always the worst option because
it produces models with the highest generalisation error. Note that the complexity of these
models is always lower than the K chosen by the reference algorithm because of the fact
that BIC selects one model among under-parameterised LHMs.

Regarding the combination methods, it can be seen that when a small value of n is
chosen, the MSE(TTS) stabilises for M ≥ 50. Once the variance cannot be reduced much
more by increasing M, almost all the MSE is due to the bias of the reference algorithm for
that n. In the case of n = 1 M, for both problems, the error curves seem not to be stabilised
yet, so combining a larger number of models could reduce the MSE in terms of variance
even more. In the particular case of MC1, it can be seen that in terms of error, this method
provides very low values of MSE due to its lack of compression, which allows its final
model to have all the richness of the combined sub-models. Note that the complexity of
this method has not been plotted because it is always fixed to 10 k.
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Figure 17. Comparison of the performance of the proposed methods in PR1, varying the number of
sub-samples M (distributions calculated from 30 replications). Left: Small sub-sample size (n = 1 k).
Right: Big sub-sample size (n = 1 M). Top: Distribution of the MSE over the TTS. Bottom: Distribution
of the number of knots (K). The black dashed lines represent the 25th and 75th percentiles of the
results obtained with the reference algorithm and a sample size of N = 10 M.

Figure 18. Comparison of the performance of the proposed methods in PR4, varying the number of
sub-samples M (distributions calculated from 30 replications). Left: Small sub-sample size (n = 1 k).
Right: Big sub-sample size (n = 1 M). Top: Distribution of the MSE over the TTS. Bottom: Distribution
of the number of knots (K). The black dashed lines represent the 25th and 75th percentiles of the
results obtained with the reference algorithm and a sample size of N = 10 M.

Concerning method MC2, it can be observed that its K systematically increases with M
(similar to the reference algorithm with increasing N), and its results in terms of error are
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more and more competitive at the same time. On the other hand, MC3 always fixes a quite
stable complexity (larger than the K estimated by the reference algorithm) for any value of
M, and in terms of error seems to be the best option in every case. Note that despite having
many fewer knots than the models obtained with MC1, MC3 always produces equal or
better results. Furthermore, comparing MC2 and MC3, it can be seen that for high values
of M both have similar results in terms of MSE.

6.4. Impact of Carrying out a Final OLS

The models that have been presented in the last subsection could be perfectly con-
sidered the final result: they provide structured models with an MSE that in some cases
(normally with large values of n and M) can even outperform the result of the reference
algorithm executed over the whole dataset. As shown in Figures 15 and 16, for a given
value of n, these improvements in error are due to the decrease in variance that we achieve
when combining more models. However, the bias of these models obtained by combination
is comparable with that obtained with the reference algorithm executed over a sub-sample
of size n (see Figure 15). Therefore, there is still room for improvement in terms of bias. As
already mentioned, before applying OLS the complexity of the model must have been fixed
to a reasonable number of knots. If the model is over-parameterised, since in this step the
noisy input data are used again, its excess flexibility can lead to an over-fitted model. For
that reason, in this section only the methods MS, MC2, and MC3 are analysed.

Figure 19 shows the results of these methods with and without a final OLS. First, it
can be seen that the results of the MS method do not improve a lot after this optimisation.
The fact of having estimated the complexity and x-positions of the knots with a small
sub-sample leads to a too simple model that does not have enough flexibility to compete
with the reference algorithm built with the full dataset. Method MC2 takes advantage of
this final step, and it can be seen that, in both problems, it can progressively reduce the
bias. However, MC3 produces the most striking results, having less bias than the reference
algorithm in both problems and for any value of M.

Figure 19. Bias–variance decomposition of the MSE(TTS) with and without a final OLS (calculated
from 30 replications). The first two rows are related to PR1, and the other two are for PR4. Each
column represents the results of a different method (MS, MC2, and MC3), with and without applying
a final OLS. The background area represents the bias–variance decomposition of the MSE(TTS)
obtained with the reference algorithm over a sample of size N = 10 M.
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6.5. CPU-Time versus Accuracy

The previous sections have discussed the impact of the parameters n and M in the final
model, the differences between the proposed models, and the advantages of carrying out a
final OLS to reduce the error. All these analyses have been focused on the accuracy of the
resulting model but not on the required execution time of each method. This section aims to
join these two dimensions of the problem, providing further information to quantitatively
determine the best option.

In this point, it seems to be clear that the bigger the sub-sample size, the better, due
to the fact that combining better sub-models provides a more accurate result. Therefore,
for this final analysis n has been fixed to a big value, 1 M. The number of sub-samples
has also been proved to be determinant in reducing variance. However, as shown in
Figure 12, increasing M leads to an increase in execution time or (since the sub-models can
be calculated concurrently) in threads. In order to measure simultaneously the influence of
M in both accuracy and execution time, several values were tested.

The tables below show the results of all the methods in each problem, in comparison
with the reference algorithm. Methods MS, MC2, and MC3 include a final OLS. In particular,
Table 2 shows the errors that were obtained over the different datasets, complemented with
Table 3, where the bias–variance decomposition of the MSE(TTS) in every case is shown.
These tables perfectly match the CPU-times of Table 4. According to Table 2 none of the
proposed methods suffer over-fitting, since the MSE obtained over the SLS and STS are
similar in every case. Comparing the performance of the proposed methods, it can be seen
that, as expected, MS is always the worst option in terms of MSE (both bias and variance)
and never performs better than the reference algorithm. For method MC1, in spite of being
a combination method with which we achieve a variance reduction from the reference
algorithm, it only outperforms the original LHM in terms of MSE in the simplest problem
(PR1), and with M ≥ 10. This is due to the fact that it systematically presents a much
greater bias.

Table 2. Average MSE over the different datasets (SLS, STS, and TTS) in all the problems applying
the proposed methods with different values of M and n = 1 M (calculated from 30 replications). Note
that MS, MC2, and MC3 include a final OLS step. The last row represents the results of the reference
algorithm (RA) using a sample of N = 10 M. The values with * represent the first value of M, for each
problem and method, in which the error over the TTS is lower than the one obtained with RA. Values
given in parentheses indicate the best method for each problem, obtained with minimum M.

PR1 (MSE) PR2 (MSE) PR3 (MSE) PR4 (MSE)

M SLS STS TTS SLS STS TTS SLS STS TTS SLS STS TTS

MS 2 52.22 52.27 1.31 × 10−2 63.99 64.03 1.02 × 10−2 16.00 16.00 3.31 × 10−3 149.71 149.64 1.82 × 10−2

5 52.22 52.27 1.11 × 10−2 63.99 64.03 8.30 × 10−3 16.00 16.00 3.28 × 10−3 149.71 149.64 1.70 × 10−2

10 52.21 52.27 1.09 × 10−2 63.99 64.03 7.77 × 10−3 16.00 16.00 3.03 × 10−3 149.71 149.64 1.73 × 10−2

20 52.22 52.27 1.10 × 10−2 63.99 64.03 7.82 × 10−3 16.00 16.00 3.04 × 10−3 149.71 149.64 1.76 × 10−2

50 52.21 52.27 1.04 × 10−2 63.99 64.03 7.09 × 10−3 16.00 16.00 2.93 × 10−3 149.71 149.63 1.72 × 10−2

MC1 2 52.21 52.27 9.02 × 10−3 63.99 64.03 8.23 × 10−3 16.00 16.00 2.74 × 10−3 149.70 149.64 1.57 × 10−2

5 52.21 52.26 5.41 × 10−3 63.99 64.03 5.45 × 10−3 16.00 16.00 1.98 × 10−3 149.70 149.63 9.94 × 10−3

10 52.21 52.26 3.78 × 10−3 * 63.98 64.03 4.75 × 10−3 16.00 16.00 1.73 × 10−3 149.70 149.63 8.08 × 10−3

20 52.21 52.26 3.26 × 10−3 63.98 64.03 4.24 × 10−3 16.00 16.00 1.65 × 10−3 149.70 149.63 7.29 × 10−3

50 52.21 52.26 3.09 × 10−3 63.98 64.03 4.04 × 10−3 16.00 16.00 1.56 × 10−3 149.70 149.63 6.74 × 10−3
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Table 2. Cont.

PR1 (MSE) PR2 (MSE) PR3 (MSE) PR4 (MSE)

M SLS STS TTS SLS STS TTS SLS STS TTS SLS STS TTS

MC2 2 52.22 52.27 1.31 × 10−2 63.99 64.03 1.23 × 10−2 16.00 16.00 3.14 × 10−3 149.70 149.64 1.53 × 10−2

5 52.21 52.26 6.27 × 10−3 63.98 64.03 5.14 × 10−3 16.00 16.00 1.94 × 10−3 149.70 149.63 9.55 × 10−3

10 52.21 52.26 3.13 × 10−3 * 63.98 64.02 3.60 × 10−3 16.00 16.00 1.39 × 10−3 149.70 149.63 7.84 × 10−3

20 52.21 52.26 1.84 × 10−3 63.98 64.02 2.64 × 10−3 * 16.00 16.00 1.21 × 10−3 * 149.70 149.63 6.96 × 10−3 *
50 52.21 52.26 1.15 × 10−3 63.98 64.02 1.73 × 10−3 16.04 16.04 3.89 × 10−2 149.69 149.63 5.77 × 10−3

MC3 2 52.21 52.26 (1.75 × 10−3 *) 63.98 64.02 (1.48 × 10−3 *) 16.00 16.00 (1.09 × 10−3 *) 149.69 149.63 (4.45 × 10−3 *)
5 52.20 52.26 1.12 × 10−3 63.98 64.02 1.06 × 10−3 16.00 16.00 8.92 × 10−4 149.69 149.63 4.89 × 10−3

10 52.20 52.26 9.26 × 10−4 63.98 64.02 9.17 × 10−4 16.00 16.00 7.97 × 10−4 149.69 149.63 4.57 × 10−3

20 52.20 52.26 7.81 × 10−4 63.98 64.02 8.46 × 10−4 16.00 16.00 8.10 × 10−4 149.69 149.63 4.23 × 10−3

50 52.20 52.26 7.09 × 10−4 63.98 64.02 7.51 × 10−4 16.00 16.00 7.21 × 10−4 149.69 149.63 4.21 × 10−3

RA - 52.21 52.26 4.53 × 10−3 63.98 64.02 2.86 × 10−3 16.00 16.00 1.36 × 10−3 149.68 149.63 7.06 × 10−3

Table 3. Bias–variance decomposition of the MSE(TTS) in all the problems applying the proposed
methods with different values of M and n = 1 M (calculated from 30 replications). Note that MS, MC2,
and MC3 include a final OLS step. The last row represents the results of the reference algorithm (RA)
using a sample of N = 10 M.

PR1 (Bias–Var) PR2 (Bias–Var) PR3 (Bias–Var) PR4 (Bias–Var)

M Bias2 Var Bias2 Var Bias2 Var Bias2 Var

MS 2 5.28 × 10−3 2.16 × 10−2 5.50 × 10−3 1.54 × 10−2 2.78 × 10−3 3.97 × 10−3 1.21 × 10−2 2.51 × 10−2

5 4.54 × 10−3 1.82 × 10−2 5.63 × 10−3 1.14 × 10−2 2.67 × 10−3 4.02 × 10−3 1.14 × 10−2 2.34 × 10−2

10 4.58 × 10−3 1.77 × 10−2 6.07 × 10−3 9.80 × 10−3 2.66 × 10−3 3.51 × 10−3 1.07 × 10−2 2.48 × 10−2

20 3.70 × 10−3 1.89 × 10−2 6.12 × 10−3 9.84 × 10−3 2.38 × 10−3 3.83 × 10−3 1.19 × 10−2 2.40 × 10−2

50 4.52 × 10−3 1.69 × 10−2 5.58 × 10−3 8.90 × 10−3 2.16 × 10−3 3.83 × 10−3 1.04 × 10−2 2.48 × 10−2

MC1 2 6.29 × 10−3 1.22 × 10−2 7.60 × 10−3 9.16 × 10−3 2.91 × 10−3 2.64 × 10−3 1.03 × 10−2 2.18 × 10−2

5 5.53 × 10−3 5.47 × 10−3 6.86 × 10−3 4.18 × 10−3 2.80 × 10−3 1.20 × 10−3 1.06 × 10−2 9.60 × 10−3

10 4.89 × 10−3 2.76 × 10−3 7.33 × 10−3 2.24 × 10−3 2.76 × 10−3 7.28 × 10−4 1.02 × 10−2 6.19 × 10−3

20 4.71 × 10−3 1.87 × 10−3 7.32 × 10−3 1.20 × 10−3 2.81 × 10−3 5.00 × 10−4 1.05 × 10−2 4.23 × 10−3

50 5.00 × 10−3 1.23 × 10−3 7.25 × 10−3 8.69 × 10−4 2.77 × 10−3 3.52 × 10−4 1.04 × 10−2 3.14 × 10−3

MC2 2 8.53 × 10−3 1.82 × 10−2 1.16 × 10−2 1.35 × 10−2 3.23 × 10−3 3.15 × 10−3 1.17 × 10−2 1.96 × 10−2

5 5.43 × 10−3 7.36 × 10−3 6.20 × 10−3 4.22 × 10−3 2.54 × 10−3 1.38 × 10−3 1.11 × 10−2 8.30 × 10−3

10 3.30 × 10−3 3.06 × 10−3 4.74 × 10−3 2.54 × 10−3 1.93 × 10−3 8.78 × 10−4 9.91 × 10−3 5.97 × 10−3

20 2.06 × 10−3 1.68 × 10−3 3.56 × 10−3 1.79 × 10−3 1.66 × 10−3 7.94 × 10−4 8.61 × 10−3 5.49 × 10−3

50 1.24 × 10−3 1.09 × 10−3 2.28 × 10−3 1.22 × 10−3 1.90 × 10−2 6.08 × 10−2 6.96 × 10−3 4.75 × 10−3

MC3 2 8.61 × 10−4 2.73 × 10−3 8.44 × 10−4 2.19 × 10−3 1.17 × 10−3 1.05 × 10−3 1.16 × 10−3 7.99 × 10−3

5 6.47 × 10−4 1.64 × 10−3 8.13 × 10−4 1.35 × 10−3 1.06 × 10−3 7.52 × 10−4 1.55 × 10−3 7.93 × 10−3

10 6.80 × 10−4 1.21 × 10−3 6.13 × 10−4 1.26 × 10−3 1.00 × 10−3 6.15 × 10−4 1.61 × 10−3 7.79 × 10−3

20 6.10 × 10−4 9.84 × 10−4 6.54 × 10−4 1.07 × 10−3 1.07 × 10−3 5.66 × 10−4 1.38 × 10−3 7.33 × 10−3

50 5.51 × 10−4 8.96 × 10−4 5.45 × 10−4 9.90 × 10−4 9.12 × 10−4 5.49 × 10−4 1.41 × 10−3 7.25 × 10−3

RA - 1.13 × 10−3 3.52 × 10−3 1.17 × 10−3 1.75 × 10−3 6.34 × 10−4 7.50 × 10−4 1.57 × 10−3 5.69 × 10−3

In terms of accuracy, only MC2 and MC3 are competitive alternatives to the reference
algorithm in all the problems, with MC3 always being the best option. It can be observed
that MC2, for some different values of M, is able to outperform the reference algorithm
in all the problems. Observing Table 3, it can be seen that these improvements are only
due to a variance reduction since it always presents more bias than the RA. Furthermore,
Tables 2 and 3 confirm the lack of stability of MC2 (see, e.g., PR3). MC3 always has better
results when combining only two sub-models, and regarding bias and variance, it also
presents good results in the tested problems.
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Regarding the CPU-time, Table 4 shows the results for every problem and method.
To establish an upper bound, the columns tsub represent the total calculation times of all
the sub-models sequentially. Note that this time can be reduced by increasing the number
of threads and fitting these models in parallel, with nearly linear speed-ups obtainable. It
can be observed that those columns are equal in every method and problem, since all the
sub-models are calculated for every method in the same way. Joining the results presented
in this table with the previous error tables, the method MC2 was able to outperform the
reference algorithm with different values of M depending on the problem. This means that
choosing a high enough number of sub-samples, we can obtain accurate results. However,
MC3 with only two sub-samples was able to overcome the RA results, and therefore, since
the combination method itself is not very computationally expensive, we can obtain better
results even in a lower time.

Table 4. Average CPU-time of the proposed methods with different values of M and n = 1 M, applied
to all the problems (calculated from 30 replications). tsub represents the total calculation time of the
sub-models. tsc represents the execution time of the model selection or combination method. This
time includes a final OLS in the case of MS, MC2, and MC3. ttot shows the total execution time. The
last row represents the results of the reference algorithm (RA) using a sample of N = 10 M.

PR1 (Time (s)) PR2 (Time (s)) PR3 (Time (s)) PR4 (Time (s))

M tsub tsc ttot tsub tsc ttot tsub tsc ttot tsub tsc ttot

MS 2 18.55 3.44 21.99 16.38 3.09 19.47 22.34 6.83 29.17 33.39 9.56 42.95
5 54.87 3.54 58.41 46.87 3.18 50.05 61.54 6.83 68.37 95.32 9.57 104.89
10 138.56 3.55 142.11 117.97 3.16 121.13 151.43 6.82 158.26 224.60 9.51 234.11
20 283.71 3.58 287.28 245.99 3.18 249.17 311.64 6.74 318.39 455.19 9.42 464.61
50 788.09 3.58 791.67 662.48 3.23 665.71 797.61 6.79 804.40 1156.44 9.52 1165.95

MC1 2 18.55 0.00 18.55 16.38 0.00 16.38 22.34 0.00 22.34 33.39 0.00 33.39
5 54.87 0.00 54.87 46.87 0.00 46.87 61.54 0.00 61.54 95.32 0.00 95.32
10 138.56 0.00 138.57 117.97 0.00 117.97 151.43 0.00 151.44 224.60 0.00 224.60
20 283.71 0.01 283.72 245.99 0.01 246.00 311.64 0.01 311.65 455.19 0.01 455.20
50 788.09 0.02 788.11 662.48 0.02 662.49 797.61 0.02 797.62 1156.44 0.02 1156.45

MC2 2 18.55 8.61 27.15 16.38 7.67 24.05 22.34 17.27 39.61 33.39 22.55 55.94
5 54.87 11.30 66.17 46.87 10.47 57.35 61.54 23.19 84.72 95.32 28.90 124.22
10 138.56 13.51 152.07 117.97 11.79 129.75 151.43 27.04 178.47 224.60 31.94 256.54
20 283.71 10.48 294.19 245.99 8.65 254.64 311.64 21.24 332.89 455.19 26.53 481.72
50 788.09 18.35 806.44 662.48 15.42 677.90 797.61 33.59 831.20 1156.44 44.88 1201.32

MC3 2 18.55 29.12 47.66 16.38 26.79 43.17 22.34 53.24 75.58 33.39 88.24 121.63
5 54.87 31.03 85.90 46.87 27.43 74.30 61.54 53.33 114.87 95.32 88.01 183.34
10 138.56 32.21 170.77 117.97 27.64 145.61 151.43 52.19 203.62 224.60 84.47 309.07
20 283.71 21.29 304.99 245.99 17.24 263.23 311.64 35.61 347.26 455.19 60.57 515.76
50 788.09 31.87 819.96 662.48 27.52 689.99 797.61 50.69 848.30 1156.44 82.85 1239.29

RA - - - 114.87 - - 83.82 - - 147.19 - - 180.37

7. Conclusions and Future Work

In the current digital era, the exponential growth of data across various sectors presents
unprecedented opportunities for insights and discoveries. However, handling large-scale
datasets requires robust and scalable methods capable of fitting reliable models to extract
meaningful knowledge. Traditional learning algorithms often struggle with large-scale
data, as they are typically designed to run on single-core processors, accessing the entire
input dataset.

In this paper, some ensemble methods have been tested to obtain a continuous piece-
wise linear regression model from very large datasets based on the learning algorithm of
the LHM. Additionally, this paper features a thorough analysis of results, wherein the mean
squared error (MSE) is decomposed into its constituent components of bias and variance.
This analysis offers valuable insights into the performance of the proposed ensemble meth-
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ods, shedding light on the impact of varying the number of sub-samples and sub-sample
sizes on the final outcomes. Model selection techniques prove to be the worst option: since
the set of candidate sub-models is calculated with samples of the input dataset, none of
these models can improve the results of the original algorithm applied to the whole dataset.

Model combination is empirically proved to be a good alternative to scale up the
problem, because this method can outperform the results of the reference algorithm. We
have presented two novel combination methods that overcome the results of the reference
algorithm in terms of variance. Furthermore, since we can apply ordinary least squares
(OLS) using the whole dataset and efficient matrix decompositions, the models obtained by
using model combination can be finally optimised, also improving in terms of bias.

The first proposed method (MC2), based on model averaging with a pruning and
refitting step, usually requires combining a large number of samples to obtain similar or
better results than the original LHM. However, the second one (MC3), based on applying
again the reference algorithm to combine the set of sub-models, always provides better
results, even when combining a small number of them.

The methods proposed offer a dual advantage: not only do they facilitate the applica-
tion of the original LHM when the entire dataset exceeds memory capacity, but they also
deliver substantial improvements in error reduction and execution time. Focusing on the
best-performing model, MC3, we observed remarkable error reductions ranging from 20%
to 61% with the combination of just two sub-samples. Furthermore, leveraging a larger
number of sub-samples led to even more pronounced enhancements, with a maximum
error reduction of 40% to 84% achievable when using 50 sub-samples compared to the
original algorithm applied to the entire dataset. It is noteworthy that our proposed methods
are designed for inherent parallelism, enabling not only reduced errors but also expedited
execution times, contingent upon the available computing environment. Additionally, this
paper presents an in-depth analysis of results, decomposing the error in terms of bias and
variance, and analysing the impact of the number of sub-samples and sub-sample size on
the final outcomes.

The findings and methods proposed in this paper have significant implications for
real-world applications. The LHM, a versatile and general-purpose algorithm employed
as the foundation of our ensemble methods, has demonstrated robust performance in
diverse domains requiring precise one-dimensional curve fitting under stringent noise
conditions. Applications such as electric load forecasting, temperature modelling, and
environmental data analysis stand to benefit from the scalability and accuracy afforded
by our proposed ensemble methods. By enabling the application of LHM to datasets that
exceed memory capacity, our methods provide a practical solution for leveraging large-
scale datasets in a wide range of applications, thereby facilitating better-informed decision
making in different sectors.

Even though model combination has been proven to be a better solution than model
selection, incorporating an additional model selection step to our combining procedures
could improve the results. For that reason, future developments will incorporate weights
(based on the errors of each model and its pointwise confidence bands) to highlight both
the best sub-models and the zones where each one has less error.
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Abbreviations
The following abbreviations are used in this manuscript:

AIC Akaike information criterion
BIC Bayesian information criterion
LHM Linear Hinges Model
MS Model selection
MC Model combination
MSE Mean squared error
OLS Ordinary least squares
PM Pruned model
RA Reference algorithm
SLS Scattered learning set
STS Scattered test set
TTS True test set
WLS Weighted least squares

Appendix A. Learning Algorithm of the LHM

The main goal of this learning algorithm is to estimate the number and horizontal
positions of the knots of the linear B-splines, before applying OLS or WLS to determine the
vertical coordinate of each knot. This learning algorithm combines a greedy divide-and-
conquer strategy with computationally efficient pruning and special updating formulas. It
consists of four main consecutive stages: smoothing, growing, pruning and refitting. The
first three steps are used to automatically identify the complexity of the model, whereas the
final refitting improves the accuracy of the estimation of the position of the basis functions.

The first step consists of scatter-plot smoothing, removing possible noise by applying
the Supersmoother [25]. This smoother makes use of simple smoothers based on local linear
regression with different span lengths, using cross-validation to automatically estimate the
optimal span for each abscissa value.

After filtering the noise with the Supersmoother, the growing algorithm builds a
large and accurate piecewise linear model, possibly over-fitted (with a high number of
knots). It uses a top-down partitioning algorithm where the splitting process is repeated
recursively until all points of the smoothed scatterplot are sufficiently well approximated
by the resulting model. This step of the algorithm is based on the well known ’iterative end
point fit’ or Ramer–Douglas–Peucker algorithm (see [26]), with some subtle differences:
for example, its stopping criterion is a preset value of admissible MSE, instead of using a
threshold distance. This growing algorithm explores many candidate splits to select the
best ones until the termination criteria are reached.

Then, the large initial model is pruned by removing the irrelevant knots. The pruning
procedure aims at selecting a subset of knots in order to reduce model complexity while
preserving accuracy with respect to the original data. The pruning algorithm first generates
a pruning sequence of models of decreasing complexity, then selects the best one of the
sequence by choosing the one which achieves the best compromise between simplicity and
accuracy. The criterion applied in this model selection step is the one-standard error rule,
proposed in [27].

Once the proper complexity of the resulting model is determined, the final step of the
learning algorithm is refitting the pruned model. During this stage, both coordinates of the
knots are optimised by means of an iterative process where each knot is considered one by
one, moving its position in order to minimise the error in the training set.

Further details about the LHM can be found in [9,28]. Practical applications of the
LHM in a broad range of disciplines, such as engineering and medicine can be seen
in [29–36].
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