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Abstract: In this article, a particular approach to deriving recursive state estimators for linear state
space models is generalised, namely the weighted least-squares approach introduced by Duncan and
Horn in 1972, for the case of the two noise processes arising in such models being cross-correlated; in
this context, the fact that in the available literature two different non-equivalent recursive algorithms
are presented for the task of state estimation in the aforementioned case is discussed. Although the
origin of the difference between these two algorithms can easily be identified, the issue has only
rarely been discussed so far. Then the situations in which each of the two algorithms apply are
explored, and a generalised Kalman filter which represents a merger of the two original algorithms
is proposed. While, strictly speaking, optimal state estimates can be obtained only through the
non-recursive weighted least-squares approach, in examples of modelling simulated and real-world
data, the recursive generalised Kalman filter shows almost as good performance as the optimal
non-recursive filter.
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1. Introduction

State space models represent an extremely well-established framework for the predic-
tive modelling of time series, which has found countless applications in statistics, engineer-
ing, econometrics, neuroscience, and other fields [1–6]. If both the dynamical processes
within the system to be studied and the observation process can be assumed to be linear, the
optimal algorithm for recursively estimating the current state of the system is given by the
widely used Kalman filter [7]; for estimating past states, smoothing algorithms are available,
many of which themselves are based on the results of Kalman filtering. A well-known
example of a recursive smoothing algorithm is given by the Rauch–Tung–Striebel (RTS)
smoother [8].

There are numerous ways to derive the equations of the Kalman filter and the RTS
smoother. This paper starts with an approach that was introduced by Duncan and Horn
in 1972 [9]. Their approach is based on expressing the problem of state estimation as a
weighted least-squares problem. The first purpose of the present paper is to generalise the
weighted least-squares approach to the case of correlations being present between the two
noise terms arising in state space models, i.e., the dynamical noise term and the observation
noise term; in the paper by Duncan and Horn, it was assumed that these noise terms are
uncorrelated.

Duncan and Horn’s approach to state estimation corresponds with estimating the
states for all time points simultaneously by inverting a single matrix, usually of large
dimensions; Kalman filtering and RTS smoothing can be interpreted as a recursive approach
to inverting this matrix. However, non-recursive approaches would also be possible, and
some authors actually advocate for replacing Kalman filtering and RTS smoothing with
other inversion algorithms. As an example, Chan and Jeliazkov [10] are mentioned, who
have “rediscovered” the weighted least-squares approach to state estimation, based on
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earlier work by Fahrmeir and Kaufmann [11], apparently without noticing the much earlier
paper by Duncan and Horn.

Aravkin [12,13] has reformulated and extended the original work of Duncan and Horn
in various directions, but excluding the case of correlated noise terms. He approaches the
aforementioned task of inverting a large matrix through a blockwise LDL decomposition of
that matrix; Chan and Jeliazkov [10], in contrast, employ Cholesky decomposition. Aravkin
has shown that by applying a recursive inversion algorithm for one-block-banded matrices,
originally formulated by Bell [14], to the LDL decomposition, the Kalman filter (in its
“information filter” variant) and the RTS smoother can be retrieved. The derivation of
square-root information filters via the Duncan–Horn approach has been discussed by Paige
and Saunders [15] and by Hammarling [16].

The second purpose of this paper is to discuss the fact that for the task of state
estimation in the case of correlated noise terms, two different generalised Kalman filter
algorithms exist that are not equivalent. Most available textbooks on state space modelling
and Kalman filtering present either one or the other of these algorithms; Harvey [2] is
a rare example of an author presenting both algorithms. As also mentioned by Harvey,
these two algorithms correspond to two slightly different forms of defining the underlying
state space model. The difference between these two forms is given solely by the time
index of the dynamical noise term, relative to the time index of the state vector; Harvey
labels these two forms the “contemporaneous form” and the “future form” [17]. While
in control engineering, the “future form” is used almost exclusively, in statistics, the
“contemporaneous form” is also frequently used due to its relationship with autoregressive
moving-average (ARMA) modelling, which represents an important tool for time series
analysis [18].

While, as mentioned, generalisations of the Kalman filter for the case of correlated
noise terms are available, generalisations of the RTS smoother for this case are rarely
discussed in the literature. In the present paper, these generalisations will be derived using
the weighted least-squares approach, both for contemporaneous-form and future-form state
space models. It will also be pointed out that by switching between the contemporaneous
form and future form, lag-zero cross-correlations between the two noise terms become
lag-one cross-correlations, and vice versa; this will explain the fact that the corresponding
generalised Kalman filter algorithms are not equivalent.

The next step will then be to define a further generalised state estimation problem
that contains both lag-zero and lag-one cross-correlations; it will be demonstrated that for
this case, through the weighted least-squares approach, no optimal recursive filtering and
smoothing algorithms can be derived. Instead, an approximate recursive algorithm will
be presented, which can be obtained by merging the available Kalman filter algorithms
for contemporaneous-form and future-form state space models. Related work has been
presented recently by Linares-Pérez and coauthors [19], although these authors arrive at a
different recursive algorithm.

In practical applications, it is often assumed that, from prior knowledge, it would
be known that the noise terms were uncorrelated. In many cases, this assumption may
actually be justified, while in other cases, it has to be regarded as an unwarranted constraint.
Sometimes, the same source of randomness affects both the dynamical process itself and the
observation process; as an example, Chui and Chen [20] mention aircraft inertial navigation.
There are also applications where the state space model is used mainly as a device for
a quantitative description of the temporal correlation structure present in the original
data and not as a model of an underlying physical reality, and, in such cases, it would be
difficult to justify the constraint of uncorrelated noise terms. If it is decided to set the cross-
correlation to zero, this should be the result of a corresponding model comparison step, i.e.,
by proving that a model with vanishing cross-correlation displays the best performance in
modelling the data.

The structure of the present paper is as follows. In Section 2, linear state space models
are discussed. In Section 3, Kalman filters are discussed for the case of correlated noise
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terms, including the corresponding information filters. In Section 4, a recursive approach
to solving a certain class of linear equations is reviewed; later, this approach is employed
to solve the weighted least-squares problem. Section 5 contains the main results of the
paper, including the discussion and generalisation of the weighted least-squares approach
to state estimation. In Section 6, the case of both lag-zero and lag-one cross-correlations
being present simultaneously is discussed. In Section 7, an example of the application of
the proposed algorithms to simulated data is presented, while in Section 8 an example
of their application to real-world data follows. The paper closes in Section 9 with a final
discussion and conclusions. The Appendix A contains a somewhat lengthy derivation,
which establishes the equivalence of the two equations arising in Section 5.

2. State Space Models

Let yt denote a given time series of data vectors, where the subscript t = 1, . . . , N
denotes a discrete time; let n denote the dimensions of the data vectors. The given time
series shall be modelled by a linear state space model given by a pair of equations, the first
of which is known as the observation equation, given by

yt = Ctxt + ϵt (1)

where xt denotes a series of state vectors, with m denoting the dimensions of the state
vectors, Ct denotes an (n × m)-dimensional matrix, known as the observation matrix,
and ϵt denotes a series of noise vectors, known as observation noise, which are assumed
to be drawn from a Gaussian distribution with a mean vector of zero and an (n × n)-
dimensional covariance matrix, Rt. As the subscript t indicates, the observation matrix and
the covariance matrix of the observation noise may depend on time.

The second equation is known as the dynamical equation; it can be formulated in two
different variants [17], the first, known as the “contemporaneous form”, being given by

xt = Atxt−1 + ηt (2)

while the second variant, known as the “future form”, is given by

xt = Atxt−1 + ηt−1 (3)

where At denotes an (m × m)-dimensional matrix, known as the state transition matrix,
and ηt denotes a series of noise vectors, known as dynamical noise, which are assumed
to be drawn from a Gaussian distribution with a mean vector of zero and an (m × m)-
dimensional covariance matrix, Qt. As the subscript t indicates, the state transition matrix
and the covariance matrix of the dynamical noise may also depend on time. In the future-
form dynamical equation, Equation (3), many authors choose to write the time dependence
of the state transition matrix as At−1 instead of At, but this is merely a matter of definition.

The two noise terms, ϵt and ηt, may be correlated, i.e., the expectation of the product,
ηtϵ

T
t , may not vanish, such that an (m × n)-dimensional cross-covariance matrix needs to

be defined by
St = E(ητϵT

τ ) (4)

where the symbol E denotes the expectation (over time τ); this cross-covariance matrix
may also depend on time. Then, the covariance matrix of the stacked vector of both noise
terms is given by

E
([

ητ
ϵτ

][
ητ
ϵτ

]T)
=

(
Qt St
ST

t Rt

)
(5)

For later use, this cross-covariance matrix will now be inverted. First, new symbols
for the inverses of the covariance matrices Rt and Qt are introduced:

Φt := R−1
t , Θt := Q−1

t (6)
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Note that Φt and Θt represent information matrices. The desired inverse matrix is
formulated as (

Qt St
ST

t Rt

)−1

=

(
Ωt Σt
ΣT

t Ψt

)
(7)

where

Ωt :=
(
Qt − StΦtS

T
t
)−1 (8)

Ψt :=
(
Rt − ST

t ΘtSt
)−1 (9)

Σt := −ΘtStΨt = −ΩtStΦt (10)

3. Kalman Filter Algorithms for the Case of Correlated Noise Terms

The task of state estimation consists of estimating the series of state vectors, xt,
t = 1, . . . , N, for given data, yt, and given model parameter matrices, At, Ct, Rt, Qt, and St;
an estimate of the initial state should also be available, e.g., at time t = 0, denoted as x0.
The classical solution to this task is given by a twofold recursive algorithm consisting of
a forward pass through the data by the Kalman filter, followed by a backward pass by a
smoother, such as the Rauch–Tung–Striebel (RTS) smoother [3,21]. The estimates are given
by a sequence of mean vectors and covariance matrices, corresponding to multivariate
Gaussian distributions.

The Kalman filter consists of a recursion in the forward direction through time. At
each time point, first the predicted states, xt|t−1, and the corresponding covariance ma-
trices, Pt|t−1, are computed. Then, second, the filtered states, xt|t, and the corresponding
covariance matrices, Pt|t, are computed. The notation xt1|t2

is defined as an “estimate of xt1

based on the information available at time t2”.
Instead of formulating the recursion for the states xt|t−1 and xt|t and the correspond-

ing covariance matrices, Pt|t−1 and Pt|t, it may also be formulated for the information
states, P−1

t|t−1xt|t−1 and P−1
t|t xt|t, and the corresponding information matrices, P−1

t|t−1 and P−1
t|t ,

leading to information filters. Again, new symbols shall be introduced:

χt1|t2
:= P−1

t1|t2
xt1|t2

, Ft1|t2
:= P−1

t1|t2
(11)

Depending on whether covariance matrices or information matrices are employed,
there are covariance Kalman filters or information Kalman filters (the latter usually simply
called information filters).

3.1. Contemporaneous Form and Future Form

In Equations (2) and (3), the “contemporaneous form” and the “future form” of the
dynamical equation of a state space model are defined. The names of these forms refer to
the question of whether the state vector, xt, on the left-hand side of the dynamical equation
is contemporaneous to the dynamical noise term, ηt, on the right-hand side or whether it
has advanced by one time step into the future relative to that noise term; this terminology
was introduced by Harvey [17].

The fact that two variants for the dynamical equation can be formulated is a conse-
quence of using discrete-time dynamics; in continuous-time dynamics, there would be no
such distinction. The relative choice of the time indices of these two terms may seem like
an insignificant technical detail, and in many situations, this is indeed the case. If the two
noise terms, ϵt and ηt, are uncorrelated, exactly the same Kalman filter algorithm is valid
for both the contemporaneous form and the future form.

However, if the two noise terms are correlated, this no longer holds true. In this case,
two different Kalman filter algorithms exist that are not equivalent; these two algorithms
will be reviewed below in Sections 3.2 and 3.3. Most papers and textbooks present only
one of the two possible algorithms without discussing the issue further; the only exception
known to this author is the textbook by Harvey [2].
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3.2. Contemporaneous-Form Kalman Filter

Derivations of this version of the Kalman filter can be found in the textbook by
Jazwinski [1], based on orthogonal projection, or the textbook by Brown and Hwang [22],
based on a least-mean-squares approach; the algorithm is also given by several other
authors, such as Harvey [2], Gibbs [23], and Grewal and Andrews [21]. Its equations are
given as follows:

xt|t−1 = Atxt−1|t−1 (12)

Pt|t−1 = AtPt−1|t−1A
T
t +Qt (13)

Vt = CtPt|t−1C
T
t + Rt + CtSt + (CtSt)

T (14)

Kt =
(
Pt|t−1C

T
t + St

)
V−1

t (15)

xt|t = xt|t−1 +Kt(yt − Ctxt|t−1) (16)

Pt|t = Pt|t−1 −KtVtK
T
t (17)

Compared to the standard Kalman filter with uncorrelated noise terms, only the
expressions for the innovation covariance, Equation (14), and for the optimal Kalman gain,
Equation (15), contain additional terms. It should be emphasised that for the computation
of the innovation likelihood, Equation (14) is not to be used for the innovation covariance;
rather, the standard expression, CtPt|t−1C

T
t + Rt, has to be used.

Also the contemporaneous form information filter is needed:

Bt = Ft−1|t−1 + AT
t ΘtAt (18)

χt|t−1 = ΘtAtB
−1
t χt−1|t−1 (19)

Ft|t−1 = Θt − ΘtAtB
−1
t AT

t Θt (20)

Γt = (Rt − ST
t Ft|t−1St)

−1 (21)

Gt = Ct + ST
t Ft|t−1 (22)

χt|t = (I(m) + GT
t ΓtS

T
t )χt|t−1 + GT

t Γtyt (23)

Ft|t = Ft|t−1 + GT
t ΓtGt (24)

where I(m) denotes the (m × m)-dimensional unity matrix, and the quantities denoted by
the symbols Bt, Γt, and Gt have been introduced in order to simplify the equations.

The information filter algorithm in Equations (18)–(24) can be condensed into two
equations (plus the two equations defining Γt and Gt), directly describing the update of the
filtered information state estimate and its information matrix:

χt|t = (I(m) + GT
t ΓtS

T
t )ΘtAt

(
Ft−1|t−1 + AT

t ΘtAt
)−1

χt−1|t−1 + GT
t Γtyt (25)

Ft|t = Θt − ΘtAt
(
Ft−1|t−1 + AT

t ΘtAt
)−1

AT
t Θt + GT

t ΓtGt (26)

3.3. Future-Form Kalman Filter

This version of the Kalman filter is given in numerous textbooks, such as those by
Anderson and Moore [24], Kailath et al. [3], Chui and Chen [20], and Gómez [25]. It can be
derived by decorrelating the noise terms, such that, formally, the standard Kalman filter for
uncorrelated noise terms can be applied. Its equations are given as follows:
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Ãt = At − St−1Φt−1Ct−1 (27)

Q̃t = Qt − StΦtS
T
t (28)

xt|t−1 = Ãtxt−1|t−1 + St−1Φt−1yt−1 (29)

Pt|t−1 = ÃtPt−1|t−1Ã
T
t + Q̃t−1 (30)

Vt = CtPt|t−1C
T
t + Rt (31)

Kt = Pt|t−1C
T
t V

−1
t (32)

xt|t = xt|t−1 +Kt(yt − Ctxt|t−1) (33)

Pt|t = Pt|t−1 −KtVtK
T
t (34)

In this filter, Ãt, as defined by Equation (27), represents a modified state transition matrix,
and Q̃t, as defined by Equation (28), represents a modified dynamical noise covariance matrix.
Note that

Q̃−1
t = Ωt (35)

where Ωt is defined in Equation (8). As a further modification to the standard Kalman
filter for uncorrelated noise terms, a new term, St−1Φt−1yt−1, arises in the equation for the
predicted state estimate, Equation (29); however, since this term is precisely known, it does
not cause any further changes to the standard Kalman filter. As another subtle difference,
in the case of the future-form Kalman filter, in Equation (30), the time index of the modified
dynamical noise covariance matrix has to be chosen as t − 1 in contrast to Equation (13).

Also, the future-form information filter is needed:

B̃t = Ft−1|t−1 + ÃT
t Ωt−1Ãt (36)

Ft|t−1 = Ωt−1 − Ωt−1ÃtB̃
−1
t ÃT

t Ωt−1 (37)

χt|t−1 = Ωt−1ÃtB̃
−1
t χt−1|t−1 + Ft|t−1St−1Φt−1yt−1 (38)

χt|t = χt|t−1 + CT
t Φtyt (39)

Ft|t = Ft|t−1 + CT
t ΦtCt (40)

where the quantity denoted by the symbol B̃t has been introduced in order to simplify
the equations.

Again, the information filter algorithm in Equations (36)–(40) can be condensed into
two equations:

χt|t = Ωt−1Ãt
(
Ft−1|t−1 + ÃT

t Ωt−1Ãt
)−1

χt−1|t−1

+
(

Ωt−1 − Ωt−1Ãt
(
Ft−1|t−1 + ÃT

t Ωt−1Ãt
)−1

ÃT
t Ωt−1

)
St−1Φt−1yt−1 + CT

t Φtyt (41)

Ft|t = Ωt−1 − Ωt−1Ãt
(
Ft−1|t−1 + ÃT

t Ωt−1Ãt
)−1

ÃT
t Ωt−1 + CT

t ΦtCt (42)

It has to be emphasised that the filter algorithm in Equations (12)–(17) is not equivalent
to the filter algorithm in Equations (27)–(34), and this applies likewise to the information
filter algorithms. This is obvious from a direct comparison of the equations and can readily
be confirmed by numerical examples.
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4. Recursive Solution of a Linear Equation with a Symmetric One-Block-Banded Matrix

Before embarking on the actual discussion of the weighted least-squares approach to
state estimation, an algorithm for the recursive solution of a linear equation needs to be
briefly reviewed. Let the linear equation be given by

V = MX , (43)

where the square matrix, M, has a particular structure, known as symmetric one-block-
banded matrix structure. This structure is given by

M =



M1 W2 0 . . . 0 0

WT
2 M2 W3 . . . 0 0

0 WT
3 M3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . MN−1 WN
0 0 0 . . . WT

N MN


, (44)

where Mt, t = 1, . . . , N, denotes a set of invertible symmetric positive definite (m × m)-
dimensional square matrices, and Wt, t = 2, . . . , N, denotes another set of (m × m)-
dimensional square matrices. For the vectors V and X , a similar partitioning as for M shall
be defined:

V =

v1
...

vN

 X =

 x1
...

xN

, (45)

where the dimensions of the subvectors vt and xt, t = 1, . . . , N, shall be m.
The solution to Equation (43) can be based on the blockwise LDL decomposition of

M according to
M = LDLT, (46)

where

L =



I(m) 0 0 . . . 0 0

WT
2 Z

−1
1 I(m) 0 . . . 0 0

0 WT
3 Z

−1
2 I(m) . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . I(m) 0

0 0 0 . . . WT
NZ−1

N−1 I(m)


(47)

and

D =



Z1 0 0 . . . 0 0
0 Z2 0 . . . 0 0
0 0 Z3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ZN−1 0
0 0 0 . . . 0 ZN


(48)

Then, in the first step, the equation

V = MX = LDLTX

is recursively solved for Z , which is defined by

Z = DLTX , (49)
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while in the second step, Equation (49) is recursively solved for X . The corresponding
recursions were given by Bell [14], as follows:

1. Z1 = M1 (50)
z1 = v1 (51)

2. “forward” recursion over t from t = 2 until t = N:
Zt = Mt −WT

t Z
−1
t−1Wt (52)

zt = vt −WT
t Z

−1
t−1zt−1 (53)

3. xN = Z−1
N zN (54)

4. “backward” recursion over t from t = N − 1 until t = 1:
xt = Z−1

t (zt −Wt+1xt+1) (55)

It is not hard to see that the “forward” recursion leads to a Kalman filter, while the
“backward” recursion leads to a smoother.

In addition to the equations given by Bell, another equation needs to be added to the
“backward” recursion. For this purpose, the task of computing the inverse of the matrix M
explicitly is studied, which can be carried out by inverting the matrices L and D separately.

D has a block-diagonal structure, with blocks [D]tt = Zt, where the index t refers to
blocks. Its inverse also has a block-diagonal structure, with blocks [D−1]tt = Z−1

t .
L has a block-bidiagonal structure, with blocks [L]tt = I(m) and [L]t+1,t = WT

t+1Z
−1
t .

Its inverse has a lower block-triangular structure, with blocks

[L−1]st =

I(m) if s = t

(−1)s+t
t−1
∏

τ=s
[L]τ+1,τ if s > t

where the indices s and t refer to blocks.
Then, if the product L−TD−1L−1 is formed, it is found that the blocks on the diagonal

of M−1 can be computed by a “backward” recursion over t from t = N − 1 to t = 1,
according to

[M−1]NN = Z−1
N (56)

[M−1]tt = Z−1
t + Z−1

t Wt+1[M−1]t+1,t+1W
T
t+1Z

−1
t (57)

The idea of inverting the matrix M via blockwise LDL decomposition, in the context
of state estimation, has also been proposed by Fahrmeir and Kaufmann [11], while Chan
and Jeliazkov [10] prefer to employ Cholesky decomposition for this purpose.

5. Weighted Least-Squares Approach to State Estimation

Various authors have noticed that the state estimation problem can be cast as a regres-
sion problem; a good review of the earlier literature has been provided by Solo [26]. A
particularly influential paper was published in 1972 by Duncan and Horn [9], who showed
that the linear state estimation problem can be solved by weighted least squares. Later, the
same approach was “rediscovered” by Chan and Jeliazkov [10]; see also the related work
by Fahrmeir and Kaufmann [11]. The derivation given in the paper by Duncan and Horn
will now briefly be reproduced, but it will be generalised for the case St ̸= 0.
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5.1. Contemporaneous Form

First, the contemporaneous form of the state space model is considered, which is also
the form employed by Duncan and Horn. The starting point is given by writing down the
equations of the state space model, Equations (1) and (2), for all time points, t = 1, . . . , N:

x1 = A1x0 + η1

y1 = C1x1 + ϵ1

x2 = A2x1 + η2

y2 = C2x2 + ϵ2 (58)
...

xN = ANxN−1 + ηN

yN = CNxN + ϵN

Note that in the first of these equations, the term A1x0 can be interpreted as the
prediction of the state at time t = 1, denoted as x1|0 = A1x0. Then, the set of Equation (58)
may be rearranged as

−x1|0 = −x1 + η1

y1 = C1x1 + ϵ1

0 = A2x1 − x2 + η2

y2 = C2x2 + ϵ2 (59)
...

0 = ANxN−1 − xN + ηN

yN = CNxN + ϵN

By defining

Y =



−x1|0
y1
0
y2
0
...
0

yN


, X =



x1
x2
x3
...

xN−1
xN


, E =



η1
ϵ1
η2
ϵ2
η3
...

ηN
ϵN


(60)

and

A =



−I(m) 0 0 . . . 0 0
C1 0 0 . . . 0 0

A2 −I(m) 0 . . . 0 0
0 C2 0 . . . 0 0

0 A3 −I(m) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . AN −I(m)

0 0 0 . . . 0 CN


, (61)

the set of Equation (59) can be rewritten as

Y = AX + E (62)
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The vector Y contains the known data, including the prediction of the state at t = 1.
The vector E contains the unknown noise terms, for which the covariance matrix is given by

R =



Q1 S1 0 0 . . . 0 0

ST
1 R1 0 0 . . . 0 0
0 0 Q2 S2 . . . 0 0

0 0 ST
2 R2 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . QN SN
0 0 0 0 . . . ST

N RN


(63)

The inverse of R is given by

R−1 =



Ω1 Σ1 0 0 . . . 0 0

ΣT
1 Ψ1 0 0 . . . 0 0
0 0 Ω2 Σ2 . . . 0 0

0 0 ΣT
2 Ψ2 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . ΩN ΣN
0 0 0 0 . . . ΣT

N ΨN


(64)

where the matrices Ωt, Ψt, and Σt have been defined in Equations (8)–(10).
Equations (60)–(63) represent a weighted least-squares problem to be solved for X ,

i.e., the sequence of the states. The solution, X̂ , to this problem has to fulfil the equation

ATR−1Y = ATR−1A X̂ (65)

If the matrix product ATR−1A has full rank, the estimated solution is given by

X̂ =
(
ATR−1A

)−1ATR−1Y (66)

The covariance matrix of the estimated solution X̂ is given by

P(X̂ ) =
(
ATR−1A

)−1 (67)

By comparing with Equation (43), the following correspondences can be found:

V = ATR−1Y and M = ATR−1A

By evaluating the matrix product ATR−1A, using Equation (7), it can easily be con-
firmed that a symmetric one-block-banded matrix is produced, with a shape given by
Equation (44) and blocks given by

Mt =

{
Ωt − ΣtCt − (ΣtCt)T + CT

t ΨtCt + AT
t+1Ωt+1At+1 if t = 1, . . . , N − 1

Ωt − ΣtCt − (ΣtCt)T + CT
t ΨtCt if t = N

(68)

Wt = AT
t ΣtCt − AT

t Ωt , t = 2, . . . , N (69)

such that the algorithm in Equations (50)–(55) can be applied to solve Equation (65).
The vector ATR−1Y , corresponding to the “given-data” vector, V , in Equation (43),

consists of stacked m-dimensional subvectors, given by

vt =


(CT

1 Ψ1 − Σ1)y1 + AT
2 Σ2y2 − (CT

1 ΣT
1 − Ω1)x1|0 if t = 1

(CT
t Ψt − Σt)yt + AT

t+1Σt+1yt+1 if t = 2, . . . , N − 1
(CT

NΨN − ΣN)yN if t = N

(70)
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By inserting Equations (68) and (69) into Equation (52), it follows, for t = 1, . . . , N − 1,
that

Zt = Ωt − ΣtCt − (ΣtCt)
T + CT

t ΨtCt + AT
t+1Ωt+1At+1

−
(
AT

t ΣtCt − AT
t Ωt

)T
Z−1

t−1
(
AT

t ΣtCt − AT
t Ωt

)
(71)

By inserting Equations (69) and (70) into Equation (53), it follows, for t = 2, . . . , N − 1,
that

zt =
(
CT

t Ψt − Σt
)
yt + AT

t+1Σt+1yt+1 −
(
AT

t ΣtCt − AT
t Ωt

)T
Z−1

t−1zt−1 (72)

By inserting Equation (69) into Equations (55) and (57), it follows, for t = N − 1, . . . , 1,
that

xt = Z−1
t

(
zt −

(
AT

t+1Σt+1Ct+1 − AT
t+1Ωt+1

)
xt+1

)
(73)

Pt|N = Z−1
t + Z−1

t
(
AT

t+1Σt+1Ct+1 − AT
t+1Ωt+1

)
×

Pt+1|N
(
AT

t+1Σt+1Ct+1 − AT
t+1Ωt+1

)T
Z−1

t (74)

Equations (71) and (72) represent an algorithm for forward recursive filtering, in the
case of contemporaneous-form models, to be applied for t = 2, . . . , N − 1; the modifications
for the limit cases t = 1 and t = N follow accordingly from Equations (50), (51), (69), and (70).

Equations (73) and (74) represent an algorithm for backward recursive smoothing,
in the case of contemporaneous-form models, to be applied for t = N − 1, . . . , 1; the
modifications for the limit case t = N follow accordingly from Equations (54) and (56),
using Z−1

N , as provided by the forward filter. Note that replacing [M−1]tt in Equation (57)
with Pt|N is justified due to Equation (67).

5.2. Future Form

Now, it shall be assumed that the state space model is formulated in the future form;
see Equations (1) and (3). The corresponding temporal shift in the dynamical noise term, as
compared to the state space model in the contemporaneous form, has the effect that, within
the matrix R, the cross-covariance matrix St moves to different block positions:

R =



Q0 0 0 . . . 0 0 0

0 R1 ST
1 . . . 0 0 0

0 S1 Q1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . RN−1 ST
N−1 0

0 0 0 . . . SN−1 QN−1 0
0 0 0 . . . 0 0 RN


(75)

The inverse of R is given by

R−1 =



Θ0 0 0 . . . 0 0 0

0 Ψ1 ΣT
1 . . . 0 0 0

0 Σ1 Ω1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . ΨN−1 ΣT
N−1 0

0 0 0 . . . ΣN−1 ΩN−1 0
0 0 0 . . . 0 0 ΦN


(76)

Also, in this case, the matrix product ATR−1A yields a one-block-banded matrix,
according to Equation (44), with blocks given by
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Mt =


Θ0 + AT

2 Σ1C1 + (AT
2 Σ1C1)

T + CT
1 Ψ1C1 + AT

2 Ω1A2 if t = 1
Ωt−1 + AT

t+1ΣtCt + (AT
t+1ΣtCt)T + CT

t ΨtCt

+AT
t+1ΩtAt+1 if t = 2, . . . , N − 1

ΩN−1 + CT
NΦNCN if t = N

(77)

Wt = −CT
t−1ΣT

t−1 − AT
t Ωt−1 (78)

The vector ATR−1Y consists of stacked m-dimensional subvectors, given by

vt =


(CT

1 Ψ1 + AT
2 Σ1)y1 + Θ0x1|0 if t = 1

(CT
t Ψt + AT

t+1Σt)yt − Σt−1yt−1 if t = 2, . . . , N − 1
CT

NΦNyN − ΣN−1yN−1 if t = N

(79)

By inserting Equations (77) and (78) into Equation (52), it follows, for t = 2, . . . , N − 1,
that

Zt = Ωt−1 + AT
t+1ΣtCt + (AT

t+1ΣtCt)
T + CT

t ΨtCt + AT
t+1ΩtAt+1

−
(
CT

t−1ΣT
t−1 + AT

t Ωt−1
)T

Z−1
t−1
(
CT

t−1ΣT
t−1 + AT

t Ωt−1
)

(80)

By inserting Equations (78) and (79) into Equation (53), it follows, for t = 2, . . . , N − 1,
that

zt = (CT
t Ψt + AT

t+1Σt)yt − Σt−1yt−1 +
(
CT

t−1ΣT
t−1 + AT

t Ωt−1
)T

Z−1
t−1zt−1 (81)

By inserting Equation (78) into Equations (55) and (57), it follows, for t = N − 1, . . . , 1,
that

xt = Z−1
t

(
zt +

(
CT

t ΣT
t + AT

t+1Ωt
)
xt+1

)
(82)

Pt|N = Z−1
t + Z−1

t
(
CT

t ΣT
t + AT

t+1Ωt
)
Pt+1|N

(
CT

t ΣT
t + AT

t+1Ωt
)T

Z−1
t (83)

Equations (80) and (81) represent an algorithm for forward recursive filtering, in the
case of future-form models, to be applied for t = 2, . . . , N − 1; the modifications for the
limit cases t = 1 and t = N follow accordingly from Equations (50), (51), (77), and (79).

Equations (82) and (83) represent an algorithm for backward recursive smoothing, in
the case of future-form models, to be applied for t = N − 1, . . . , 1; the modifications for the
limit case t = N follow accordingly from Equations (54) and (56), using Z−1

N , as provided
by the forward filter.

5.3. Interpretation of the Filters and Smoothers

The next required task is interpreting the filters and smoothers that were derived in
the previous section. By construction, the output of the backward smoothing recursions,
simply denoted by xt in Equations (73) and (82), represents the smoothed state estimates,
xt|N , and from Equation (67), it is also clear that the recursion of Equations (74) and (83)
describes the covariance matrix of the smoothed state estimates. However, the meaning
of the intermediate quantities Zt and zt, to be computed by Equations (71), (72), (80),
and (81), is not immediately obvious. In the case of non-correlated noise terms, zt would
directly correspond to the filtered information state, χt|t, but in the general case, this is no
longer true.
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The condition for interpreting the quantities Zt and zt is that the known information
filters, as reviewed above in Section 3, be reproduced. This condition leads to the following
interpretations: for the contemporaneous form,

Zt =

{
Ft|t + AT

t+1Ωt+1At+1 if t = 1, . . . , N − 1
Ft|t if t = N

(84)

zt =

{
χt|t + AT

t+1Σt+1yt+1 if t = 1, . . . , N − 1
χt|t if t = N

(85)

and for the future form,

Zt =

{
Ft|t + ÃT

t+1ΩtÃt+1 if t = 1, . . . , N − 1
Ft|t if t = N

(86)

zt =

{
χt|t + ÃT

t+1Σtyt if t = 1, . . . , N − 1
χt|t if t = N

(87)

Equation (84) has already been given by Fahrmeir and Kaufmann [11], although only
for the non-correlated case, St = 0.

Then, in the case of the contemporaneous form, the information filter becomes, for
t = 2, . . . , N,

χt|t =
(
CT

t Ψt − Σt
)
yt

−
(
AT

t ΣtCt − AT
t Ωt

)T(
Ft−1|t−1 + AT

t ΩtAt
)−1(

χt−1|t−1 + AT
t Σtyt

)
(88)

Ft|t = Ωt − ΣtCt − (ΣtCt)
T + CT

t ΨtCt

−
(
AT

t ΣtCt − AT
t Ωt

)T(
Ft−1|t−1 + AT

t ΩtAt
)−1(

AT
t ΣtCt − AT

t Ωt
)

(89)

and the smoother becomes, for t = N − 1, . . . , 1,

xt|N =
(
Ft|t + AT

t+1Ωt+1At+1
)−1×(

χt|t + AT
t+1Σt+1yt+1 −

(
AT

t+1Σt+1Ct+1 − AT
t+1Ωt+1

)
xt+1|N

)
(90)

Pt|N =
(
Ft|t + AT

t+1Ωt+1At+1
)−1

+
(
Ft|t + AT

t+1Ωt+1At+1
)−1×(

AT
t+1Σt+1Ct+1 − AT

t+1Ωt+1
)
Pt+1|N

(
AT

t+1Σt+1Ct+1 − AT
t+1Ωt+1

)T×(
Ft|t + AT

t+1Ωt+1At+1
)−1 (91)

In the case of future form, the information filter becomes, for t = 2, . . . , N,

χt|t = CT
t Φtyt − Σt−1yt−1

+
(
CT

t−1ΣT
t−1 + AT

t Ωt−1
)T(

Ft−1|t−1 + ÃT
t Ωt−1Ãt

)−1(
χt−1|t−1 + ÃT

t Σt−1yt−1
)

(92)

Ft|t = Ωt−1 + CT
t ΦtCt

−
(
CT

t−1ΣT
t−1 + AT

t Ωt−1
)T(

Ft−1|t−1 + ÃT
t Ωt−1Ãt

)−1(
CT

t−1ΣT
t−1 + AT

t Ωt−1
)

(93)
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and the smoother becomes, for t = N − 1, . . . , 1,

xt|N =
(
Ft|t + ÃT

t+1ΩtÃt+1
)−1
(

χt|t + ÃT
t+1Σtyt −

(
CT

t ΣT
t − ÃT

t+1Ωt
)
xt+1|N

)
(94)

Pt|N =
(
Ft|t + ÃT

t+1ΩtÃt+1
)−1

+
(
Ft|t + ÃT

t+1ΩtÃt+1
)−1×(

CT
t ΣT

t + AT
t+1Ωt

)
Pt+1|N

(
CT

t ΣT
t + AT

t+1Ωt
)T(

Ft|t + ÃT
t+1ΩtÃt+1

)−1 (95)

The modifications for the limit case t = 1 follow accordingly from Equations (50), (51),
(77), and (79); the case t = N requires no modifications to the forward filter pass.

It therefore follows that the contemporaneous-form filter in Equations (88) and (89)
is equivalent to the filter in Equations (25) and (26) and that the future-form filter in
Equations (92) and (93) is equivalent to the filter in Equations (41) and (42), although
these equivalences are far from obvious; however, they can be verified either through their
application to numerical examples, or—preferably—by explicit algebraic manipulation. As
an example of the latter approach, it is shown in the Appendix A how Equation (88) can be
transformed into Equation (25). The transformation for the corresponding expressions for
the covariance matrix Pt|t could probably be performed in a similar way; the same remark
also applies to the expressions for the conditional mean vector and covariance matrix of
the future-form filter.

Finally, both the contemporaneous-form smoother algorithm in Equations (90) and (91)
and the future-form smoother algorithm in Equations (94) and (95) represent generalisations
of the standard RTS smoother algorithm.

5.4. The Origin of the Non-Equivalence of the two Kalman Filters

In Section 3, the covariance Kalman and information filter algorithms were reviewed
for the case of correlated noise terms, both for the contemporaneous-form and future-form
state space models, and it was stated that they are not equivalent. The reason for this lack
of equivalence is not hard to find: depending on whether the contemporaneous form or
future form is used, the statement that the cross-correlation matrix, St, does not vanish has
different meaning. If in the contemporaneous form, St is defined by

St = E(ητϵT
τ ),

then in future form, it would have to be defined by

St = E(ητ−1ϵT
τ ),

and this is precisely the definition for St chosen by Brown and Hwang [22] since these au-
thors use the future form but at the same time present the algorithm in Equations (12)–(17),
which in the present paper, is listed as a contemporaneous-form algorithm.

Then, it becomes obvious that actually two cross-correlation matrices should be de-
fined, one for lag-zero (instantaneous) correlation and one for lag-one correlation:

S
(0)
t = E(ητϵT

τ ) , S
(1)
t = E(ητ−1ϵT

τ )

Swapping the two noise terms in the definition of S(0)t would give(
S
(0)
1
)T

= E(ϵτηT
τ )

However, in the definition of S(1)t , the two noise terms may not be swapped since

E(ητ−1ϵT
τ ) ̸= E(ϵτ−1ηT

τ )
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From the viewpoint of the contemporaneous form, the Kalman filter in Equations (12)–(17)
is valid for the case

S
(0)
t ̸= 0 , S

(1)
t = 0

(with St to be replaced by S
(0)
t ), while the Kalman filter in Equations (27)–(34) is valid for

the case
S
(0)
t = 0 , S

(1)
t ̸= 0

(with St to be replaced by S
(1)
t ). Naturally, both filters are valid for the case

S
(0)
t = 0 , S

(1)
t = 0.

6. Merging the Contemporaneous Form and Future Form

In the discussion of the previous section, one case has not yet been addressed:

S
(0)
t ̸= 0 , S

(1)
t ̸= 0.

Is there a Kalman filter for this case?
In order to investigate this case, the covariance matrices in Equations (63) and (75)

have to be merged as follows:

R =



Q0 S
(0)
1 0 . . . 0 0 0(

S
(0)
1
)T

R1
(
S
(1)
1
)T . . . 0 0 0

0 S
(1)
1 Q1 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . RN−1

(
S
(1)
N−1

)T
0

0 0 0 . . . S
(1)
N−1 QN−1 S

(0)
N

0 0 0 . . . 0
(
S
(0)
N
)T

RN


. (96)

This covariance matrix is no longer block-diagonal, and as a consequence, the matrix
ATR−1A is not a one-block-banded matrix; rather, it will generically be a full matrix, such
that its inverse will also be a full matrix. Consequently, no recursive algorithm for optimally
solving this state estimation problem can be derived through the approach presented above
in Sections 5.1 and 5.2.

However, recursive algorithms for non-optimally solving this problem may exist. As
an example, the Kalman filter algorithms in Equations (12)–(17) and Equations (27)–(34) are
considered again. Since the generalisations with respect to the standard Kalman filter
without correlated noise terms occur in different equations, these algorithms may, in a
purely heuristical way, be merged as follows:

Ãt = At − S
(1)
t−1Φt−1Ct−1 (97)

Q̃t = Qt − S
(1)
t Φt

(
S
(1)
t
)T (98)

xt|t−1 = Ãtxt−1|t−1 + S
(1)
t−1Φt−1yt−1 (99)

Pt|t−1 = ÃtPt−1|t−1Ã
T
t + Q̃t−1 (100)

Vt = CtPt|t−1C
T
t + Rt + CtS

(0)
t +

(
CtS

(0)
t
)T (101)

Kt =
(
Pt|t−1C

T
t + S

(0)
t
)
V−1

t (102)

xt|t = xt|t−1 +Kt(yt − Ctxt|t−1) (103)

Pt|t = Pt|t−1 −KtVtK
T
t (104)
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It is less obvious how the smoother algorithms for the contemporaneous form and
for the future form may be merged, and in this paper, this problem will not be considered
further.

Here, it should be mentioned that recently Linares-Pérez and coauthors [19] also
presented a generalised recursive filter algorithm for state estimation, which contains the
Kalman filters in Equations (12)–(17) and Equations (27)–(34) as special cases. However, for
the case S

(0)
t ̸= 0 , S(1)t ̸= 0, their recursive filter differs from the generalised Kalman filter

in Equations (97)–(104). The exact relationship between the two filter algorithms still needs
to be investigated.

7. Application Example: Simulated Data

Now, an example for the application of the generalised Kalman filter in Equations (97)–(104)
to simulated data will be presented. The state and data dimensions are chosen as m = n = 1,
and the model parameters are chosen as

At ≡ a = 0.95 , Ct ≡ c = 1.0 ,

Qt ≡ q = 1.0 , Rt ≡ r = 1.0 ,

S
(0)
t ≡ s(0) = 0.75 , S

(1)
t ≡ s(1) = −0.25 ,

i.e., the parameters do not depend on time. From a state space model employing these
parameters, 1000 simulated time series are created, each of length N = 1024 points, using
different sets of dynamical and observation noise values. The noise values are created such
that they approximately fulfil the following constraints:

E
([

ητ

ϵτ

][
ητ

ϵτ

]T)
=

(
q s(0)

s(0) r

)
and E

([
ητ−1
ϵτ−1

][
ητ

ϵτ

]T)
=

(
0 s(1)

0 0

)

using the chosen values for q, r, s(0), and s(1), as given above.
Since this is a simulation, the true states are known. Then, the same state space model

that was used to create the simulated time series is used to estimate the states, either
using the weighted least-squares approach, i.e., solving Equation (65) non-recursively,
or the generalised Kalman filter algorithm in Equations (97)–(104). While the former
algorithm provides smoothed state estimates, the latter provides filtered state estimates,
but nevertheless, these two sets of estimates shall be compared.

In the particular setting of this simulation, state estimation is equivalent to noise
reduction with respect to the observational noise term. Therefore, the performance of the
two algorithms for state estimation may be compared by quantifying the achieved level of
noise reduction; this is possible since the true states are known. The result is shown via
histograms in Figure 1. Note that a value of 0 dB on the horizontal axis corresponds to
failure in noise reduction.

In the figure, it can be seen that for the 1000 time series created, both algorithms
achieve values for noise reduction between 5 dB and 7 dB; if the distributions are fitted
by Gaussians, for the weighted least-squares algorithm, a mean of 6.3234 and a standard
deviation of 0.1624 are obtained, while for the generalised Kalman filter algorithm, a
mean of 5.8242 and a standard deviation of 0.2079 are obtained. Thus, at least in this
simulation example, the generalised Kalman filter achieves almost as good performance as
the weighted least-squares algorithm, despite representing a non-optimal algorithm for
state estimation.
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Figure 1. Histogram of reduction in variance in observational noise for 1000 time series that were
created from a simulated state space model and analysed by estimating the states using the non-
recursive weighted least-squares approach in Equation (65) (smoothed state estimates: red colour)
and by estimating the states using the generalised Kalman filter in Equations (97)–(104) (filtered state
estimates: green colour)

8. Application Example: Real-World Data

Next, an example of the application of the generalised Kalman filter in Equations (97)–(104)
to a real-world dataset is presented. A hydroacoustic recording is chosen that was obtained
in the Baltic Sea by a floating hydrophone while a ship was passing at a distance of a
few hundred metres. The original sampling rate was 20 kHz, but the data have been
subsampled to 5 kHz. From a much longer time series, a short window of 0.4096 s in length
is selected, corresponding to 2048 samples. The selected data are transformed into a mean
of zero and a variance of one. Within the selected window, the underwater sound emission
of the passing ship is dominated by a single line at a frequency of approx. 498.5 Hz. The aim
of the analysis is to extract this line from background noise and other signal components.

The data dimension is n = 1, while the state dimension is chosen as m = 2. Since it is
intended to model a single stochastic oscillation, the structure of the state space model is
chosen such that it corresponds to an autoregressive moving-average (ARMA) model with
model orders p = 2 and q = 1:

yt = a1yt−1 + a2yt−2 + b1ηt−1 + ηt.

From this model, the state transition matrix and the dynamical noise covariance matrix
of the state space model, in observer canonical form, are as follows:

A =

(
a1 1
a2 0

)
, Q =

(
1 b1
b1 b2

1 + β

)
.

In a pure ARMA model, the additional parameter β should be zero; however, in order
to avoid a singular covariance matrix, Q, it is necessary to allow this parameter to be
non-zero; it is constrained to be positive.

All the model parameters are fitted to the selected data through numerical max-
imisation of the innovation likelihood. The innovation likelihood is computed with the
generalised Kalman filter in Equations (97)–(104). The resulting estimates of the model
parameters are

a1 = 1.6180 , a2 = −0.9974 ,

C = (−0.0099, 0) , b1 = −0.0013 ,

β = 0.0020 , r = 0.9329 ,

S(0) = (0.7056, 0)T , S(1) = (−0.2599, 0) .

The estimates of a1 and a2 correspond to a frequency of 498.5751 Hz. Also, an estimate of
the initial state, x1|0, is obtained by maximising the innovation likelihood. It should be
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noted that these estimates of the model parameters may represent only a local maximum of
the innovation likelihood.

Then, the optimised state space model is employed to estimate the states that correspond
to the selected data, using either the non-recursive weighted least-squares approach of solving
Equation (65) directly or the generalised Kalman filter in Equations (97)–(104). While the
first approach yields smoothed estimates, the latter yields filtered estimates. Both time
series of state estimates are displayed in Figure 2, either versus time or as a perpendicular
scatter plot. At each time point, the state is a two-dimensional vector, but only the first
component is displayed.

Figure 2. Left panel: state estimates vs. time for the first 100 samples of the hydroacoustic time
series: smoothed state estimates obtained by the non-recursive weighted least-squares approach in
Equation (65) (lines and symbols in red colour) and filtered state estimates obtained by the generalised
Kalman filter in Equations (97)–(104) (lines and symbols in green colour). Right panel: perpendicular
scatter plot of the smoothed state estimates vs. the filtered state estimates for all 2048 samples of the
time series (symbols in blue colour).

In the figure, it can be seen that both time series of state estimates are very similar. The
smoothed state estimates obtained by the non-recursive approach (denoted by lines and
symbols in red colour) represent the correct estimates by definition. Differences between
the two time series of state estimates arise for two reasons: first, smoothed estimates will
always differ somewhat from filtered estimates, and second, as has been shown above,
the estimates obtained by the non-recursive approach represent only an non-optimal
approximation of the correct estimates. The numerical results shown in the figure illustrate
the good quality achieved by this approximation.

9. Discussion and Conclusions

This paper examines the problem of state estimation in linear state space models
when non-zero cross-correlations exist between the dynamical noise and observation noise
terms. Lag-zero and lag-one cross-correlations are distinguished, and it is highlighted
that it depends on which form is chosen for the state space model (the contemporaneous
form or the future form) whether a given cross-correlation matrix refers to lag-zero or
lag-one cross-correlations. As previously noted by Harvey [2], the existence of these two
forms leads to two distinct, non-equivalent Kalman filtering algorithms for the case of
correlated noise.

The main contributions of this paper are as follows: First, the weighted least-squares
framework, as developed by Duncan and Horn [9] for the problem of state estimation in
linear state space models, has been generalised to the case of correlated noise terms, thereby
obtaining Kalman filter and smoother algorithms, both for the contemporaneous form and
the future form. While the resulting generalised Kalman filter algorithms coincide with
already known information filter algorithms, the resulting generalised smoother algorithms
may be of wider interest, as in the available literature, smoothing in the case of correlated
noise terms is rarely discussed. In order to obtain a recursion for the covariance of the
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smoothed state estimates, the original recursive inversion algorithm by Bell was augmented
by two additional expressions, given by Equations (56) and (57).

Second, it has been demonstrated that Bell’s recursive algorithm for inverting one-
block-banded matrices via blockwise LDL decomposition, as reviewed in Section 4, pro-
vides a general canonical structure for information filters and RTS smoothers. This structure
differs considerably from the structure that is usually chosen; see, e.g., the difference be-
tween Equations (25) and (26) and Equations (88) and (89). As shown in the Appendix A,
by suitable algebraic transformations Equation (88) can be transformed into Equation (25),
and without doubt, the same holds true for the other pairs of corresponding equations
for filtered state estimates and their covariance matrices. Actually, in order to prove the
equivalence of these pairs of equations, such explicit algebraic transformations are not
necessary since the equivalence is already proven by the fact that each pair of equations has
been derived from the same underlying state space model. Therefore there is no need to
develop a formal proof. It is possible that the equivalence of Equation (26) and Equation (89)
has already been established in the theory of Riccati equations, but the author has not
verified this.

Third, a generalisation to the case where both lag-zero and lag-one cross-correlations
are present simultaneously has been proposed, building upon the previously developed
theory for lag-zero and lag-one cross-correlations of the noise terms in state space models.
This generalisation offers the potential to merge the filter algorithms for the contemporane-
ous form and the future form. Strictly speaking, as it has been shown by using the weighted
least-squares approach, in this case, no recursive algorithm for optimally solving the corre-
sponding state estimation problem can be derived. Nevertheless, an optimal solution to
the state estimation problem can still be obtained through the non-recursive approach of
directly solving the weighted least-squares problem. This approach is applicable to any
lagged cross-correlation structure for the noise terms that might be chosen. It is important
to note, however, that the computational cost of this non-recursive algorithm, in terms of
time and memory, scales significantly with the length of the time series being modelled.

For this reason, an approximative recursive algorithm has been proposed that was
obtained by merging the recursive Kalman filter algorithms for the contemporaneous-form
and future-form state space models; no smoother backward pass was included in this
algorithm. The resulting generalised Kalman filter algorithm was obtained using a purely
heuristical approach. Nevertheless, it has been demonstrated that, both in a simulation
study and in an example of the analysis of real-world data, this approximative recursive
algorithm performs almost as well as the optimal non-recursive algorithm.

A further potential benefit of formulating state estimation problems as weighted
least-squares problems is given by the possibility of imposing constraints and applying
regularisation. If one is willing to perform state estimation using non-recursive algorithms,
as suggested by Chan and Jeliazkov [10], the considerable repertoire of methods and
experience that have been accumulated in the least-squares field can be utilised.

Future research directions in this field include the design of approximate recursive
smoothers for the case of both lag-zero and lag-one cross-correlations being present simulta-
neously. Additionally, the development of square-root variants of the information filter and
RTS smoother algorithms presented in this paper could be explored. Preliminary experience
with modelling real-world data sets using state space models with correlated noise terms
indicates that the covariance matrix of the filtered state estimate, given by Equation (104),
exhibits a propensity to lose the property of positive definiteness, potentially hindering
parameter estimation via maximum likelihood methods; this is a well-known potential
effect of forming differences in matrices [3]. The same problem may arise with the definition
of the modified dynamical noise covariance matrix for the future-form Kalman filter; see
Equation (28). Square-root filtering algorithms would provide a convenient solution to
these kinds of numerical problems.
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Abbreviations
The following abbreviations are used in this manuscript:

RTS Rauch–Tung–Striebel
LDL (not actually an abbreviation but a type of matrix decomposition)

Appendix A

In this appendix, it is shown that Equation (25) can be derived from Equation (88).
For this purpose, first, two relationships need to be stated that follow from the following
well-known matrix inversion lemma: Let A denote an invertible square matrix of dimensions
(m × m), let B denote a matrix of dimensions (m × n), and let C denote an invertible square
matrix of dimensions (n × n); then, it holds true that(

A± BCBT)−1
= A−1 ∓ A−1B

(
C−1 ± BTA−1B

)−1
BTA−1 (A1)

and (
A± BCBT)−1

BC = A−1B
(
C−1 ± BTA−1B

)−1. (A2)

After rearranging, Equation (88) consists of two terms, one containing χt−1|t−1 and
the other containing yt:

χt|t =
(
ΩtAt − CT

t ΣT
t At

)(
Ft−1|t−1 + AT

t ΩtAt
)−1

χt−1|t−1

+
((

CT
t Ψt − Σt

)
+
(
ΩtAt − CT

t ΣT
t At

)(
Ft−1|t−1 + AT

t ΩtAt
)−1

AT
t Σt

)
yt.

(A3)

Equation (25) has the same structure:

χt|t = (I(m) + GT
t ΓtS

T
t )ΘtAt

(
Ft−1|t−1 + AT

t ΘtAt
)−1

χt−1|t−1

+ GT
t Γtyt,

(A4)

so the coefficient matrices of these terms can be studied separately. Note that

Ωt = Θt + ΘtStΨtS
T
t Θt, (A5)

where Equations (8), (9), and (A1) have been used. It follows that(
Ft−1|t−1 + AT

t ΩtAt
)−1

=
(
Ft−1|t−1 + AT

t ΘtAt + AT
t ΘtSΨtS

T
t ΘtAt

)−1 (A6)

=
(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1 (A7)

= B−1
t − B−1

t AT
t ΘtSt

(
Ψ−1

t + ST
t ΘtAtB

−1
t AT

t ΘtSt
)−1×

ST
t ΘtAtB

−1
t , (A8)

where Equations (18) and (A1) have been used.
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Then, the coefficient matrix of χt−1|t−1 in Equation (A3) can be transformed as follows:

(
ΩtAt − CT

t ΣT
t At

)(
Ft−1|t−1 + AT

t ΩtAt
)−1

=
(
ΘtAt + ΘtStΨtS

T
t ΘtAt − CT

t ΣT
t At

)(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1 (A9)

by using Equations (A5) and (A7),

=
(
ΘtAt + ΘtStΨtS

T
t ΘtAt + CT

t ΨtS
T
t ΘtAt

)(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1 (A10)

by using Equation (10),

=
(
CT

t + ΘtSt
)
ΨtS

T
t ΘtAt

(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1

+ ΘtAt
(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1 (A11)

=
(
CT

t + ΘtSt
)(

Ψ−1
t + ST

t ΘtAtB
−1
t AT

t ΘtSt
)−1

ST
t ΘtAtB

−1
t

+ ΘtAt
(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1 (A12)

by using Equation (A2),

=
(
CT

t + ΘtSt
)(

Ψ−1
t + ST

t ΘtAtB
−1
t AT

t ΘtSt
)−1

ST
t ΘtAtB

−1
t

+ ΘtAtB
−1
t − ΘtAtB

−1
t AT

t ΘtSt
(
Ψ−1

t + ST
t ΘtAtB

−1
t AT

t ΘtSt
)−1

ST
t ΘtAtB

−1
t (A13)

by using Equation (A8),

= ΘtAtB
−1
t +

(
CT

t + ΘtSt − ΘtAtB
−1
t AT

t ΘtSt
)
×(

Ψ−1
t + ST

t ΘtAtB
−1
t AT

t ΘtSt
)−1

ST
t ΘtAtB

−1
t (A14)

= ΘtAtB
−1
t +

(
Ct + ST

t Θt − ST
t ΘtAtB

−1
t AT

t Θt
)T×(

Ψ−1
t + ST

t ΘtAtB
−1
t AT

t ΘtSt
)−1

ST
t ΘtAtB

−1
t (A15)

= ΘtAtB
−1
t +

(
Ct + ST

t Θt − ST
t ΘtAtB

−1
t AT

t Θt
)T×(

Rt − ST
t ΘtSt + ST

t ΘtAtB
−1
t AT

t ΘtSt
)−1

ST
t ΘtAtB

−1
t (A16)

by using Equation (9),

= ΘtAtB
−1
t +

(
Ct + ST

t Ft|t−1
)T(

Rt − ST
t Ft|t−1St

)−1
ST

t ΘtAtB
−1
t (A17)

by using Equation (20),

= ΘtAtB
−1
t + GT

t ΓtS
T
t ΘtAtB

−1
t (A18)

by using Equations (21) and (22), and

=
(
I(m) + GT

t ΓtS
T
t
)
ΘtAt

(
Ft−1|t−1 + AT

t ΘtAt
)−1 (A19)

by using Equation (18). Equation (A19) is finally identical to the coefficient matrix of
χt−1|t−1 in Equation (A4), as desired.
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Next, consider the coefficient matrix of yt in Equation (A3):(
CT

t Ψt − Σt
)
+
(
ΩtAt − CT

t ΣT
t At

)(
Ft−1|t−1 + AT

t ΩtAt
)−1

AT
t Σt

=
(
CT

t Ψt − Σt
)
+
(
CT

t + ΘtSt
)
ΨtS

T
t ΘtAt

(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1
AT

t Σt

+ ΘtAt
(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1
AT

t Σt (A20)

in analogy to Equations (A9)–(A11),

=
(
CT

t Ψt − Σt
)
+
(
CT

t + ΘtSt
)
ΨtS

T
t ΘtAt

(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1
AT

t Σt

+ ΘtAtB
−1
t AT

t Σt − ΘtAtB
−1
t AT

t ΘtSt
(
Ψ−1

t + ST
t ΘtAtB

−1
t AT

t ΘtSt
)−1×

ST
t ΘtAtB

−1
t AT

t Σt (A21)

by using Equation (A1),

=
(
CT

t Ψt − Σt
)
+
(
CT

t + ΘtSt
)
ΨtS

T
t ΘtAt

(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1
AT

t Σt

+ ΘtAtB
−1
t AT

t Σt − ΘtAtB
−1
t AT

t ΘtStΨtS
T
t ΘtAt×(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1
AT

t Σt (A22)

by using Equation (A2),

=
(
CT

t + ΘtSt
)
Ψt − ΘtAtB

−1
t AT

t ΘtStΨt −
(
CT

t + ΘtSt − ΘtAtB
−1
t AT

t ΘtSt
)
×

ΨtS
T
t ΘtAt

(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1
AT

t ΘtStΨt (A23)

by using Equation (10) and rearraging,

=
(
CT

t + ΘtSt − ΘtAtB
−1
t AT

t ΘtSt
)
×(

Ψt − ΨtS
T
t ΘtAt

(
Bt + AT

t ΘtStΨtS
T
t ΘtAt

)−1
AT

t ΘtStΨt

)
(A24)

=
(
CT

t + ΘtSt − ΘtAtB
−1
t AT

t ΘtSt
)(

Ψ−1
t + ST

t ΘtAtB
−1
t AT

t ΘtSt
)−1 (A25)

and by using Equation (A1),

= GT
t Γt (A26)

in analogy to Equations (A15)–(A18). Equation (A26) is finally identical to the coefficient
matrix of yt in Equation (A4), as desired.
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