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Abstract: Background. Brain–machine interfaces (BMIs) offer users the ability to directly communicate
with digital devices through neural signals decoded with machine learning (ML)-based algorithms.
Spiking Neural Networks (SNNs) are a type of Artificial Neural Network (ANN) that operate on
neural spikes instead of continuous scalar outputs. Compared to traditional ANNs, SNNs perform
fewer computations, use less memory, and mimic biological neurons better. However, SNNs only
retain information for short durations, limiting their ability to capture long-term dependencies in
time-variant data. Here, we propose a novel spike-weighted SNN with spiking long short-term
memory (swSNN-SLSTM) for a regression problem. Spike-weighting captures neuronal firing rate
instead of membrane potential, and the SLSTM layer captures long-term dependencies. Methods. We
compared the performance of various ML algorithms during decoding directional movements, using
a dataset of microelectrode recordings from a macaque during a directional joystick task, and also
an open-source dataset. We thus quantified how swSNN-SLSTM performed compared to existing
ML models: an unscented Kalman filter, LSTM-based ANN, and membrane-based SNN techniques.
Result. The proposed swSNN-SLSTM outperforms both the unscented Kalman filter, the LSTM-based
ANN, and the membrane based SNN technique. This shows that incorporating SLSTM can better
capture long-term dependencies within neural data. Also, our proposed swSNN-SLSTM algorithm
shows promise in reducing power consumption and lowering heat dissipation in implanted BMIs.

Keywords: BMI; brain–machine interface; BCI; brain–computer interface; SNN; spiking neural
network; machine learning; neuroscience; decoding

1. Introduction

Brain–machine interfaces (BMIs) are devices that acquire brain signals and convert
them into computer outputs, for example by using algorithms to map them to computer
commands [1–3]. A subset of BMIs can map neural activity to movements or movement
intentions in humans and non-human primate (NHP) models. These have the poten-
tial to improve communication and movement capabilities in humans suffering from
paralysis [4–6]. BMIs can be classified as invasive or non-invasive. While non-invasive
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methods are generally less complicated, easier to implement, and have lower risks of seri-
ous side-effects, they lack the spatial and temporal resolution of invasive multi-electrode
arrays (MEAs), which can be implanted directly into the primary motor cortex and are able
to resolve the spikes in individual neurons. Combined with the use of machine learning
algorithms to decode the neural activity, these have the potential to create very accurate
brain–machine interfaces (BMIs).

Kalman filters (KF) [7] and variants are commonly used as neural decoders, and have
successfully been used in many experiments with NHPs [8–10], as well as in human clinical
trials [11]. However, KFs and its variants suffer from several limitations. KFs are linear by
default, while the neuronal activity that they are meant to be decoding has been shown
to be non-linear [12]. While extensions like the unscented Kalman filter (UKF) and using
a number of ‘taps’ (time bins of spike counts) can reduce these issues, the KF still cannot
retain temporal information over a sufficiently long period of time, as too many taps can
lead to overfitting [13].

To overcome these issues, recurrent artificial neural networks (RNNs) such as the
long short-term memory (LSTM) layer have been used to decode neural information
in BMIs [14–16]. Artificial neural networks (ANNs) with nonlinear activations are able
to model nonlinear functions more closely, and those designed using LSTM layers are
able to retain temporal information over an arbitrary number of time steps, leading to a
better performance than KFs and modified KFs [14]. However, ANNs greatly increase the
computational complexity [17,18], requiring more computational power and electricity,
taking more time to train and execute, and generating more heat. High levels of power
consumption and heat waste are especially serious problems in the context of implanted
BMIs, as even small changes in temperature can cause damage to the sensitive neural
tissue [19].

Spiking neural networks (SNNs) [20] are a type of neural network that more accurately
mimic actual biological neurons, which communicate through discrete signals (known
as action potentials or neural spikes) instead of continuous scalar outputs. In SNNs, the
virtual spikes are controlled by membrane potentials using differential equations modelled
on biological action potentials [21]. This makes them well-suited to BMI tasks, as the input
to the algorithm is already encoded in the form of the recorded neuronal spikes. SNNs
have also been shown to require less computational power than traditional ANNs [22–24].

However, traditional SNNs, like traditional RNNs, have problems capturing long-term
information within data. We have extended the SNN by adding a spiking long short-term
memory layer (SLSTM), which can help capture temporal dynamics in the neural data. We
hypothesized that it would perform better than current SNN techniques. We also used
SNN models with trainable membrane potential thresholds to increase activation sparsity.

Traditionally, when SNNs are used in classification problems [25,26] the spikes are
used as the output. However, for regression-based problems, the membrane potential is
used as the output [27].

Instead of taking this approach, to further augment the SNN, we introduced a unique
output scheme using a linear weighting of output spikes to mimic the biology of the motor
cortex more closely. Since the brain communicates using spikes, we hypothesized that this
method could perform better than a membrane-based SNN. A spike-weighted SNN would
also be less dependent on the starting conditions compared to the membrane potential,
which must always start at 0.

In this study we tested two different methods of regression in SNNs (spike-weighted
and membrane potential) against two alternative decoders (LSTM [16] and Unscented
Kalman filter) [13]. We used each decoder to reconstruct positional data from the input
spike data in a regression problem and evaluated their performance by seeing how closely
they matched the ground truth, which is the actual joystick positions, using the Pearson
correlation coefficient (r) and the coefficient of determination (R2). Kalman filters and
LSTMs have previously been used for regression problems in brain–machine interfaces [16].
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2. Methods

In this section, we will describe the datasets we analyzed, as well as the ML models
we used for decoding.

2.1. Datasets

We tested the models on two datasets. Dataset 1 was collected by us [16]. For Dataset 1,
all experimental procedures described in this paper involving animal experimentation
were approved by, and conducted in compliance with the standards of, the Agri-Food and
Veterinary Authority of Singapore and the Singapore Health Services Institutional Animal
Care and Use Committee. Dataset 2 was taken from an open-source dataset, described
in [28] and used in [29].

For Dataset 1, an electrode array was implanted in the motor cortex of an adult male
macaque (Macaca fascicularis), and recordings were performed as previously described [30,31].

During each recording session, the macaque was positioned in front of a screen while
it held a joystick with its left forelimb. For each trial, an audio cue and a cursor appeared in
the center of the screen, with a target appearing at 1 of 8 points equidistantly positioned
in a ring around the screen center. The macaque was trained to direct the cursor towards
the target by moving the joystick. On successful completion of each trial, a reward was
delivered in the form of fruit juice. For each recording day, there were 7–8 blocks of
recordings, each containing 16–40 trials. Neural activity was recorded in 100 channels at a
sampling rate of 30 kHz. Failed trials were excluded from the training and testing datasets,
and successful trials were concatenated, then treated as a continuous time series for training
and evaluating our models. As the experiment was designed such that each successful trial
began and ended at the center, we avoided discontinuities in the joystick position.

All models were coded by authors using Python 3.9.7, Pytorch 2.0.1, and Snntorch 0.6.4.
Signals were first cleaned by having inactive channels (i.e., those with no neural

signals) removed from the data set, as these channels introduce more noise and can lead to
an inaccurate BMI performance [32]. Common averaging referencing (CAR) was used to
reduce cross-channel noise [33] and the signals were filtered between 300 and 3000 Hz. From
these signals, action potentials (i.e., neuronal spikes) were detected using a thresholding
algorithm, as outlined in [30]. Neuronal activity in each channel was then binned into
sliding 500 ms windows, updated every 100 ms. Joystick data were then resampled at
10 Hz to temporally align with the neural spikes. These spike data were then normalized
( Y−Y

σ ) so they would fit better into our ANN algorithms.
For joystick position data, all data were normalized, and models were coded by the

authors using the modules listed above.

2.2. Decoder Architecture
2.2.1. Spiking Neural Networks

Spiking neural networks [34] are networks that propagate information through dis-
crete spikes, where the spike output is controlled by a membrane potential modelled on
differential equations. They can be trained in three distinct ways:

(1) Conversion from ANNs to SNNs; however, this can cause issues, leading to the need
to increase the time period for inference latency [35].

(2) Using a biologically plausible approach called spike-timing-dependent plasticity
(STDP) [36]. This, however, has exhibited problems in terms of performance.

(3) Backpropagation through time (BPTT), which was the method we used. BPTT uses
surrogate gradients in the backwards pass to allow for differentiability [34].

For this method, we used two different models of neurons. The main model used in
this study is the leaky integrate and fire (LIF) model:

U[T + 1] = βU[T]
decay

+ WX[T + 1]
input

− S[T]Uthr
reset

(1)
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However, we also undertook a brief comparison with the Synaptic current-based LIF
model:

Isyn[T + 1] = αIsyn[T]
decay

+ WX[T + 1]
input

U[T + 1] = βU[T]
decay

+ Isyn[T + 1]
input

− R[T]
reset

(2)

Spikes are governed by the following equation:

Sout[T] =
1 i f U[T] > Uthr

0
(3)

where α = the decay rate of the synaptic current; β = the decay rate of the membrane
potential; U = membrane potential; Isyn = synaptic current; W = weights; T is a discrete
variable representing the current timestep; X represents the data being passed to the neuron.

2.2.2. Spiking Long Short-Term Memory (SLSTM) Architecture

We used the SLSTM architecture, as described in [23]. This is comparable to the general
LSTM architecture [37], but only one time step is simulated each time the cell is called. The
forward pass is governed by the following equations:

iT = σ(WiiX[T + 1] + bii + WhiU[T] + bhi)

fT = σ (Wi f X[T + 1] + bi f + Wh f U[T] + bh f )

gT = tanh (WigX[T + 1] + big + WhgU[T] + bhg )

oT = σ(WioX[T + 1] + bio + WhoU[T] + bho)

Isyn[T + 1] = fT ⋆ Isyn[T] + iT ⋆ gT

U[T + 1] = oT ⋆ tanh
(

Isyn[T + 1]
)

(4)

In the original LSTM formulation h, c are the hidden and cell states, which correspond
to U and Isyn in the SLSTM formulation. In the equation presented above, σ is the sigmoid
function and ⋆ is the Hadamard product. The input gate iT determines the information
added to the memory cells, the forget gate fT determines the information to be forgotten,
and oT determines if the memory cell state Isyn should cause an output spike (as long as
U[T + 1] > Uthr). b and W correspond to the learnable biases and weights. In the SLSTM,
the reset scheme is set to ‘none’.

2.2.3. Spiking Decoders

We constructed two different output types of spiking neural networks: one spike-
weighted decoder and another based on membrane potential:

Each output type had two different model makeups, using either a spiking LSTM
model or a fully connected model. This created four different models: spike-weighted SNN
(swSNN), spike-weighted SLSTM (swSNN-SLSTM), membrane potential SNN (memSNN),
and membrane potential SLSTM (memSNN-SLSTM).

The models were all constructed using the LIF neuron and reset via subtraction
scheme instead of resetting to zero for membrane potential, as inspired by [38]. The ‘Arctan’
surrogate gradient (S = 1

πarctan(πU)) was used, as proposed by [39]. All layers had
learnable threshold and beta parameters, as well as a dropout layer after the first three
layers to prevent overfitting [40].

An Adam optimizer [41] was used with β = (0.9, 0.999), ϵ = 10−8. A Reduce LR
On Plateau Scheduler was used with patience = 8, factor = 0.5, and mode = ‘min’, and a
mean square error loss function was used. The neuron parameters outlined below were
initialized as tensors, where the value was just the initial tensor size.



Algorithms 2024, 17, 156 5 of 17

For all models, the input was the normalized spike data in discrete time steps, and the
output represented the decoded joystick position variables in the corresponding time steps.

The spike-weighted model’s architecture is shown on the left of Figure 1, with the
last fully connected layer having 600 nodes. This effectively acted as an output layer, as it
had fixed weight connections into the joystick output. The output spikes were summed
and scaled, either positively or negatively, by 0.01 to give the x and y joystick values. The
value of 0.01 was chosen as this was the resolution of the original data, and 600 nodes
were used to over-encompass the range of −1–1, as the joystick data varied within this
range. The reason we chose 600 is because there was no significant difference in model
accuracy between 400 and 800 nodes (see Section 3.2), so we decided to use the value that
was in the middle of the feasible region we tested. Note there are only 300 nodes for each
variable, as nodes are not shared, and half of these nodes are negative, so the max value is
only 1.5. Over-encompassing also means that the model does not need to output a spike
at every neuron if a max value is needed, which adds some redundancy to the model.
The second and third rows of Table 1 show the hyperparameters for these models. For
the membrane potential method, the architecture is shown on the right in Figure 1. The
membrane potential U[T] of the two neurons in the output layer was taken directly as a
continuously valued output. In the last layer, the spikes were discarded as they were not
used, and the membrane potential did not reset. In order to still train β4 (output layer β),
the threshold was set at 0.1 to allow for spike output so β could be updated. The last two
rows of Table 1 show the hyperparameters for these models.
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Figure 1. (Left)—architecture is of spike-weighted SNNs; (Right)—architecture of membrane based
SNNs and NNs.

Table 1. Table of hyperparameters.

Model Name Uthr1 Uthr2 Uthr3 Uthr4 β1 β2 β3 β4 Dropout Learning Rate

swSNN 0.047 0.014 0.158 0.1 0.1 0.216 0.276 0.239 0.427 0.009

swSNN-SLSTM 0.014 0.147 0.218 0.1 0.1 0.208 0.203 N/A 0.518 0.007

memSNN 0.103 0.014 0.158 0.1 0.2 0.192 0.276 0.239 0.427 0.009

memSNN-SLSTM 0.103 0.149 0.025 0.1 0.26 0.134 0.193 N/A 0.496 0.006

2.2.4. Variations of swSNN-SLSTM Models

We made several variations to the hyperparameters of the swSNN-SLSTM models.
Firstly, we recreated swSNN-SLSTM with synaptic conductance neurons: β1 = 0.3,

β2 = 0.276, β3 = 0.202, α1 = 0.145, α2 = 0.461, α3 = 0.116, Uthr1 = 0.011, Uthr2 = 0.179,
Uthr3 = 0.007, Uthr4 = 0.1, and dropout = 0.507.
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Then, we made two different adjustments: we created a model with two SLSTM layers,
called swSNN-SLSTM2, and secondly, we varied the output nodes between 400 and 800.
These models were recreated with the swSNN-SLSTM parameters listed above.

2.2.5. Architecture of LSTM

The architecture of the LSTM model was the same as the membrane model presented
above, with a pseudocode description in Algorithm 1.

The LSTM model used two fully connected layers followed by an output layer, with an
LSTM layer [37] sandwiched between the fully connected layers. Each layer had a dropout
layer of 0.3.

An Adam optimizer was used with the learning rate = 0.01. The same reduce LR
On Plateau Scheduler was used. The model was trained for 200 epochs and sequences
of 44 timesteps of spike data were fed in as a batch. A mean square error loss function
was used.

Algorithm 1. swSNN-SLSTM Forward Pass

Input :
p = {Spikes} In f orm : [timestep, values]

Output :
O = {x, y} In f orm : [timestep, values]

1 : Tmax = Spikesmax

2 : while T < Tmax :
3 : if T = 0 :
4 : initialize beta, threshold [β]1−4[T], [Uthr]1−4[T]
5 : initialize membrane [U]1−4[T], Isyn[T]
6 : initialize weight and bias matrices [W]1−4, b
7 : end if

Spikes re f ormatted to [timestep, 1, values]
8 : U1[T + 1] = β1U[T] + W1Spikes[T + 1]− S[T]Uthr1

—Equation (1).
9 : Output S1 according to Equation (3)
10 : iT = σ(WiiS1[T + 1] + bii + WhiU2[T] + bhi)—Equation (4)
11 : fT = σ (Wi f S1[T + 1] + bi f + Wh f U2[T] + bh f )

12 : gT = tanh (WigS1[T + 1] + big + WhgU2[T] + bhg )

13 : oT = σ(WioS1[T + 1] + bio + WhoU2[T] + bho)

14 : Isyn[T + 1] = fT*Isyn[T] + iT*gT

15 : U2[T + 1] = oT*tanh
(

Isyn[T + 1]
)

16 : Output S2 according to Equation (3)
17 : U3[T + 1] = β3U3[T] + W3S2[T + 1]− S3[T]Uthr3 —Equation (1).
18 : Output S3 according to Equation(3)
19 : U4[T + 1] = β4U4[T] + W4S3[T + 1]− S4[T]Uthr4

—Equation (1).
20 : Output S4 according to Equation(3)

S4 converted to [timestep, values]
21 : xt = 0.01 × S4[0 : 150]− 0.01 × S4[150 : 300]
22 : yt = 0.01 × S4[300 : 450]− 0.01 × S4[450 : 600]
23 : end while

2.2.6. Kalman Filter

We decoded the joystick variables from a Kalman filter: the unscented Kalman filter
using five taps (UKF5).

The five-tap unscented Kalman filter was constructed as described in [30,42]. The filter
is a nonlinear version of the Kalman filter [43,44] and worked by predicting the output
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from the parameters calculated in the previous step. These parameters were then updated
using the error from that step. Only five taps were used as described to increase stability,
as described in the paper. This is the only decoder where other variables, such as joystick
velocity, are included in the decoding to reduce the training time of the models.

2.3. Evaluating Decoder Performance

To evaluate the performance of a decoder on a given dataset, we performed 5-fold
cross-validation, using 80% of the dataset to train the decoder and the remaining 20% to
evaluate the decoder’s performance, while ensuring that the training set did not overlap
with the validation set.

Decoded values were evaluated using two metrics: the Pearson correlation coefficient
(r) and the coefficient of determination (R2). The correlation coefficient was calculated
as follows:

rx,y =
cov(x, y)
σxσy

While the coefficient of determination was calculated as follows:

R2 = 1 − ∑i(xi − yi)
2

∑i(xi − x)2

where x is the actual kinematic variable at time i, y is the decode kinematic variable, cov is
the covariance and σ is the standard deviation.

The α values were corrected by Bonferroni’s correction α/n, where n is number of
tests and α is the significance level.

3. Results

We trained and tested a variety of ML models on our two datasets. In this section,
we will describe our findings of how the different models performed in comparison with
each other, how variations in model architecture affected decoding accuracy, and how the
different models required different numbers of operations to function. Where not otherwise
stated, p-values were obtained by performing t-tests.

3.1. Decoder Analysis

For Dataset 1, we evaluated how well our decoders produced joystick trajectories,
using the correlation coefficient between actual trajectories and decoded trajectories as a
metric of model accuracy. Using two-tailed t-tests, we found that both SLSTM models
perform significantly better (p < 5 × 10−3) than all other decoders. However, the two
SLSTM models did not perform significantly differently when compared to one another
(p = 0.122).

When we compared the LSTM model with the spiking neural networks without
(S)LSTM layers, they all performed similarly (p > 0.2). However, all performed much
better than the unscented Kalman filter (p < 5 × 10−4).

The coefficient of determination was then used to analyze the decoding performance.
This metric also accounts for absolute errors in the decoded value. For Dataset 1, when using
a two-tailed t-test, we again found that the swSNN-SLSTM and memSNN-SLSTM were
statistically similar (p = 0.59), while outperforming (p < 0.01) all other decoders. Again,
the non-SLSTM layer spiking neural networks and the LSTM neural network performed
similarly (p > 0.34), but significantly outperformed the Kalman filter (p < 1 × 10−5).

Figure 2 shows plots of eight successful trials from Dataset 1, decoded by each of the six
decoding algorithms used. swSNN-SLSTM and memSNN-SLSTM displayed a comparable
performance, with the decoded trajectories closely matching the ground truth, which is
the actual joystick position. However, those decoded using swSNN-SLSTM overshoot by a
small amount, while memSNN-SLSTM varies, both overshooting and undershooting. We
can also see that swSNN, memSNN, and the LSTM decoder display a worse tracking of
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decoder performance. We can also clearly see that the main problem with the UKF5 Kalman
filter is that it frequently overshot and undershot when the ground truth encountered a
sudden change.
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Figure 2. Top: Two-dimensional joystick cursor positions from Dataset 1. Dashed lines indicate real
trajectories, and whole lines indicate decoded trajectories. Each color represents one successful trial
(which has one real trajectory and one decoded trajectory). The decoders used are: (A) swSNN-
SLSTM; (B) memSNN-SLSTM; (C) swSNN; (D) memSNN; (E) LSTM; (F) UKF5. Bottom: joystick
trajectories of decoders in one representative successful trial, separated into x and y dimensions.
(G,J) show swSNN-SLSTM and memSNN-SLSTM for x and y, respectively; (H,K) show swSNN and
memSNN for x and y, respectively; and (I,L) show LSTM and UKF5 for x and y, respectively.
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When we looked at the actual joystick trajectories for Dataset 1, we noticed specific
issues with some of the decoders. For the spike-weighted SNNs, we observed that swSNN
displayed oscillatory behavior when the joystick position remained at 0. However, this
issue was reduced for the swSNN-SLSTM decoder.

The membrane-based SNN, memSNN, did not have large changes in its gradient
when rising or falling. However, it did not fall to 0 when the joystick was at rest. memSNN-
SLSTM also did not fall to 0 as cleanly as swSNN-SLSTM; however, it improved when
compared to memSNN. On the other hand, the LSTM model was able to settle at 0, but
showed a worse tracking of peaks and troughs in joystick movements.

We can also quantify model performance by looking at the correlation coefficients and
coefficients of determination for the decoded position variables (Figure 3). Using two-tailed
t-tests, we can see that swSNN-SLSTM outperforms all other decoders (p < 5 × 10−5). We
also found that memSNN-SLSTM, and LSTM performed statistically similarly (p = 0.50);
however, they also outperformed the SNN models and UKF5 (p < 0.01). swSNN’s perfor-
mance was statistically similar to both memSNN and the Kalman filter (p > 0.05).
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Regarding the coefficient of determination for Dataset 2, we found that swSNN-SLSTM
statistically outperforms (p < 0.05) all other decoders. The memSNN-SLSTM and LSTM
model performed statistically similarly (p = 0.84) and performed similarly to swSNN
(p = 0.178). They outperformed memSNN and UKF5 (p < 0.05). swSNN, memSNN, and
UKF5 all performed similarly (p > 0.113).

3.2. Variations of SLSTM Architecture

For swSNN-SLSTM2, we added a second SLSTM layer after the first SLSTM layer, and
for swSNN-SLSTMsyn, we replaced the LIF neurons with the synaptic LIF neurons. When
we made these adjustments, swSNN-SLSTM2 had a mean r = 0.874 and swSNN-SLSTMsyn
had a mean r = 0.849 (Figure 4A). We found that increasing the SLSTM layers by one has
a negligible impact (p > 0.90); however, the synthetic neuron model has a much lower
correlation coefficient that is significantly significant (p < 5 × 10−3).
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We also varied the number of output nodes. After making these adjustments, we can
see they have no significant impact on the performance of the decoder. p = 0.63 and the
mean = 0.878, 0.874, 0.874, 0.876, and 0.875 for 400, 500, 600, 700, and 800 output nodes,
respectively (Figure 4B).

3.3. Firing Rate Analysis

SNNs have the potential to be more efficient than traditional ANNs [45], and the
way they can achieve this is through the sparsity of (virtual) neurons that are firing.
Fewer neurons firing means a lower number of calculations are required to train and run
the models.

In non-spiking ANNs, each neuron’s weight calculation requires a Multiply and
Accumulate (MAC) calculation operation per input. In LSTM layers, four MAC calculations
are required [46]. In SNNs, however, the output is either a 0 or 1 instead of a floating-point
representation. This means only one addition operation [27] is required. In SLSTM layers,
again, this is reduced to four addition (ADD) operations. However, SNNs must also update
their membrane potential with each step, which, as a floating-point variable, requires one
MAC operation per neuron. Each SLSTM layer also has a synaptic membrane potential,
which requires two MAC calculations. Using a conservative estimate of three ADD to
one MAC operation according to the ratio of energy in [47], we can estimate the cost of
operations for a forward pass.

The Unscented Kalman Filter’s complexity is outlined in [48] and each measurement
update requires 8/3L3 + 12NL2 + 2N2L + 6L2 + 10NL + N2 + 19/3L + N floating point
operations (FLOP) per measurement update, where L is the number of parameters and N
is the sigma points. This leads to 3.48 × 107 FLOP. Since two FLOPs equal about one MAC,
this is 1.74 × 107 MAC operations.

For an input of 872 timesteps, Table 2 indicates the number of operations required.

Table 2. Table of forward pass operations.

Models LIF Spikes SLSTM
Spikes MAC ADD Total

Operations

UKF5 0 0 1.74 × 107 0 1.74 × 107

LSTM 0 0 5.25 × 105 0 5.25 × 105

swSNN 1.89 × 105 0 900 1.89 × 105 6.4 × 104

memSNN 6.7 × 104 0 300 6.7 × 104 2.7 × 104

swSNN-SLSTM 2.4 × 105 1.4 × 104 1000 2.96 × 105 1.0 × 105

memSNN-SLSTM 5.3 × 104 1.4 × 104 400 1.09 × 105 3.7 × 104

In Figure 5A, we can clearly see that all SNN and SLSTM models require fewer total
operations than the LSTM model and the membrane-based models require significantly
less operations, mainly due to the fact they do not require the output 600 spike layer. We
can also see that the forward pass of the UKF5 requires more calculations and takes a lot
more time to run; however, there is practically no training time for the UKF5.

Figure 5B shows the firing rate of neurons in layers 1–3, the layers directly preceding
the output. It shows that the majority of neurons fire very sparsely.
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4. Discussion

We developed a modified spiking neural net implementation of current state-of-the-art
movement decoders for a BMI. We find that, for input temporal spiking data, SNNs and
SLSTMs perform as well or even better than current state of the art models.

When comparing the SLSTM models, we found that they performed statistically better
than their equivalent SNN models. This is an expected result, as SLSTM models are able
to capture the temporal dynamics of neuronal activity, which non-recurrent SNNs cannot.
Even the LSTM (which is a recurrent classical neural network) slightly underperformed
when compared to the two SLSTMs in Dataset 1 and performed far worse than the two
SLSTMs in Dataset 2 (Figure 3), showing that spiking neural networks can provide much
better decoders for spiking temporal data than classical neural networks in BMI applications.
What is even more surprising is the fact that the SNNs also performed similarly to the
LSTM model, especially in Dataset 1, and swSNN in Dataset 2. However, this could be
explained by the fact that the membrane potential also offers some form of ‘memory’, as it
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is updated every time step from the previous timestep, so perhaps SNNs without SLSTMs
can capture some temporal information, even if it is not as accurate.

When we look at the differences between Dataset 1 and Dataset 2, we find that the
Spike-weight based models and membrane-based models performed very differently for
each dataset. In Dataset 1, the membrane-based SNN offered a slight performance increase
compared to the spike-weight-based SNN; however, in Dataset 2, the spike-weight-based
models performed significantly better. It is possible that the performance of spike-weight-
and membrane-based SNNs may be dependent on the specific dataset used, and that
both have their roles in BMI development. In Dataset 1, the joystick position can be both
negative and positive, but for Dataset 2, the x and y positions of a finger were only positive.
Further investigation should be carried out to further explore what specific applications
both methods are best suited to, and what further modifications can be made. For example,
how should negative input values be translated into spikes? Another possible improvement
would be not using the same spike weighting for each variable. Figure 2 illustrates that
the y position predictions are worse than the x position predictions. Perhaps the spike
weighting for the y variable could be adjusted or the number of nodes representing only
the y position could be changed. One other possibility is that models with a sparsity of
spikes could be encouraged by using a non-linear encoding scheme that encodes common
values using a lower number of spikes.

We found that neural networks achieve a much better performance than Kalman filters,
probably due to their ability to capture non-linearities within the input data. They are much
less likely to overshoot joystick position in places where the joystick remains stationary, and
while several studies have attempted to solve this issue in Kalman filters [11,49] through
additional add-ons, none of the ANNs require these additions.

We further investigated alternative swSNN-SLSTM architectures. Firstly, replacing
the LIF neurons with synaptic neurons made the model much worse. One possible reason
for this is that SNNs have problems with local minima [50] and increasing the number of
trainable parameters increases the dimensionality, leading to more local minima, which
can make it harder for the model to train.

On the other hand, the hyperparameter optimization options we explored, such as
adding an extra SLSTM layer or changing the number of nodes in the output layer, had no
noticeable effect. This is especially surprising regarding the number of nodes used, as more
nodes should lead to more information flow and higher precision. However, it could be
that, when the resolution of the data is not increased, changing the number of nodes has
little effect. This is a typical problem in the understanding of neural network architecture:
it is difficult to understand what each layer is doing or to predict how changes to the
architecture will affect performance due to the black box nature of neural networks [51].

When examining firing rates during testing, the proposed SLSTM and SNN models
require much fewer operations with respect to traditional neural networks. The membrane
models also offer better computational efficiency as they do not require the output 600 spike
layer. This could offer significant performance advantages compared to low-power systems
and neuromorphic hardware, which is able to take advantage of this fact and could lead to
a much more efficient forward pass. It may also be beneficial for devices implanted in the
brain, as better computational efficiency leads to lower electricity usage and lower thermal
output; elevated temperatures can easily cause harm to neural tissue.

Another observation we made is that most of the neurons fire very rarely, while a small
number of neurons fire most of the time (and potentially transfer most of the information).
It appears that the SNNs train themselves for sparse coding, where a few neurons send the
majority of the information. This is slightly surprising, as a dropout layer was included after
every layer. However, this is comparable to real brain activity, as it has been shown that
there is sparse coding of information in the brain. This has been shown in brain computer
interfaces [52] and physiological recordings from sensory neurons [53]. We can therefore
assume that SNNs can provide a reasonable approximation of real biological neurons.
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However, despite these performance increases, the SNN and SLSTM models suffer
from a key disadvantage. During training, neurons will be updated if they receive a spike.
This means it can take a while for a network to develop from its initial state into the final
trained sparse state, which requires fewer calculations. Moreover, due to the sequential
nature of spiking neural networks, they take far longer to train than the traditional models.
The LSTM model took about 5 min to train; however, the SLSTM models both took over
40 min to train. It is likely that devices which have the required memory to train traditional
neural networks will nearly always be faster to train than spiking models. This is because
most modern-day CPUs and GPUs are optimized for floating point operations. As an
alternative to contemporary CPUs and GPUs, biomimetic neuromorphic chips could be
used instead to speed up the training process for SNN and SLSTMs. Alternatively, recent
research suggests that biomimetic hardware can go even further in the form of brain
organoids [54].

Moreover, each spiking model had at least 30 neurons that were ‘dead’ (never firing).
This can lead to a constrained information flow between layers and, effectively, these
neurons can use up memory and require calculations while never sending any spikes to the
next layer in the neural network. However, optimizing for this and reducing the number of
nodes in a layer during hyperparameter setting to get rid of these ‘dead’ neurons can lead
to problems, as different sets of data require different numbers of neurons to be removed.

In order to improve the models, it is likely that a variable threshold should be added
to these ‘dead’ neurons, so their parameters can be updated and they can be removed
from calculations during the forward pass. Further tests could be conducted to determine
whether removing many neurons, and only keeping those with a high firing rate, would
have a negligible impact on the performance of the network while significantly improving
memory usage. Alternatively, since the SNNs have no real-world representation of kine-
matics, they could be used in combination with a Kalman filter, as has been demonstrated
in traditional neural networks, as shown in [55].

Overall, our study showed that spiking neural networks can effectively outperform
traditional neural networks for use in BMI, where they are decode temporally varying
spiking data collected from the motor cortex during the execution of a directional motor
task. Since spiking neural networks more accurately model brain neurons than the ‘neurons’
in traditional ANNs, they may be better able to emulate the computations that occur in
the brain. The sparsity of spikes that are produced can lead to an efficiency increase in
neuromorphic hardware. Given the accuracy of the spike-weighted SLSTM models, we
propose that these models can be applied to future BMI devices that are dependent on
low-power hardware, especially neuromorphic chips.

In summary, we propose a novel spike-weighted SNN with spiking long short-term
memory (swSNN-SLSTM) for brain–machine interfaces (BMIs). Adding SLSTM to spike
neural networks can capture temporal information hidden in brain signals. Comparing the
proposed algorithm with several existing ML models, the swSNN-SLSTM outperformed
both the unscented Kalman filter and the LSTM-based ANN.
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