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Abstract: Data meshes are an approach to data architecture and organization that treats data as a
product and focuses on decentralizing data ownership and access. It has recently emerged as a field
that presents quite a few challenges related to data ownership, governance, security, monitoring,
and observability. To address these challenges, this paper introduces an innovative algorithmic
framework leveraging data blueprints to enable the dynamic creation of data meshes and data
products in response to user requests, ensuring that stakeholders have access to specific portions
of the data mesh as needed. Ownership and governance concerns are addressed through a unique
mechanism involving Blockchain and Non-Fungible Tokens (NFTs). This facilitates the secure and
transparent transfer of data ownership, with the ability to mint time-based NFTs. By combining these
advancements with the fundamental tenets of data meshes, this research offers a comprehensive
solution to the challenges surrounding data ownership and governance. It empowers stakeholders to
navigate the complexities of data management within a decentralized architecture, ensuring a secure,
efficient, and user-centric approach to data utilization. The proposed framework is demonstrated
using real-world data from a poultry meat production factory.

Keywords: big data; smart data processing; systems of deep insight; data meshes; data lakes; data
products; blockchain; NFT; data blueprints

1. Introduction

Nowadays, big data can be characterized as the “new oil”, recognized as a valuable
human asset. The effective aggregation and analysis of these data may unearth information
that provides insights into numerous facets of everyday activities and offers the ability
to anticipate future occurrences. Big data refer to the substantial volumes of digital in-
formation consistently produced by machines and the global population from diverse
sources such as social media, Internet of Things (IoT) devices, machines and sensors logs,
public records and open data, online transactions, websites and applications, research and
scientific instruments, etc. [1]. The vast majority of big data originate from heterogeneous
data sources, yielding a variety of data types that include structured, unstructured, and
semi-structured data. Encompassing a diverse range of content, big data span from textual
information to multimedia elements, such as images, videos, and audio [2].

The three primary characteristics (3 Vs) of big data, as presented by Dough Laney in
2001, form and define its fundamental framework [3]. Firstly, Volume represents the broad
amount of data generated from data sources, often reaching high levels that challenge
typical data processing methods. The second characteristic defining the speed at which
data are created, processed, and made available for analysis is denoted by Velocity. Fast
processing speeds are required to keep up with the increasing rate of data creation due to
the emergence of real-time data sources like social media and sensors. Thirdly, the term
Variety highlights the variety in types of data, encompassing organized, unstructured, and
semi-structured information. By integrating a broad range of textual, visual, and audio
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information, this inclusivity recognizes that big data extend beyond traditional databases.
Taken together, these three qualities create the foundation for realizing and capitalizing
on the possibilities of big data in a data-driven modern world. In addition, seven more
characteristics were added to this list after 2001, thus creating the 10 Vs as terms related to
big data. The new properties are Value, Veracity, Volatility, Validity, Vulnerability, Variability,
and Visualization [4] and offer additional descriptive assets of big data.

In the pre-big data era, storage designs were mostly based on file systems and con-
ventional relational databases. Relational databases with clear schemas, like MySQL and
Oracle, were great at handling structured data. A lot of people used file-based storage sys-
tems, such us Network Attached Storage (NAS) and Storage Area Network (SAN), to store
documents and other kinds of files. During the same period, the conventional approach to
address escalating data requirements involved vertical scaling, which entailed augmenting
resources on a single server [5]. In the era of big data, which is characterized by immense
data volumes, rapid data transfer rates and the diversity of weakly structured data from
numerous heterogeneous sources, as also declared by the 10 Vs characteristics, resulted in a
fundamental transformation of storage architectures. NoSQL databases, such as MongoDB
and Cassandra, as well as distributed storage systems like Hadoop Distributed File System
(HDFS), have now become more popular [6].

The complex interactions amongst data lakes, data meshes, and data Markets in the
big data era have created a dynamic ecosystem that transforms how businesses manage
and extract value from heterogeneous data sources and big data [7]. Data meshes and
data markets are innovative data management frameworks first introduced by Zhamak De-
hghani in 2019, diverging from the conventional approach of data lake storage architectures.
These storage architectures and structures can be deployed using storage and processing
technologies, such as Apache Hadoop, Apache Spark, or cloud-based solutions such as
Amazon S3, Azure Data Lake Storage, or Google Cloud Storage [8]. While these frame-
works are linked with big data processing, the primary unsolved challenging problems
revolve around security, encompassing issues related to privacy, regulatory requirements,
and access control. Notably, weaknesses in metadata management pose challenges, as data
in lakes or meshes can be replaced without proper management of their contents [9].

The primary research contribution of this paper lies in the introduction of an innovative
framework that leverages semantic data blueprints (SDB) [10] for the dynamic assembly
of Data Meshes and data products responding to user demands on the one hand, and
ensuring that stakeholders access specific areas of the data mesh as needed via transfer
of ownership on the other. The integration of non-fungible tokens (NFTs) and Blockchain
technology collaboratively establishes a novel approach to address data ownership and
governance concerns. The core of this framework is a dedicated algorithm that involves
the execution of specific steps to facilitate secure and transparent data ownership transfers
by combining the ability to mint time-based NFTs with extended functionality.

The proposed approach expands earlier research on the subject that proposed SDB, a
semantic metadata enrichment technique for data lakes that enables the effective storing
and retrieval of data from distributed and heterogeneous data sources, as well as ensuring
security in data lakes using Blockchain technology and NFTs [10–12]. The same concepts
are employed in this study, but this time they align with the characteristics of data meshes,
ensuring security and ownership through the integration of Blockchain and NFT technology,
thereby paving the way for the development of data markets. In this context, a data mesh
is thought of as the evolution of a data lake in terms of managing massive amounts of data
(big data) expressed in a variety of formats (structured, unstructured, and semi-structured),
but most crucially, for making it simple, rapid, and effective to trace. Users and their
preferences or needs shape the form and variety of data products synthesized within
the Data Meshes. Users initiate a series of functions within the system, including data
retrieval from a data lake, data product construction, and ownership transfer. Through this
iterative process, the framework generates a diverse array of outputs, encompassing both
traditional data products and NFTs, something that underscores the collaborative nature of



Algorithms 2024, 17, 169 3 of 17

data management and emphasizes its adaptability to accommodate the evolving needs and
preferences of its users.

Real-world manufacturing data from Paradisiotis Group (PARG), a significant local
industrial player in Cyprus, are used to illustrate the proposed approach. PARG is one
of the most significant companies, comprising experts in the field of poultry farming
and the production/trading of poultry meat in Cyprus. It provides a large assortment of
food products that are delivered to local supermarkets. The operational procedures and
production data of the factory are treated as confidential for privacy and security reasons.
Consequently, this study uses a masked and de-identified rendition of the data and only
presents a portion of the processes, providing limited but specific details. However, the
case study reported in the present paper successfully illustrates the fundamental ideas of
the proposed framework, confirming its applicability and effectiveness.

The remainder of the paper is structured as follows: Section 2 discusses the technical
background and related research in the areas of data lakes and data meshes. Section 3
outlines previous research performed on the semantic enrichment technique, which is
adopted and extended in this work to address security and ownership aspects. Section 4
presents the extended data meshes framework and discusses its main components. This is
followed by demonstrating the applicability and assessing the performance of the proposed
framework in Section 5 through a case study conducted using real-world data collected at
PARG. Finally, Section 6 concludes the paper and highlights future research directions.

2. Technical Background
2.1. Understanding Data Lakes and Data Meshes

A data lake (DL) is a centralized architecture designed to store vast amounts of struc-
tured, unstructured, and semi-structured data on any scale. Unlike traditional databases or
data warehouses that require data to be structured before storage, a DL can host raw data in
its native format [13]. This means that data from various sources such as logs, clickstreams,
social media, videos, and sensors can be stored without the need for pre-defined schemas.
DLs offer storage flexibility, allowing the storage of data in its raw form without the defi-
nition of upfront schema. This feature enables the accommodation of various data types
and formats from diverse sources at any production frequency. DLs are highly scalable and
capable of handling very large datasets making them ideal for big data applications. They
often provide cost-effective storage options by leveraging cloud object storage, resulting in
more economical solutions compared to traditional data warehouses.

DLs seamlessly integrate with tools and technologies that enable the stored data to
be processed, queried, and analyzed. Properly configured DLs can implement security
measures and data governance policies to ensure privacy and compliance with regulations.
While DLs offer a high degree of flexibility, they require careful management to prevent
them from becoming data swamps, that is, hosting places where data are poorly organized,
difficult to find, and hard to analyze [9]. To address this concern, practices like metadata
management, data cataloguing, and the establishment of data governance policies are
crucial. Figure 1 presents the structure of a DL and an algorithmic description of how the
DL concept works in practice, from collecting data, annotating data using metadata, storing
data, and finally retrieving data based on metadata tags.

The concept of a data mesh (DM), as mentioned in the previous section, was introduced
in 2019 [14], which essentially represents a novel approach to data management within
large organizations. Unlike traditional methods, a DM emphasizes several key concepts
to revolutionize data handling. Firstly, it advocates for domain-oriented ownership. This
means that data domains are entrusted to the teams or business units possessing the highest
expertise in that specific domain. These teams bear the responsibility for ensuring the
quality, accessibility, and privacy of their respective domain’s data. Additionally, a DM
promotes the idea of decentralized data products. Here, data are treated as a product
and each domain team is accountable for the entire data lifecycle within their domain.
This encompasses tasks such as production, consumption, quality assurance, privacy
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measures, and comprehensive documentation. Furthermore, DMs advocate for federated
computational governance, an approach where each domain team defines and enforces the
computational logic specific to that domain. This logic is then executed within the broader
context of the mesh [15].
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Figure 1. Data lake architecture and the concept algorithmic approach.

To facilitate autonomy and efficiency, DM incorporates a self-serving data infrastruc-
ture. This infrastructure is designed to empower domain teams with the necessary tools
and resources to independently manage their data products, reducing the reliance on
centralized data engineering teams. Embracing an API-first approach, DM encourages the
utilization of Application Programming Interfaces (APIs) for seamless data exchange and
communication between different components of the system. This promotes loose coupling
and flexibility in how data are consumed and utilized. Figure 2 presents the structure of a
DM and the algorithm that serves as the core of its operation.
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Furthermore, DMs emphasize a holistic view of the data product lifecycle. This encom-
passes stages such as discovery, ingestion, processing, storage, access, and consumption.
Each of these stages is carefully considered and managed by the respective domain teams,



Algorithms 2024, 17, 169 5 of 17

ensuring a comprehensive and efficient data handling process. By adopting a DM ap-
proach, organizations aim to address the challenges of scaling data operations in a complex
environment, where multiple teams work on diverse data domains. It provides a frame-
work for decentralizing data ownership and enabling more effective, scalable, and resilient
data operations.

Conversely, a data market is an ecosystem or marketplace where individuals, com-
panies, or systems can buy, sell, or exchange data by leveraging the idea of DMs. Data
suppliers in a data market offer datasets for purchase or access by data consumers for a
range of applications, such as analysis, research, machine learning, and more [7]. Data mar-
kets facilitate the efficient sharing and monetization of data, allowing businesses to leverage
external sources of information to enhance their insights and decision-making processes.

Using a large manufacturing company in the field of poultry farming and poultry
meat trading as our case study and example demonstrator, we were able to identify
various operational areas, including livestock records, agricultural data, supply chain
management information, financial transactions, and trading analytics. Each operational
area is assigned to a specialized team responsible for its monitoring and upkeep. Moreover,
each team is tasked with generating specific data products tailored to their respective
domains, such as APIs for accessing data, algorithms for analyzing trading trends, tools
for secure data sharing, and reporting mechanisms for financial analytics. This makes the
proposed approach an ideal way of sharing portions of data across authorized groups (e.g.,
departments) or individuals. Adopting a federated computational governance approach
ensures that each team defines and enforces the computational logic for their specific
domain, facilitating the implementation of specialized algorithms and quality checks.
Additionally, each team has access to a self-serve data infrastructure, equipped with
tools and resources for managing their data products independently, thereby ensuring
autonomy and operational efficiency. To enhance interoperability within the field, the
implementation of APIs and adherence to industry standards are prioritized, allowing
seamless communication and data exchange between different operational areas. This
approach contributes to the optimization of data management and the creation of tailored
products, ultimately benefiting stakeholders in poultry and farming trading, including
producers, traders, and administrators.

It is important to note that while DMs are more about organizational and conceptual
principles for data management, DLs refer specifically to the technology and infrastructure
for storing large volumes of raw data. These concepts are not mutually exclusive, and, in
practice, organizations can implement a DM framework while utilizing a DL as the under-
lying basic component of their technical infrastructure for data storage and processing.

2.2. Understanding Blockchain and NFTs

Blockchain serves the purpose of providing a secure and transparent means for record-
ing and transferring data. Notably, it addresses privacy concerns by anonymizing personal
data, contributing to its increasing popularity and integration into infrastructure, opening
avenues for innovative applications [16]. Functioning as a decentralized database on a peer-
to-peer network, Blockchain establishes a distributed communication network enabling
non-trusting nodes to interact without relying on a central authority. Its protocols ensure
a verifiable and trustworthy system, offering traceability, transparency, and enhanced
privacy and security features. In essence, Blockchain is evolving into a fundamental tech-
nology with wide-ranging applications and use cases such as IoT, smart contracts, NFTs,
cybersecurity and cryptocurrency, providing a foundation for secure and trustworthy data
transactions [17].

Algorithmically, Blockchain includes a number of essential elements, procedures,
and guidelines to create a strong and feature-rich decentralized system. Initializing basic
elements, such as a consensus mechanism and cryptographic algorithms for secure key
management and hashing, are the first steps in the process. Implementing token and
smart contract standards like ERC-20 and ERC-721 increase functionality by managing
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the creation, transfer, and ownership of assets [18]. With zero-knowledge proofs as an
example, the method smoothly incorporates Decentralized Identity Standards (DIDs) to
guarantee secure identification and privacy standards, offering strong user data security.
Interledger Protocol and other interoperability standards also make cross-chain communi-
cation easier [19]. The integration of decentralized storage protocols, such IPFS, ensures file
storage that is dispersed and impervious to censorship. Governance norms support secure
and efficient decision-making. Security measures provide protection against vulnerabili-
ties, compliance standards guarantee conformity to legal requirements, and governance
standards support efficient decision-making. This all-encompassing strategy creates a
conceptual framework for the building of a Blockchain that integrates fundamental criteria,
promoting a safe, compatible, and considerate decentralized ecosystem.

Non-Fungible Tokens (NFTs) are a ground-breaking innovation in the ownership and
management of digital assets. Because every NFT is distinct and has a unique identifier; it
cannot be copied or traded. Blockchain technology is used to accomplish this uniqueness.
NFTs are used to verify ownership of a wide range of digital and physical goods [20],
including digital art, music videos, real estate, gaming avatars, etc. NFTs are also crucial to
Web 3.0, the next iteration of the Internet that many companies and analysts are pushing.
Blockchain’s decentralized structure guarantees the integrity and transparency of owner-
ship data, and smart contracts streamline transactions by automating tasks like ownership
transfers and royalty distribution.

Finally, the NFT process algorithm starts with the digital asset being initialized, having
its nature defined, and being given a unique identification. The implementation of a smart
contract that oversees the NFT requires integration with a Blockchain platform, such as
Ethereum, via the ERC-721 standard [21]. An NFT is created during the minting process
by adding ownership information and other pertinent metadata to the smart contract.
Smart contract updates enable ownership transfers, guaranteeing safe and transparent
transactions documented on Blockchain. The NFT ecosystem is made more efficient by
automating features in the smart contract, such as the distribution of royalties upon resale.
NFTs are posted on NFT marketplaces such as OpenSea (New York, NY, USA) or Rarible
(Wilmington, NC, USA), where buyers and sellers can transact to make them more widely
available [20]. Verifying the integrity of related metadata and examining ownership records
on the Blockchain are two steps in the process of authenticating NFTs. The foundation of the
NFT lifecycle is the aforementioned algorithmic procedure, which provides a methodical
way to create, transfer, and confirm ownership of distinct digital assets on the Blockchain.
The whole process is graphically depicted in Figure 3.

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 18 
 

 
Figure 3. The algorithmic process of transferring ownership from the data owner to a user. 

3. Related Research 
The combination of DLs, DMs, and Blockchain-based technologies—specifically, 

NFTs—in the field of modern data management creates a dynamic synergy that is 
changing how businesses handle data ownership, accessibility, and storage. DLs function 
as large storage spaces for heterogeneous data, promoting a single repository that can 
handle a variety of data types. In addition, the DM paradigm supports distributed data 
processing and domain-oriented ownership using decentralized data architectures. A 
new dimension is brought to data ownership and authenticity by the integration of NFTs 
on Blockchain platforms, which offer a safe and verifiable framework for identifying the 
provenance and ownership of individual pieces of data. The integration of Blockchain, 
DLs, and DMs improves the scalability and flexibility of data ecosystems and lays the 
groundwork for more open, safe, and cooperative data management procedures, as 
related work reveals. 

A dedicated DL architecture was used in [13] to investigate how Blockchain 
technology might be integrated to improve the scheme’s metadata management. It 
specifically presented the use of NFTs that are stored on the Blockchain to represent 
metadata for every data source. The intention was to use Blockchain technology to 
improve the DL’s semantics metadata, which could lead to better data management, 
organization, and retrieval. Furthermore, ref. [11] addressed the challenges associated 
with the smart processing of big data in the context of DLs, as well as ownership and 
security, using Blockchain and NFT technologies. It emphasized the need for a disciplined 
approach to manage diverse data sources within DLs for predictive and prescriptive 
analytics. That paper introduced a novel standardization framework that integrates the 5 
Vs of big data characteristics and blueprint ontologies. The framework utilized a pond 
architecture to organize DLs and incorporated a metadata semantic enrichment 
mechanism for efficient storage and retrieval. Notably, the mechanism supported visual 
querying and enhanced security through Blockchain and NFTs. The authors also provided 
a comparative analysis with other metadata systems, demonstrating promising results 
based on a set of functional properties. 

An enhanced DL metadata framework called DLMetaChain was introduced in [12], 
which can manage data from diverse sources like IoT data using Blockchain. The paper 
discussed the changing IoT ecosystem, where a variety of sources produce large amounts 
of data that are then converted into useful information. Metadata management becomes 
difficult when storing such data, including IoT data, in repositories such as DLs, especially 
when it comes to security and access control. The principal aim was to design an 
architecture that utilizes Blockchain technology to guarantee the data integrity of the DL 
by impeding any unsanctioned changes or additions. 

A visionary approach to establish a distributed federated medical DL and ecosystem 
was proposed in [22], involving hospitals and personal health data from wearable medical 

Figure 3. The algorithmic process of transferring ownership from the data owner to a user.



Algorithms 2024, 17, 169 7 of 17

3. Related Research

The combination of DLs, DMs, and Blockchain-based technologies—specifically,
NFTs—in the field of modern data management creates a dynamic synergy that is changing
how businesses handle data ownership, accessibility, and storage. DLs function as large
storage spaces for heterogeneous data, promoting a single repository that can handle a
variety of data types. In addition, the DM paradigm supports distributed data processing
and domain-oriented ownership using decentralized data architectures. A new dimension
is brought to data ownership and authenticity by the integration of NFTs on Blockchain
platforms, which offer a safe and verifiable framework for identifying the provenance
and ownership of individual pieces of data. The integration of Blockchain, DLs, and DMs
improves the scalability and flexibility of data ecosystems and lays the groundwork for
more open, safe, and cooperative data management procedures, as related work reveals.

A dedicated DL architecture was used in [13] to investigate how Blockchain technol-
ogy might be integrated to improve the scheme’s metadata management. It specifically
presented the use of NFTs that are stored on the Blockchain to represent metadata for every
data source. The intention was to use Blockchain technology to improve the DL’s seman-
tics metadata, which could lead to better data management, organization, and retrieval.
Furthermore, ref. [11] addressed the challenges associated with the smart processing of big
data in the context of DLs, as well as ownership and security, using Blockchain and NFT
technologies. It emphasized the need for a disciplined approach to manage diverse data
sources within DLs for predictive and prescriptive analytics. That paper introduced a novel
standardization framework that integrates the 5 Vs of big data characteristics and blueprint
ontologies. The framework utilized a pond architecture to organize DLs and incorporated
a metadata semantic enrichment mechanism for efficient storage and retrieval. Notably,
the mechanism supported visual querying and enhanced security through Blockchain and
NFTs. The authors also provided a comparative analysis with other metadata systems,
demonstrating promising results based on a set of functional properties.

An enhanced DL metadata framework called DLMetaChain was introduced in [12],
which can manage data from diverse sources like IoT data using Blockchain. The paper
discussed the changing IoT ecosystem, where a variety of sources produce large amounts
of data that are then converted into useful information. Metadata management becomes
difficult when storing such data, including IoT data, in repositories such as DLs, especially
when it comes to security and access control. The principal aim was to design an architecture
that utilizes Blockchain technology to guarantee the data integrity of the DL by impeding
any unsanctioned changes or additions.

A visionary approach to establish a distributed federated medical DL and ecosystem
was proposed in [22], involving hospitals and personal health data from wearable medical
devices. It emphasized the creation of a Blockchain-based platform with commercial
incentives, addressing data ownership, patient privacy, and controlled access. The platform
facilitated owner-centric medical data exchange, securely aggregated data from various
hospitals, and unlocked academic and business value by representing medical data as NFTs.
The primary goal was to improve healthcare research while fostering a sustainable medical
data ecosystem.

Our framework builds upon existing research by integrating privacy engineering
principles into decentralized data architectures [23], particularly focusing on DM. Un-
like previous work, we propose a comprehensive algorithmic framework utilizing data
blueprints to enable dynamic creation and governance of DMs and data products. Lever-
aging Blockchain and NFTs, our approach addresses privacy concerns, ownership, gov-
ernance, and transparency. Additionally, we provide a practical implementation of data
blueprinting, ensuring robust privacy practices and secure data ownership transfer.

While the study in [24] provides insights from industry interviews into DM adoption,
our research goes further by proposing a concrete algorithmic framework to tackle these
challenges. Using Blockchain and NFTs, our approach not only addresses governance and
ownership issues, but also facilitates tailored DM creation and management. Furthermore,
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a real-world data demonstration validates the effectiveness and practical applicability of
our framework and proves its applicability.

In contrast to [25], which provides a philosophical reflection on data ownership, the
present study translates ethical considerations into actionable mechanisms. By integrating
Blockchain and NFTs, the proposed approach promotes transparent and equitable data own-
ership within decentralized architectures, bridging ethical reflections with technological
innovations to realize the redistributive and socio-cultural dimensions of data ownership.

Addressing the importance of stakeholder buy-in is highlighted by [26]. The present
study provides a compelling narrative and a concrete technological framework, which,
by aligning technical excellence with strategic business value, serves as a catalyst for
organizational transformation towards a user-centric, decentralized data architecture.

Finally, in order to manage data at scale, ref. [27] investigated how a Blockchain-
powered metadata catalogue might be integrated into a DM architecture. The metadata
catalogue improved governance, efficiency, access, and discovery. The catalogue managed
metadata across a dispersed network of data domains with federated governance, im-
mutability, and transparency due to the use of Blockchain technology. A proof-of-concept
solution utilizing HyperLedger Fabric was presented, with advantages including increased
reliability, efficiency, and transparency. It also discussed and suggested possible solutions
for issues including governance, scalability, and interoperability.

4. A Framework for Supporting the Transfer of Ownership in Data Meshes

This section describes the proposed framework for transferring the ownership of
data products residing in DMs. The framework follows a series of algorithmic steps
that include the creation of the DM through its transformation from a DL that bears a
specific architectural structure, and the development of the appropriate smart contracts,
the execution of which facilitates the transfer and proves the ownership of a specific data
product. In our case, the fluidity of information in a DM depends on the type and diversity
of the data stored in the DL from which data products are created.

4.1. Semantically Enriched Creation of Data Lake Architecture and Data Mesh Products

A metadata mechanism is of paramount importance for a DL as it functions as its
organizational backbone, offering a systematic and detailed catalog of the diverse datasets
hosted within the DL. Without such a metadata mechanism, a DL will gradually be trans-
formed into a data swamp. In essence, a metadata mechanism provides data owners with a
vital insight into the type and context of the stored information by capturing important
details about the origin, structure, relationships, and usage of data. By providing this
information, navigating and mapping raw data become feasible, making data searching,
retrieval, and management easier and more efficient.

The SDB is a metadata enrichment mechanism that identifies and characterizes a
candidate source before it becomes member of a DL [10]. The framework described in [10]
integrates blueprint ontologies with the 5 Vs big data features, namely Volume, Velocity,
Variety, Veracity, and Value, to support data processing (storage and retrieval) in DLs
organized in a pond architecture. The latter structures a DL in several distinct data ponds,
each of which holds or refers to a certain type of data according to the pond design.
Depending on the type of data (structured, semi-structured, unstructured), each pond
has a unique data processing and storage method. When extracting data from the DL,
this built-in pond architecture is quite useful as it supports quick and easy access to the
storage space.

As previously mentioned, a dedicated blueprint is developed to describe each data
source that stores data in the DL. Specifically, the blueprint of a source consists of two
interconnected blueprints, as shown in Figure 4, the stable and the dynamic blueprint [10].
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The former is static and describes the name and type of the source, the type of data it
produces, as well as the value, velocity, variety, and veracity of the data source pushed in
the DL. The latter is a dynamic blueprint which involves attributes that are not stable over
time and essentially characterizes volatile properties such as the volume of data, the last
source update, and keywords characterizing the source. The dynamic blueprint is updated
every time data sources produce new real-time or batch data, or its description through
keywords may be modified. In essence, the metadata description—SDB is provided in
Terse Triple Language (TTL) using the Resource Description Framework (RDF), which is
a well-known framework for describing resources on the Web. The metadata mechanism
contains TTL descriptions for all the sources included in the DL. In essence, TTL is a
serialization format that provides a concise and human-readable way to represent RDF
data, making it easier for both machines and humans to work with semantic information
on the Web. RDF represents information as triples, which consist of subject–predicate–
object statements. The resource being described is the subject, the property or attribute
is the predicate, and another resource or value is the object. An example of a triple may
be ex:variety “unstructured”, which means that the subject is the source, the predicate is
“variety” and the object is the value “unstructured”.

Our framework supports the categorization of data into three pillars: structured, semi-
structured, and unstructured. This classification allows for the flexible inclusion of diverse
datasets that transcend the constraints of data representation through meticulous metadata
recording and semantic enrichment. By introducing stable and dynamic blueprints, the
framework captures the essence of data variety, thereby ensuring independence from
specific representations and underscoring its adaptability and robustness across varying
datasets, marking a significant stride in modern data analytics.

Let us assume that a user requests access to specific sources producing data and
storing it to the DL. In this case, a dedicated SPARQL query is formed and executed in
the DL. When the query starts executing, it first asks the owner of the data for her/his
approval. If the owner approves the query, then the framework, and specifically the
metadata mechanism of the DL, is utilized to create the corresponding DM product that
satisfies the query as presented earlier in Figure 3. Figure 3 also shows that the user has
access only to the sources requested through the corresponding APIs. Furthermore, this
access is restricted to the specific person and is valid only within a specific period via
Blockchain and NFT technologies, as is presented in detail in the next subsection.

Analytically, the steps taken are as follows:

1. The owner of the contract can add an administrator on the contract by calling the
addAmin() function inserting an EVM-compatible address. Once an administrator is
created, (s)he obtains access through her/his address to certain admin-only functions
on the contract.

2. An administrator can mint an NFT by executing the safeMint() function, providing
the address of the recipient, an expiration date in UNIX epoch time, the query that
is associated with the NFT, and its access level. If the value of the access level is
set to 1, then the NFT grants read-only access to its new owner and the NFT is non-
transferable, while, if the value is set to 2, the owner of the NFT, besides read access,
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is also able to transfer access, and thus can transfer the ownership of the NFT to a
different user. At any given time, the current owner of the NFT can access and read
the data.

4.2. Smart Contract Architecture

Blockchain-based architecture uses a specially designed ERC721 smart contract that
was implemented to evaluate the use of the proposed framework. ERC721 is a standard
that is used in EVM-compatible Blockchain networks to represent the ownership of NFTs,
where each token is unique and has its own metadata. In this study, we decided to develop
our smart contract based on the ERC721 standard for two main reasons: (i) with ERC721,
users can securely own, transfer, and manage their digital assets with transparent and
verifiable ownership records; (ii) the ERC721 standard ensures that NFTs can easily interact
with several wallets and decentralized applications (dApps), enhancing their utility and
accessibility. Additionally, as the smart contract was developed for deployment on EVM-
compatible blockchain networks such as ETH, Matic, Avalanche, etc. that are using a
Proof-of-Stake consensus mechanism, there is no need for large energy consumption for
the calculation of blocks.

The purpose of the smart contract developed in this paper is threefold: (i) Allow
data owners to mint time-based NFTs and transfer them to an address, (ii) allow NFT
owners to read specific portions of data for a certain period of time, and (iii) allow NFT
owners to transfer ownership of the data to a different user. The proposed smart contract
consists of three main actors: the contract owner, who is the deployer of the contract and
responsible for registering administrators onto the contract; the contract administrators,
who oversee the minting process; and the authorized users, who can view or transfer data.
The administrator algorithmic workflow of the proposed framework is depicted in Figure 5
and summarized in pseudocode.
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Figure 6 presents the algorithmic workflow followed for authorized users. Authorized
users can view the assigned data based on two parameters, the expiration date and the
query. A user holding a valid NFT can access a token-gated website to view the data.
The website checks the eligibility of the connected address to allow or refuse access to the
user. Finally, as depicted in Figure 7, NFTs are separated into two categories, transferable
and non-transferable. When an NFT is minted, the admin specifies if the token has read-
only or transfer access. When a user who holds a specific non-expired NFT initiates a
transfer function, the contract checks whether the token can be transferred or not to a
different address and proceeds to accept or reject the request accordingly. If the NFT is
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successfully transferred, then the new owner of the NFT is automatically granted access to
the token-gated website and can view the data.
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Two notes should be made here: (i) By using hash functions and asymmetric encryp-
tion, we ensure alignment with the different data privacy regulations (e.g., GDPR and
CCPA). Each NFT in the developed system is owned by an EVM-compatible address, thus
only the address that owns the NFT can access the system and/or transfer the NFT. Thus,
granting access to data can only be initiated by the owner of the NFT and in cases in
which the administrator enabled transfer access to the specific NFT during its minting
(creation). (ii) Delays and costs that may occur are normally associated with the number
of transactions stored on the Blockchain as well as the data volume in each transaction.
In the proposed approach, this volume is kept minimal as the data themselves are not
stored on the Blockchain, but rather a metadata description of these data. Moreover, as
the transaction on the Blockchain does not concern the data, but only the metadata, the
scaling of the DL (i.e., its expansion) does not affect the description of an existing source.
In general, the scalability of the DL and the DM (i.e., the increase in their size) does not
impact the metadata. The only case in which metadata are affected is when new sources
of data are hosted in the DL. However, again, the information included in the metadata is
very limited and is produced as a one-off for each new source. Finally, it should be noted
that this approach focuses on the transformation of the DL into data products (DM), which
again does not depend on the volume of the data kept in the DL and, hence, is not on scale.
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5. Framework Demonstration through a Real-World Case Study
5.1. The PARADISIOTIS Group (PARG) Factory Case Study

As previously mentioned, this research utilizes a real-world case study from the area
of smart manufacturing to demonstrate the applicability of the framework. Specifically,
it utilizes data recorded at the PARG factory, the main business line of which is chicken
farming and poultry meat production and distribution. PARG is a continuously growing
company that over the years has invested in modern and technologically advanced equip-
ment for breeding processes (e.g., automatic ventilation systems, technology-assisted mills
for mixing ingredients and preparing chick food, etc.) and the production line (the cutting,
mixing, and packaging of poultry meat). The management of the factory constantly seeks
to improve performance and quality levels by frequently adapting production processes
and adopting new technologies.

Data are produced within the factory mainly by two systems. (i) CUBORA is a fully
operational heating control system designed to produce and monitor data related to poultry
heating and emissions into the feeding atmosphere. This system is essential for ensuring
the healthy growth and well-being of chicks on farms. (ii) AGROLOGIC specializes in the
field of automated climate controllers, feeding and weighting systems. AGROLOGIC is
integrated with a Chore Time controller and collects metrics from several remote sensors
that are distributed in the farms, such as CO2, temperature, humidity, air static pressure,
and light intensity level. All metrics are recorded in a database and accessed through a
Web application in real time. Furthermore, images of the farms and/or equipment may
be recorded for shift managers to visually inspect when necessary. Finally, the system
generates alerts if any of the metrics exceed pre-defined thresholds via an embedded
GSM modem.

A PARG case study presents all characteristics of big data originating from heteroge-
neous sources with atypical patterns, which produce various kinds of structured, semi-
structured, and unstructured data in high frequencies. These heterogeneous data need to
be treated differently from normal production speed data and be stored in more flexible
and/or higher servicing speed data storage architectures or structures, compared to classic
relational databases and data warehouses, such as big data warehouses, DLs, and DMs.
To this end, the current study developed a dedicated DL for PARG in a controlled (lab)
environment and applied the basic principles of SDB, Blockchain and NFT technologies for
creating data products and domains. The latter are produced based on a DM constructed
through the DL metadata mechanism. User requests for access to these data products are
addressed to the data owner, and ownership may be granted through NFTs based on the
relevant privileges, at the same time providing the ability to grant access and use the data
only for a specific period of time.

5.2. Use Case Scenarios

As previously mentioned, a request to access a DL is supported by the utilization
of the SDB semantic enrichment mechanism, which is the cornerstone for creating a data
product as part of the DM according to user preferences and ownership granting. Access
and ownership for a specific period of time is recorded on Blockchain using a dedicated
NFT. The use case of the PARG factory focuses on the department of poultry feeding
where sources produce data during the feed cycle of chickens within a specific farm. An
excerpt of the structure of the corresponding SDB is depicted in Figure 8. We selected the
following metadata characteristics to describe a source which produces data for monitoring
chicken flock farming in different locations: (i) Source Name; (ii) Location; (iii) Feed cycle
start; (iv) Feed cycle end; (v) Keywords; (vi) Variety; (vii) Velocity; (viii) Volume; and
(ix) Source Path.

The use case scenarios tested are based on user requests to access a specific portion of
data. For example, PARG stakeholders (shift managers, farm carers, production workers)
often need to consult data related to the number of chicks in a farm, the environmental
conditions within a farm, electricity consumption, emissions in the atmosphere, biomass
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production, etc. Therefore, data products in the DM were constructed to reflect these pieces
of available information. Furthermore, in the scenarios below, we also assume that the
shift manager wishes to acquire access to all information related to the Limassol farm
and that, at some point, (s)he wishes to transfer this access to the head of production.
Normally, access permissions are requested by sending a message to the owner of the data
through a dedicated SPARQL. This query is essentially executed in all scenarios that follow.
Essentially, a user requests access to a specific portion (data sources) of a DL through the
DM data products that are constructed to provide information for the location “Limassol”,
as presented in Figure 8.
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To evaluate the efficiency of the proposed framework, we first developed a dedicated
smart contract that was deployed in the Sepolia Test Network, and then we executed a
series of transactions. The smart contract’s address is 0x88790ed3407e3b395ab0276d530
5a273a497612b, and the contract owner is 0xfb43d1384FC250B59996933CA2D8C766722
7BE52. The reader can refer to the smart contract’s URL on etherscan.io for complete
access to the source code of the contract. By using the smart contract, we have explored
various scenarios to showcase its fundamental features that include NFT minting with
additional on-chain information, data retrieval, and transfer restrictions.

5.2.1. Scenario 1—Minting

As previously mentioned, this scenario demonstrates how a user that wishes to ac-
cess all sources of the factory that produce data during breeding in the city of Limassol
is serviced by executing the SPARQL query listed below. This scenario illustrates the
minting capability of the smart contract, as outlined in the proposed administrative algo-
rithmic workflow framework. Initially, the admin of the smart contract with the address
0xfb43d1384FC250 B59996933CA2D8C7667227BE52 sequentially executes two token pro-
cesses for minting transactions to the address 0xcF1aB65AE4EFaA9BE8cDB13078360B811
D11616D, the first not allowing the token to be transferrable (Algorithm 1) (i.e., the owner-
ship of the data may not be passed on to another user), and the second allowing the token to
be transferrable (Algorithm 2). The processes are executed with the following parameters:
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Algorithm 1: First token process parameters

1: Date of Expiration: 1706094000 (Wednesday, 24 January 2024 11:00:00 UTC)
2: Query:
3: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> (accessed on 2 March 2024)
4: PREFIX ex: <http://example.org/>
5: SELECT ?location ?sourcePath
6: WHERE { ?source rdf:type ex:Description; ex:location “Limassol”; }
7: Transferrable: NO (flag is set to 1)

Algorithm 2: Second token process parameters

1: Date of Expiration: 1706095000 (Wednesday, 24 January 2024 11:16:40 UTC)
2: Query:
3: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> (accessed on 2 March 2024)
4: PREFIX ex: <http://example.org/>
5: SELECT ?location ?sourcePath
6: WHERE { ?source rdf:type ex:Description; ex:location “Limassol”; }
7: Transferrable: YES (flag is set to 2)

Once the transactions are confirmed on the Blockchain network, the address 0xcF1a
B65AE4EFaA9BE8cDB13078360B811D11616D becomes the owner of both token ids #0
and #1, as depicted in Figure 9. Essentially, the owner has access to the PARG sources for
Limassol’s farm with either token#0 or token#1. The main difference between the two tokens
is the ability to use them for transferring ownership to another user, as demonstrated below.
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5.2.2. Scenario 2—Retrieving Data

This scenario presents the retrieving capabilities of the smart contract which are
based on certain requirements. Here, we are using address 0xcF1aB65AE4EfaA9BE8cDB13
078360B811D11616D that corresponds to the owner of both NFTs #1 and #2. This address is
checked to comply with two restrictions: First, that it is the owner of the NFT, and second,
that the NFT has not expired. These restrictions safeguard that the address has permissions
to retrieve the data recorded on the smart contract for each token (see also Figure 10).
Therefore, access to the data product constructed to include all information produced in
the Limassol farm is now granted to the owner of the corresponding address. If any other
address besides the owner of the NFT attempts to retrieve those data, it is automatically
blocked by the smart contract and it is not allowed to enter the token-gated website (see
Scenario 3).
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5.2.3. Scenario 3—Applying Transfer Restrictions

This scenario demonstrates the transfer restrictions that are set by the administra-
tor when a token is minted. As described in Scenario 1, token#0 was minted as a non-
transferable token, while token#1 was minted with transferrable properties. As outlined in
Figure 11, when the owner attempts to transfer token#0 to a different address, it is blocked
by the smart contract, as this is not a valid action due to transfer restrictions. Subsequently,
when the owner of token#1 tries to transfer the token, this is carried out successfully as
token#1 has the appropriate transfer rights and hence the permissions to do so. Here,
the owner of token#1 transfers the token to address 0xC70bc32E46378B5a01c713d6dB18
042Acd8F0200. Upon confirmation of the transaction on the Blockchain network, the previ-
ous owner of the token loses access to it as now the access rights are transferred to the new
owner. Therefore, access to the data products is secured via Blockchain and single control
of ownership is guaranteed by the NFT.
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6. Conclusions

This paper introduces an innovative framework for securing the access and ownership
of data meshes based on Blockchain and NFTs. The framework is applied on a data lake
storage architecture, which may host big data at any scale, frequency and format, and
utilizes semantic data blueprints for dynamically constructing data products in data meshes.
These products are designed to meet user demands and ensure that stakeholders access
specific areas of the data mesh as needed through the transfer of ownership. The integration
of NFTs and Blockchain technology offers a novel approach to addressing ownership and
governance concerns. A dedicated algorithm was developed for incorporating the ability
to mint time-based NFTs, thus facilitating secure and transparent data ownership transfers.
The proposed framework was demonstrated using a real-world case study from the smart
manufacturing area. Specifically, a data lake was built to host data produced at a poultry
meat production factory by several sensors and automated systems during the breeding
process followed in the farms. Specific portions of data were selected to construct data
products in a custom data mesh, which were then used as key elements for granting
access and transferring ownership to authorized users via the execution of smart contracts
and NFTs. The scenarios tested suggested successful behavior in terms of ease of use,
transparency, and correctness. It should also be noted that users in the factory (workers and
managers in breeding sites and production line) were able to easily follow the algorithmic
approach of the proposed framework and apply its steps efficiently, greatly appreciating
the ability to share data.

Future research will focus on enhancing and automating parts of the framework by uti-
lizing recommender systems driven by user preferences and/or the history of transactions
for creating data products. Specifically, the system will be modified to employ advanced al-
gorithms for analyzing user behavior and preferences to generate access recommendations.
This will allow data products to be constructed upfront, thus speeding up the process for
granting access and transferring ownership.
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