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Abstract: In text classifier models, the complexity of recurrent neural networks (RNNs) is very high
because of the vast state space and uncertainty of transitions, which makes the RNN classifier’s
explainability insufficient. It is almost impossible to explain the large-scale RNN directly. A feasible
method is to generalize the rules undermining it, that is, model abstraction. To deal with the low
efficiency and excessive information loss in existing model abstraction for RNNs, this work proposes
a PSO (Particle Swarm Optimization)-based model abstraction and explanation generation method
for RNNs. Firstly, the k-means clustering is applied to preliminarily partition the RNN decision
process state. Secondly, a frequency prefix tree is constructed based on the traces, and a PSO algorithm
is designed to implement state merging to address the problem of vast state space. Then, a PFA
(probabilistic finite automata) is constructed to explain the RNN structure with preserving the
origin RNN information as much as possible. Finally, the quantitative keywords are labeled as an
explanation for classification results, which are automatically generated with the abstract model PFA.
We demonstrate the feasibility and effectiveness of the proposed method in some cases.

Keywords: recurrent neural network; model abstraction; probabilistic finite automata; Particle Swarm
Optimization; explanation

1. Introduction

Deep learning is a branch of machine learning in artificial intelligence (AI) that uses
artificial neural network architecture to learn from data and mimic human thinking pat-
terns [1]. A recurrent neural network (RNN) is a typical deep learning model that takes
in sequence data. It connects all units in a chain-like manner and processes them along a
time-ordered or logic-ordered sequence [2]. The RNN has been broadly applied in natural
language processing (NLP) fields, such as text classification, sentiment analysis, machine
translation, and other time series analysis areas. For the text classification in NLP, one
of the security threats in RNNs, i.e., adversarial text attacks, is increasingly attracting
people’s attention. Real-world application scenarios for adversarial text attacks include
spam detection, harmful text detection, and malware checking [3–5]. More and more text
classification systems are deploying RNNs with enormous layers and neurons, and security
is significant for these systems. One of the troubles is that RNNs will produce results
out of the attacker’s unfriendly purpose with ulteriorly attacking, which may lead to a
catastrophe [6]. The users or developers need to know what kind of abnormal behavior of
RNNs is involved in the system, that is, providing clear explanations for the output results.
With appropriate explanations, the classification results can be more acceptable, and the
undesirable RNN model can be repaired under some guidance [6,7]. Explainability is an
important dimension for developing trustworthy RNNs, and it is also the guarantee for the
large-scale application of RNNs.

Like other deep learning models, it is almost impossible to fully understand the
internal structural organizations of a large-scale RNN and clarify the communication paths
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between its neurons [8]. When an RNN model contains vast layers, it is difficult to adopt
a suitable mechanism to describe the decision-making process in the RNN. Even if we
can list all the weights, inputs, and outputs of activation functions for each neuron node,
we still do not know how those large and constantly changing numbers are organically
combined to complete a prediction or decision-making task. Therefore, users either have
little knowledge of what the system makes decisions based on or cannot afford the time
and space costs to handle the dynamic changes and every static detailed parameter of RNN
neurons. Providing explanations for RNN text classification results is an important and
valuable research topic.

In recent years, some works have attempted to achieve the explainability of RNN
models through model abstraction techniques [9,10]. Model abstraction can obtain a concise
approximate model for an original RNN, which removes irrelevant or trivial information
and keeps specific properties under consideration. Explaining RNNs on an abstraction
model is beneficial. Firstly, the state space of the abstraction model is significantly reduced,
which can effectively save time and space to visit the original RNN, especially when the
dataset is large [11]. Secondly, some practical model analysis and verification techniques
can be applied to the abstraction model to explain the original RNN [12]. This undoubtedly
meets the inherent requirement of transparency in explainability principles. Thirdly, it is
difficult and costly to reverse engineer an abstraction model to reproduce an RNN model,
which provides reliable protection for the original RNN [13].

The main challenges in applying model abstraction to explain RNNs are as follows.
Firstly, it is not easy to map the specific insertion patterns with neural activation, unlike
convolutional neural networks (CNNs), which have a fixed number of neurons and play a
particular role in feature extraction. The network layers in RNNs typically cannot maintain
the same potential spatial functions due to their dynamic behavior over time, and the
length of different input sequences varies with the dynamic behavior over time. Secondly,
the text data processed by the RNN is essentially discrete, which makes it more difficult to
abstract than pixels in image data.

1.1. Related Works

RNN model abstraction has accumulated some works. According to the method of
model abstraction, they can be divided into two categories: active learning abstraction and
passive learning abstraction. Passive learning refers to constructing abstract models based
on one or a series of traces of RNNs [14]. Active learning involves conducting experiments
or tests to complete the abstraction model by the learner adaptively. The basic idea for
active learning is based on the MAT (minimally equal teacher) framework proposed by
Dana Anglin [15]. Until now, most effective active learning algorithms conform to the MAT
framework [16]. According to the abstract model type, they can be divided into a decision
tree, non-deterministic and deterministic finite state automaton (NFA/DFA), discrete-time
Markov chain (DTMC), weighted finite automaton (WFA), probabilistic finite automaton
(PFA), etc. According to the purpose, i.e., the subsequent work, of model abstraction, they
can be separated into two branches: abstract RNNs for explaining and abstract RNNs for
verifying or analyzing. We will review the existing related works of RNN model abstraction
according to the subsequent purpose.

1.1.1. Explanation of RNNs Based on Model Abstraction

Hou et al. [17] propose a learning finite state automata (FSA) method to explain the
impact of gate units on the gated RNN mechanism. This method empirically explores the
text sentiment analysis tasks of multiple gated RNNs. The abstraction model FSA visually
explains the RNN decision-making process, which explains the semantic aggregation state
in RNNs. However, the article does not provide a global quantitative explanation from the
perspective of feature influence, and the learned FSA cannot express the characteristics of
probability transition between states. Fan et al. [18] use an evolutionary merging algorithm
to learn a simple non-deterministic model NFA. This abstraction process loses too much
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information, as the expression of NFA is limited, which leads to the accuracy being very low.
Wei et al. [19] propose a WFA model learning technique for RNNs and provide ask-oriented
global explanations at the word level, guided by transformation matrix embedding. It has
better accuracy and scalability than the L* algorithm.

1.1.2. Formal Verification or Analysis of RNNs Based on Model Abstraction

Yellin and Weiss [20] learn the deterministic finite automata (DFA) from sequences
of RNNs using the algorithm in [21] and use the pattern rule sets to infer context-free
grammars (CFGs). Context-free language (CFL) rules are more suitable for natural language
processing than automata. This algorithm is relatively easy to understand and can extend to
non-context-free languages. However, the extracted DFA often contains some noise, which
either comes from RNN training or the inherent noise factors of the L* algorithm. Therefore,
interference patterns are usually inserted into DFA, causing the results to deviate from the
pattern rule set. Barbot et al. [22] propose an active learning algorithm for extracting visible
pushdown syntax for RNNs. It learns DFA and then uses A* search to extract the CFGs,
which are applied to a surrogate model trained in context-free language. The limitation of
this article is that it mainly targets visual pushdown languages, namely, structured data
(annotated language data, programs, XML documents, etc.), and its practical applicability
is limited. Hong et al. [11] propose an AdaAX method instead of identifying patterns on
pre-determined clusters, which identifies a set of finer-grained patterns in direct data. Then,
these small sets gradually merge to form states, allowing users to trade fidelity for lower
complexity adaptively. This method ultimately learns the DFA model and mainly focuses
on model rule extraction. It has some shortcomings, such as low automation and high
computational costs. Wang et al. [23] learn the RNN as a DTMC, in which state traces
extraction part uses the predicate abstraction technique. Afterward, genetic algorithms
were used for state merging. Weiss et al. [24] learn PFA from the RNN by adjusting the L*
algorithm and use PFA for formal validation of RNN language models. Dong et al. [25]
use unsupervised learning algorithms to obtain discrete partitions of RNN state vectors,
construct symbol traces, and apply the AAlergia algorithm [26] to learn PFA. This method
has robust scalability, and it has been applied to adversarial sample detection in large-scale
text classification tasks. However, the learning accuracy of this algorithm is slightly inferior,
as a single AAlergia algorithm is used in the state merging process. Its interval contraction
speed is slow, as it adopts the interval optimization strategy of golden section search in
model selection, so there is still space for improvement.

1.2. Contributions

This work focuses on model abstraction and explanation generation of RNNs for text
classification. As shown in Section 1.2, there are two main shortcomings of current model
abstraction for RNNs: difficulty in dealing with large-scale RNNs and excessive information
loss in abstract models. To deal with these, this work proposes two optimizations: using
the PSO (Particle Swarm Optimization) algorithm to optimize the process of generating
abstract models for RNNs, which can cope with large-scale RNN models and improve the
scalability of abstract methods, and using PFA as an abstract model for RNNs, which can
address too much information loss during the abstraction process and improve the accuracy
of abstraction model. In a word, this work proposes a model abstraction and explanation
generation framework for RNNs based on the PSO algorithm. The contributions of this
work are as follows:

• Constructing abstract state traces with k-means clustering and building a tree structure;
• Designing a PSO algorithm to search and learn the abstraction model PFA and find

PFA with better complexity and similarity performance when the level of abstraction
is constant;

• Using the abstract model PFA to automatically generate an explanation of the impor-
tance of input features in classification tasks;
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• Exploring the practicality of our framework to adversarial text detection in RNN
text classification.

1.3. Structure of This Paper

In Section 2, there is an introduction to basic knowledge, including an overview of
RNNs and a formal description of PFA. We present, in detail, how to generate clustering
traces, how to use PSO to learn PFA, and how to generate RNN explanations based on
PFA in Section 3. In Section 4, we evaluate and compare the framework’s performance
through some cases. Section 5 analyzes the effectiveness and usefulness of the framework.
We conclude and point out the future work in Section 6.

2. Preliminary
2.1. RNNs

Recurrent neural networks bring memory units that are different from other tradi-
tional neural networks. The characteristic of the RNN structure is that it has a certain
number of serial-connected subnetworks. Its hidden nodes can also store specific historical
information, as this memory function is similar to the human brain, allowing RNNs to
process recognition tasks like the human brain. It focuses more on helpful information
so that it can skip irrelevant messages in the dataset. Its basic unit structure is shown in
Figure 1.
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Figure 1. RNN basic unit.

In the text classification task, the input is the word vector of the text input word at time
step t = i, and the hidden layer output is hi = f (u · xi + w · hi−1) where f (·) represents the
activation function. It can be seen here that the input of the hidden layer at the current step
includes the output of the hidden layer from the previous steps, which reflects the meaning
of “recurrent” and is also one of the underlying reasons for the memory mechanism in
RNNs. The output is oi = so f tmax(v ∗ hi), in which so f tmax(·) is the activation function
of the output layer. In the above formula, u, v, and w are weight matrices of input, hidden
layer, and output vectors, respectively.

The state diagram conforms to a mathematical model of human cognitive patterns
and habits. Although state diagrams are widely used in the field of computational science,
their universal applicability has also inspired researchers in modern machine learning. The
academic community recognizes that since the RNN is complex, we can transform it into a
state diagram model and indirectly study the RNN using well-established methods of state
diagrams. As a result, many researchers have made crucial contributions, attempting to
simplify deep neural networks using state diagram models. Many of these studies have
indeed made commendable progress, including L* and various improved methods based
on L*. Next, we will introduce one of the state diagram models, namely, probabilistic
finite automata.

2.2. PFA

In the automata theory, an automaton does not refer to a concrete machine but rather a
dynamic mathematical model of discrete systems that can transform and process informa-
tion [27,28]. Probabilistic finite automata (PFA) is a branch of automata that is a structured
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representation of discrete mathematical models. The theory of automata studies the math-
ematical theory of analyzing and synthesizing automata, an essential branch of control
theory. Compared with non-probabilistic finite automata, the characteristic of probabilistic
finite automata is that its state transition process provides probability values, which can
quantitatively express the randomness of the state transition process [29].

The research fields of automata theory are divided into three categories: abstract
theory, structural theory, and self-organization theory. In abstract theoretical research on
automata, the structure of the automata itself and the specific forms of its input and output
signals are not considered, and the automata is treated as a mathematical system to study
its general mathematical properties. The study of the structural theory of automata is a
further development of the abstract theory of automata. Structural theory research focuses
on the synthesis of automata, methods for constructing automata from meta-automata, and
techniques for encoding meta-signals transmitted through input and output channels. The
self-organization theory of automata is the result of the development of abstract theory
and structural theory of automata. Self-organization theory involves many aspects, such
as neural networks, pattern recognition, and other artificial intelligence. In 1969, King-
sun Fu et al. applied the concept of fuzzy neurons to automata theory, leading to new
developments in the research of neural network theory and the application of automata
theory to study the behavior of complex systems, such as RNNs [18,25,30,31]. Below is the
mathematical definition of PFA.

Definition 1. PFA is a tuple of five elements, defined as the alphabet < Σ, Q, δ, Q0, Q f >, where
Q refers to the possible finite states of the initial, intermediate, and final states observed by the RNN.
δ : Q× Σ→ Q is the labeled transition function. The transition probability of each edge in the
automaton is recorded in δ. Q0 and Q f are the finite starting state set and the accepting state set,
respectively. Below, we will use a simplified statement to classify positive and negative labels as
an example.

Example 1. Case of Converting the sentiment classification process of “This movie is so beautiful!”
in an RNN to PFA.

Assume that the PFA shown in Figure 2 is the state transition process of the sentiment
classification involved in this input. Firstly, vectorize the input texts and convert them
into PFA input vectors. We set all the words input into PFA as follows: “This”, and its
corresponding state name is vectorized to wv0, “film” to wv1, “is” to wv2, “nice” to wv3, and
“not” to wv4. Then, the current string is turned into the vector sequence wv0wv1wv2wv3. If
the start word of the string wv0 was read by an RNN, the state of the RNN will transit to
state 3, with a transition probability of p0 = 0.9. Next, there is a corresponding transition
of wv1, so its transition probability to itself is p2 = 0.3. Then, read wv2, and transition to
state 2 with p2 = 0.3. Finally, read wv3; the RNN transitions to an acceptable state 4 with a
probability of p4 = 0.7. PFA in such a case is represented as the following:

• Alphabet: The numerical value at the right of the separator symbol “/” on the arrowed
line between each pair of states in the graph is a set: {wv0, wv1, wv2, wv3, wv4};

• State set: Q = {s1, s2, s3, s4, s5};
• Acceptance set: Q f is the set {s4, s5} in the graph, in which the set of acceptance state

labels is {P, N}. They are nodes with double-edged circles.
• Transition probability: A numerical value δ is at the left side of the separator “/”

between states of the PFA, and δ represents the corresponding probability of transition
between states.



Algorithms 2024, 17, 210 6 of 21

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 24 
 

• Alphabet: The numerical value at the right of the separator symbol “/” on the ar-
rowed line between each pair of states in the graph is a set: { }v0 1 2 3 4, , , ,v v v vw w w w w
; 

• State set: Q = 1 2 3 4 5}{ , , , ,s s s s s ; 
• Acceptance set: fQ  is the set { 4 5,s s } in the graph, in which the set of acceptance state 

labels is {P, N}. They are nodes with double-edged circles. 
• Transition probability: A numerical value δ  is at the left side of the separator “/” 

between states of the PFA, and δ  represents the corresponding probability of tran-
sition between states. 

 
Figure 2. PFA example. 

3. Model Abstracting and Explaining Framework 
This section proposes a PSO-based RNN model abstraction and explanation-gener-

ating (called PSO4RNN) framework, as shown in Figure 3. It consists of two main parts: 
abstraction model learning and explanation generating (called Stage I and Stage II in this 
Section). Among them, the learning process of an abstraction model mainly includes two 
steps: state trace abstraction and frequency prefix tree merging (from Step (1) to Step (3) 
of Stage I). The explanation-generating part (called Stage II below) works based on the 
learned PFA to explain the classification results. 

 
Figure 3. PSO4RNN framework. 

• Stage I will be introduced in Section 3.1. Section 3.1.1 corresponds to Step (1)–Step 
(3). Meanwhile, Section 3.1.2 corresponds to Steps (4)–(9). 

• Stage II will be introduced in Section 3.2. 

  

1

2

4

5

3

0.1/

0.9/

0.5/

0.7/

0.9/
0.2/

0.1/

0.3/

0.25/
0.3/

0vw

2vw 0vw

1vw

4vw

4vw

3vw

3vw1vw

2vw

Training 
data

RNN 
model

Apearing 
Status

States 
Partitions

Word 
classifications 

Element word 
explanation score

I. Learning  Abstraction Model from RNN II. Generating Explanation

(1) Partition

Pre-trained language model

Frequency 
prefix tree

Particle Swarm 
Optimazation

Particle with 
optimal  fitness 

(4) Code (6) Calculate

(9) Encode

Texts to be 
explained

Word 
vectors

Word 
embedding

Import

State traces

Particles

(2) Connect to 

(3) Construct

Word  vectors

 Hidden states 
vectors

Extracted into

(8) Find out

(5) Import

Fitness of  BIC 
scores for PFA

(7) Search for

PFAGeneralization 
Coefficient

PFA

High related 
explanation words

(1) Pre-trained language model

(2) Import

(3) Extract

(4) Determine (5) Calculate

PFA

Figure 2. PFA example.

3. Model Abstracting and Explaining Framework

This section proposes a PSO-based RNN model abstraction and explanation-generating
(called PSO4RNN) framework, as shown in Figure 3. It consists of two main parts: abstrac-
tion model learning and explanation generating (called Stage I and Stage II in this Section).
Among them, the learning process of an abstraction model mainly includes two steps: state
trace abstraction and frequency prefix tree merging (from Step (1) to Step (3) of Stage I).
The explanation-generating part (called Stage II below) works based on the learned PFA to
explain the classification results.

Figure 3. PSO4RNN framework.

• Stage I will be introduced in Section 3.1. Section 3.1.1 corresponds to Step (1)–Step (3).
Meanwhile, Section 3.1.2 corresponds to Steps (4)–(9).

• Stage II will be introduced in Section 3.2.

3.1. Learning Abstraction Model for RNNs
3.1.1. Obtaining the Abstract Traces

The first step in learning a PFA for RNNs is to extract the hidden states. They play
a significant role in revealing the internal causal relationships of RNNs, which include
hidden layer weight vectors and output layer weight vectors. In addition to the hidden
state of an RNN, they also involve processing the state of the input layer, representing
discrete texts as numerical vectors. In the field of NLP, the word embedding technique
is feasible and effective for word representation. It converts natural language words into
digital form, so we can measure their quantitative properties.

If researchers directly obtain all states from RNNs to construct PFA, the construction
process will be very cumbersome due to the large observation state table. Therefore,
this abstracting technique needs to reduce the number of hidden states continuously.
According to the research on RNN model abstraction learning [32–34], hidden states with
similar behaviors have very close positions in their state vector space, so states with
similar behaviors can be integrated into the same region. In Step (1) of Stage I, we use
k-means to integrate RNN states, which divide many state vectors into a finite number of
clusters to reduce the number of operational state objects in subsequent abstraction learning
algorithms. The position vector of the space partition center represents the characteristics
of the abstract state. The clustering technique is based on explainable k-means, so abstract
techniques ensure explainability in the clustering process. In addition, clustering divides a
large number of complex hidden states into a finite number of partitions. This is in line
with the natural cognitive pattern of humans in the process of text classification, which is to
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classify text words based on their meanings and context, judge the importance of numerous
words critical to classification results, and then decide the overall class of the whole text.

In the process of abstract states partitioning, appropriate preprocessing (such as word
embedding) can reduce the number of input words, the dimensionality of clustering
operation input vectors, and the cost of k-means processing. We use a word2vec pre-trained
model for word embedding. After the state clustering in the original RNN, it is necessary
to construct various abstract state traces. Due to the interweaving of nodes during state
partitioning, state transitions also change dynamically. The transitions between different
states should be independently recorded and processed. Subsequently, each state transition
will be added between the corresponding states, creating a complete sequence from the
start to the end state. This yields a state trace. Repeat these steps until all state and model
behavior samples create corresponding traces. This process corresponds to Step (2) and
Step (3) of Stage I, as depicted in Figure 3.

After sorting out the state traces, the traces will be organized one by one into a
frequency prefix tree (FPT). From a practical perspective, an FPT can be considered a
special type of PFA, which is a very detailed probabilistic finite automaton. It contains
detailed information beyond the user’s needs, often overwhelming the messages that
humans should mainly focus on. Therefore, it is necessary to trim the FPT further and
reduce the number of useless nodes and edges. Such a process is called learning PFA
from the FPT. The following example illustrates a brief process of text classification that
abstracts traces and organizes them into a frequency prefix tree. This process corresponds to
step (4) of Stage I, as depicted in Figure 3.

Example 2. An example of trace abstraction for an RNN-based sentiment analysis of movie reviews.

We use PFA in the sentiment analysis case in Example 1 as a description. Firstly,
the learned PFA requires segments from comments and then word embedding. If one
of the input sentences is sen0, then “This film is nice, I feel satisfied”. Suppose there are
100 sentences in the corpus Dc0. After word embedding, the words in Dc0 are represented as
numerical vectors. The RNN object model is obtained through classical training processes.
In sen1, the hidden layer states of words “nice” and “satisfied” are Hs11, Hs12, and we record
all such results in the corpus as HS = < (hs1,1, hs1,2), (hs2,1, hs2,2), . . ., (hs100,1, hs100,2) >.
Then, these states of RNN layers are classified into some state partitions.

The formed abstract state trace of the RNN classification process is shown in Figure 4.
Assuming these hidden states are ssen0

0 , ssen0
1 , ssen0

2 , they will be organized into a sequence
AT0. It can be understood as an RNN processing of sen0. All processing paths of sentences
in the corpus can be constructed as several traces. In the subsequent process, they will be
merged into a frequency prefix tree.
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Figure 4. Abstract state trace in Example 2.

3.1.2. Learning PFA

This whole PSO searching process corresponds to Step (5)–Step (9) in Stage I. This
work designs a PSO algorithm for optimizing the search of PFA, with generalization as the
objective fitness function. The generalization value can be seen as a quantitative property
combined with similarity and complexity. The PSO algorithm merges the frequency prefix
tree into PFA, which is obtained from the initial combination of abstract traces. It achieves
automatic search during the merging process and makes the merged PFA better fit the
behavior of the original RNN.

We set the particle vector of PSO as the position of the i-th particle in space, which
is represented as Ptxi = (Ptxi1, Ptxi2, . . . , PtxiD). Unlike the classical PSO algorithm, the
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solution of the PFA state merging problem is partially presented as a discrete variable,
such as the alphabet, so part of the components in the particle space is discrete. For these
discrete parts, we adopt measures of partial discrete subsequent decoding for processing.
This not only preserves the continuity processing of probability information but also makes
reasonable adaptations to the discrete parts. Due to the particularity of PFA learning, we
fine tune the traditional PSO based on preliminary theoretical simulation and experimental
comparison. In the following, this variant will be referred to as the Partial Discrete Particle
Swarm Optimization Algorithm (PD-PSO). We convert the numerical values of certain
discrete variables corresponding to particles into integers within the interval [0, NDd],
where NDd is treated as continuous variables to determine the number of possible values
for the discrete value of dimension d. In addition, PD-PSO will discretize continuous
variables after the algorithm is completed, just like digitizing analog quantities in the field
of digital circuits, which may result in quantization errors. The PD-PSO algorithm does not
discretize the continuous parts in the searching process.

A good PFA must have two main properties, namely, the similarity between PFA
and its corresponding original RNN and the low complexity of PFA itself. Quantifying
complexity is relatively easy, but another critical issue is how to determine similarity.
Traditional L*-style methods use comparative testing or heuristic algorithms, such as
genetic algorithms, to replace comparative testing.

The primary role of PSO is in the merging stage of PFA. The core issue is how to choose
a fitness function. The frequency prefix tree obtained from k-means will be transformed
into a particle. The target fitness function fit (Ptx) will perform as a guide to optimize
the parameters approaching the best fitness and thus obtain the corresponding PFA. The
main issue in is controlling the degree of message generalization. The generalization of
abstraction models can be seen as a combination of similarity and complexity. The good
generalization enables PFA to retain as much essential information about the original RNN
as possible, and it is simple enough. Due to the inevitable tradeoffs between these two
requirements, it is a long-standing issue that has been discussed in academia. This is also
the main reason for the improvement proposed in this work. According to the Bayesian
Information Criterion (BIC), a fitness function is constructed based on complexity and
similarity, and the optimization objective is defined as minimizing the BIC of the abstract
model. Unlike the BIC used in traditional merging algorithms, exporting parameters in
PSO4RNN is not based on a golden section search but on a heuristic search. A golden
section search is only suitable for the assumption of unimodal functions, but the actual
situation indicates that BIC is not a unimodal function [23].

In the PSO4RNN framework, PFA includes both discrete variables that represent
whether nodes are connected, as well as continuous variables that represent the transition
probability between connected nodes. For PFA, conversion probability is an important
continuous parameter, which is one of the reasons why PSO is adopted. The research
requirement of abstract learning is to ensure that PFA preserves the key information of the
original RNN as much as possible and to make the obtained PFA simple enough. Therefore,
we use Equation (1) as the fitness function as follows:

f it = log(PA(Π))− µ× |A| × log|Π| (1)

where Π is the complete set of observation traces, |A| is the number of states in PFA
A, |Π| is the total number of letters in the observation, and the constant is related to
human’s preference for small models. PA(Π) is calculated by multiplying all transition
probabilities in PFA. The model constant µ controls the degree of generalization. If it is
0, a comprehensive and detailed abstract model will be obtained. If it is infinite, a model
containing only one state will be generated. It prefers PFA with low complexity and high
similarity. Making fitness functions more minor can meet these two requirements.

Below, we set the position and velocity update formula in the PSO4RNN framework.
According to this formula, particles can change their position in particle space under
the guidance of fitness, and then gradually update their position to near the optimal
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fitness. Determining the velocity function of the position change and the step size of
each change is one of the preparation works in the updating process. If the group is in
a D-dimensional search space, there are mp particles in it. Let the position of the i-th
particle be Ptxi = (Ptxi1, Ptxi2, . . . , Ptxid, . . . , PtxiD). The velocity of the i-th particle is
Ptvi = (Ptvi1, Ptvi2, . . . , Ptvid, . . . , PtviD). The optimal position found at the i-th particle
search step is pbi = (pbi1, pbi2, . . . , pbiD). The optimal location found by the group search
is Pg =

(
pg1, pg2, . . . , pgD

)
. For each particle, its velocity update of the d-th dimension

(1 ≤ d ≤ D) is expressed in Equation (2) as follows:

vk+1
id = ωvk

id + c1r1

(
pbk

id − xk
id

)
+ c2r2

(
pk

gd − xk
id

)
(2)

where i is the particle number, i = 1, 2, 3, . . ., mp; D is the particle dimension; k is the
number of iterations; ω is the inertia weight; c1 is an individual learning factor; c2 is the
group learning factor; r1 and r2 are random values within the interval [0, 1], adding the
randomness of the search; vk

id is the velocity vector of particle Ptxi in the d-th dimension of
the k-th iteration; and xk

id is the position vector of particle Ptxi in the d-th dimension of the
k-th iteration. Since specific values in the dimensions of discrete variables corresponding to
particles should be integers, so for these components, there is a position update formula as
shown in Equation (3) as follows:

Ptxk+1
id =

[
Ptxk

id + l × Ptvk+1
id

]
(3)

where the operator [·] represents the rounding operation, following the classical rounding
rule, and l is the learning rate. l reflects the length of the updating step. The smaller the l,
the more time it takes to update its own position; conversely, the faster the updating. The
particle will continuously update its position to a range close to the optimal fitness with the
required accuracy for the task or until the entire cycle iteration reaches the preset limit. A
limit is set to avoid the possibility of too much time consumption when decreasing losses.
The PD-PSO algorithm for learning PFA is presented as Algorithm 1. Firstly, we obtain
particle vectors expressing frequency prefix trees by PD-PSO. Secondly, we determine the
fitness function based on the requirements of complexity and approximation indicators.
Thirdly, we determine the current optimal particle and then determine the global position
optimal particle. Fourthly, we update particle positions in a loop. When the termination
condition is met, the algorithm iteration ends, and the particles are exported. The particles
can be roughly processed to obtain different types of FPA components, such as nodes,
transitions, and the probability of all transitions. Then, the probability finite automaton is
decoded, and the final fitness value is recorded. Afterward, this work needs to evaluate the
similarity between PFA and RNNs, as well as the degree of simplicity of the generated PFA.

Algorithm 1. Learning PFA from FPT based on PSO.

Inputs: FPTree = < X, Q, δ, Q0, Q f , µ0 >, Paticle Ptx = (Ptx1, Ptx2, . . . , PtxD)
Outputs: PFA = < X, Q, δ, Q0, Q f , µ0 > that minimize Fit(Π, µ, size(FPTree))
1 Organize AT(X) into a frequency prefix tree FPTree(AT(X));
2 LetR = ∅ be the set of nodes in the final PFA;
3 initialize Ptx, Ptv, f it(τ, µ, size(FPTree))
4 PFA’← FPT //candidates PFA from FPT by varying the BIC arguments.
5 PaticlePt← PFA2Pt(PFA′)
6 While {( f it > allowederror ) or (epochs ≤ maxEpochs)}
7 Calculate the fitness of PD-PSO. //using Equation (1)
8 Update Ptx using Equations (2) and (3)
9 Get the best Ptx that minimizes the fit as much as possible.
10 End while
11 Return Ptx, fit
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Example 3. A simplified learning PFA for RNNs with the PD-PSO merging algorithm.

Here is an ideal example to illustrate the merging process. Assume that the corpus
text dataset for a text classification task only contains three sentences, sen0, sen1, sen2. Their
state traces are AT0, AT1, AT2. An edge can be constructed into a frequency prefix tree by
AT0, with nodes representing various abstract states at the trace of AT0. Similarly, when
merging AT1 into the constructed tree, it is necessary to consider merging nodes with the
same behavior. For example, in one of the simple cases, two traces on the first two nodes
are in the same abstract state. This way, their first two nodes can be merged, and the
number of repetitions of these two nodes should be recorded, that is, the frequency is 2.
Similarly, AT2 is merged as mentioned earlier, and a complete frequency prefix tree tree0
was consequently obtained, which can fully extract and restore all three state traces. When
the number of traces is vast, the merging process can hardly be handled compared with
this example. Sometimes, heuristic merging algorithms are needed. In particular, our work
uses a PSO-based merging algorithm.

Let us take the frequency prefix tree in Example 2 as an instance. Assuming there are
5 nodes with corresponding states in tree0, the response states of tree0 is {s0, s1, s2, s3, s4},
and we sample 3 traces from observations of a real-world RNN classification model, which
contains AT0, AT1, AT2. The connection path is shown as a solid line: AT0 = s0 − s1 − s4;
dashes: AT1: s0 − s2 − s4; and a dashed line: AT2 = s0 − s3 − s2 − s1. The tree0 is as shown
in Figure 5.
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The position vector of PD-PSO particles in this model can be set as < s0, s1, s2, s3, s4,
P(AT0), P(AT0), P(AT0) >. P(AT) represents the transition probability between each node
of the traces, which can be expressed as a numerical sequence or a weight connection
matrix. Afterward, the number of edges and nodes is (3, 5). This pair of numerical values
will serve as a representation of complexity, formulating the complexity term in the fitness
function. Next, we calculate the similarity term, which is derived from the number of
overlapping output labels lb0, lb1, lb2 of RNNs and lb′0, lb′1, lb′2 of PFA under the same
input of sen0, sen1, sen2. If all three labels correspond equally, the similarity is 100%; if
two are equal, the similarity is 66.667%. By sorting the complexity and similarity terms
separately and inputting them into the BIC formula, the corresponding fitness function fit
is obtained. According to the definition of fit, under the same complexity, the larger the
fitness function value, the greater the similarity and the better the abstraction effect. When
the similarity is constant, the higher the fitness value, the lower the complexity, and the
better the abstraction effect. Then, based on the fitness function, the particle update process
in PSO4RNN is executed to obtain the particle with the best fitness. Decoding the best
particle into a tree yields a probabilistic finite automaton.

3.2. Generating Explanation

For the convenience of explaining the meaning of variables, Figure 6 shows the main
variables involved in the text classification task. The variables and diagram related to RNN
structure are shown in Figure 1.
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The explanation is to find the next most similar target state executed by the abstrac-
tion model when each word is inputted sequentially. In order to discover explainable
features in clustering, this work proposes to use a “Compound clustering” approach for
state partitioning. It is compounded by outer and inner clustering. The outer clustering
Cex =

{
c1, c2, . . . , cNl

}
is divided by the number of classification output labels, where Nl

is the number of labels. Each of the inner clusters cα is divided into Kin clusters, where
1 ≤ α ≤ Nl . This establishes some correlations between the clustering state and the output
results. The following will classify and explain input words based on PFA.

Fan et al. [18] divide the words into three categories: cross-state words, cross-cluster
words, and self-pointed words. Actually, the classification result is a rough degree to which
input influences output. This can be seen as a primary qualitative causal explanation.
Such a word classification relies on a state machine, which assigns categories based on
the behavior patterns of each word in the state machine. In other words, we only need to
compare the pictures to determine the macroscopic behavior pattern of words on the state
transition graph. Cross-cluster words refer to words that belong to different clusters for
the current state and the next state, as shown in Figure 7, where “fantasy” and “shooting”
are moved from state partition 1 to 2. These types of words can significantly alternate the
classification results, which means that they can change the model’s outputs with a high
probability. Cross-state words refer to words that belong to the same partition but different
inner state clusters. For example, the word “plot” in Figure 7 shifts from s3 to s4 in the same
cluster c2. These words may alter the confidence of predictions. Note that the first word
in each sentence can be added to this group first. Self-pointed words refer to words that
have the same current and referential states, such as the word “a” that jumps from s3 to
s3. These words often do not change much in the classification process, and their hidden
state changes are relatively small after importing the RNN. The significance of explaining
this classification lies in their main association with the clustering of abstract states. They
reflect the external meaning of clustering to some extent.
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To provide a quantitative explanation, it is also necessary to calculate the importance
score of words. One is the impact of the existence of words on the probability of current
prediction, that is, the change in the prediction probability of generating a specific output
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after inputting the word in the current step compared to the prediction probability of
generating the particular output after inputting the word in the RNN before the previous
step. The other is the impact of word removal on the final prediction probability. Formally,
use hol

(
wj

i

)
and rem

(
wj

i

)
to represent the presence and removal of the influence of words

wj
i , respectively. This work uses the analysis toolkit Prism [35] to obtain quantitative

attributes, such as probability from the PFA model when generating explanations.

hol
(

wj
i

)
= oj

i(α)− oj
i−1(α) (4)

rem
(

wj
i

)
= p

(
senj,α

)
− p

(
senj\

{
wj

i

}
,α

)
(5)

They can be normalized as

hol′
(

wj
i

)
=

hol
(

wj
i

)
∑wj

i∈stj

∣∣∣hol
(

wj
i

)∣∣∣ (6)

rem′
(

wj
i

)
=

rem
(

wj
i

)
∑wj

i∈senj

∣∣∣rem
(

wj
i

)∣∣∣ (7)

where stj\
{

wj
i

}
indicates removing words wj

i from the sentence senj. Finally, based on the
weight coefficients corresponding to the words and the two influence scores above, the

weight score of the words is calculated as in Equations (8) and (9), where sco
′ j
i normalizes

scoj
i . If the weight score of each word in the sentence senj reaches a certain threshold,

the high explanation-related words are selected for the a− th output label and stored in
itp

(
senj,α

)
. This can be obtained from the sequence of high explanation-related words in

the sentence. Algorithm 2 presents the specific process of explanation generation.

scoj
i = θ ·

(
hol′

(
wj

i

)
+ rem′

(
wj

i

))
(8)

sco′ji =
ej

i

∑wj
i∈senj

∣∣∣ej
i

∣∣∣ (9)

Algorithm 2. Explanation-Generating Algorithm.

Input: PFA A, text dataset Dt.
Output: high-related explanation words Itp, explanation scores Sco.

1. For each sentence senj in the text dataset Dt do
2. Obtaining word embeddings on senj to work out the input word vector for PFA;
3. Determine feature word classification based on behavior analysis on state diagram in

terms of PFA
4. Calculate the weight score of explanation words using Equations (4)–(9);
5. If (weight score > preset threshold value) then:
6. Add corresponding words to the set of explanation words;
7. Record the corresponding weight score as an explanation result;
8. EndIf
9. End for
10. Return Itp, Sco.

To understand the generation process, we give Example 4.

Example 4. Explanation generating of sentiments classification for RNN movie reviews.
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Take the sentence “This movie is nice!” as a demonstration example. The way in which
it is classified as a positive label “P” will be introduced. The word embedding vector is
embsen = (emb1, emb2, emb3, emb4), and output labels are lb = P. We obtain its hidden
state (h1, h2, h3, h4) and output state (o1, o2, o3, o4) in the RNN. We then list all the trace
paths tr from the input node to the mapped “positive” label node on PFA. The current
impact probability hol and the removal impact probability rem are calculated based on
Equations (4) and (5). After normalization, based on Equation (9), we can synthesize them
to explain which words in the sentence have a significant impact on classification. These
words, in this example, are {movie, exciting}, and then we calculate their influence score
list as Sco = {(sco2, sco4)}.

4. Experimental Results
4.1. Experimental Setup

The cases in the experiment include a regular language and two text classifications.
The datasets of the regular language and the movie review are publicly available online
(NLP progress sentiment analysis, available online at https://nlpprogress.com/english/
sentiment_analysis.html (accessed on 26 December 2023)), while the dataset of the logistics
review is based on the logistics reviews of users on Amazon e-commerce platforms (Ni, J.
Amazon Review Data. Available online: https://nijianmo.github.io/amazon/index.html
(accessed on 28 December 2023)). The first case is the Tomita regular language classification
under three artificial grammar rules. These grammar rules are used in automata learning
from RNNs [21] to validate learning effectiveness. They consist of three regular languages
that are defined over the alphabet {0, 1}. The grammar rules are listed in Table 1. If the
string conforms to the syntax, it is marked as positive. In the experiment, training sets of
different lengths for each grammar rules were created, and the length varies from 1–12
to 15–17, and the strings with lengths of 3, 11, and 16 were selected as the test set for
each grammar rule. The ratio between the training and test sets is 5:1. The second case
is a sentiment classification of DLRV. This dataset is extracted from customer evaluations
of product logistics and is collected from comments on logistics services at Amazon e-
commerce platforms. The ratio between the training and test sets is 4:1. The third case is
the sentiment classification of the movie review dataset in the IMDB. The ratio between the
training and testing sets is also set to 4:1.

Table 1. Three Tomita artificial grammar rules.

Grammar Description

Tomita_1 1*
Tomita_2 (10)*
Tomita_3 Compliments of ((0|1)* 0)*1(11)*(0(0|1)*1)*0(00)*(1(0|1)*)*

Note: In regular expressions, the asterisk (*) is a quantifier used to specify that the preceding expression can be
repeated zero or more times.

We will measure the effectiveness and efficiency of PSO4RNN with two baseline
algorithms. The first one is proposed in [17] (called BSL1 below), which uses an active
learning framework to learn DFA from RNNs. The second is proposed in [25] (referred to
as BSL2 hereinafter), which learns PFA from RNNs based on the AAlergia algorithm.

In the experiment, the CPU is an AMD Ryzen 7 5800H, the GPU is an Nvidia RTX
3060 Laptop with 6G video memory and Random Access Memory (RAM) with a capacity
of 16G. All cases are run on a Windows 11 operating system, and the Scikit-learn toolkit is
used to train RNNs. In this work, the PSO4RNN framework is implemented using Python
3.7.1. The text length of the input data they process is consistent. Each case is trained on
two RNN models: a Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM).
We set the number of hidden layers for two RNNs to 1 and the dimension of the hidden
state to 508. In the training process, a One-Hot encoding technique is applied to encode

https://nlpprogress.com/english/sentiment_analysis.html
https://nlpprogress.com/english/sentiment_analysis.html
https://nijianmo.github.io/amazon/index.html
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characters in the Tomita dataset, and word2vec is used for text classification to convert each
word in the real natural language into a 288-dimensional numerical vector.

4.2. Results
4.2.1. Effectiveness

This work is compared with BSL1 and BSL2 with regard to the accuracy and efficiency
of the abstraction model.

(1) Accuracy of the abstraction model. The accuracy is the proportion of the number
of samples on the training set, and they are the samples of which the RNN outputs

approximate to its PFA. They can be calculated by acc =
Σx∈DTr sign(A(x)–R(x))

|DTr |
, where DTr

represents the samples in training datasets and |DTr| is its total number of samples. A is the
learned model, R is the target RNN, and T is the testing set of sentences. sign(A(x)–R(x))
indicates whether the RNN and PFA perform approximating behavior on sample x. There
are three datasets in this work, among which the accuracy of Tomita syntax was taken
as the mean of the three grammar rules. Classifiers are trained for different tasks on
two types of RNNs; so, we create six models for these datasets. In order to scientifically
and systematically compare with BSL1 and BSL2, the k-means algorithm is used in all
experiments for state partitioning. The number of clusters is fixed to 18. Figure 8 shows a
comparison of accuracy for six models under three abstracting techniques.
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It can be observed that the models learned by PSO4RNN are significantly more
accurate than those generated by BSL1 and BLS2. PSO4RNN usually maintains an accuracy
of 80% to nearly 95%, while the accuracy of BSL1 ranges from 50% to slightly above 90%.
The accuracy error between the model learned by PSO4RNN and the original RNN model
fluctuates within the range of 10%. This indicates that PSO4RNN approaches the behavior
of RNNs at a satisfying accuracy. As is shown in Figure 8, the accuracy of PSO4RNN is also
slightly higher than that of BSL2. This is partly because the PD-PSO searches for a proper
generalization score of PFA instead of the golden section search in BSL2.

(2) Restoration degree of the abstraction model. If the behavior in PFA is consistent
with the RNN, it indicates that they share similarities in testing datasets. Due to the
inevitable loss of information details in abstraction, it is impossible to 100% replicate the be-
havior of the RNN. Therefore, the similarity must be examined after model abstraction. The
corresponding metric of similarity is the model restoration degree: Re = Σx∈Tsign(A(x)–R(x))

|T| ,
where A is the learned model, R is the target RNN, and T is the testing set of sentences.
sign(A(x)–R(x)) indicates whether the RNN and PFA perform approximating behavior
on sample x. The restoration degree obtained from different models is shown in Table 2.
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Table 2. Classification restoration degree of the original model on the test datasets.

Abstracting
Technique IMDB-Re DLRV-Re Tomita-Re

BSL1 0.43 0.39 0.62
BSL2 0.46 0.36 0.65

PSO4RNN 0.67 0.47 0.83

(3) The abstraction error curve: The abstraction error is defined as the difference
between the predicted results on DFA/PFA and the RNN on the training samples. During
the experiment, three model abstraction techniques were trained twenty times on the DLRV
dataset, and the average error was calculated for all iterations. The curve of their abstraction
error is shown in Figure 9. It is an error reduction curve, as it has been normalized.
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According to the error curve, it can be seen that when a specific low error value
is reached, PSO4RNN has the least number of iterations, and the actual training time
is also relatively short. The time consumption is shown in Table 3, which is calculated
by averaging eight repeated experiments. All methods are set to 10 clusters in the state
clustering process, and the time consumption is how long it takes to learn an automaton at
an abstraction error of less than 0.4.

Table 3. Time consumption of the three techniques for LSTM abstraction learning.

Time Consumption BSL1 BSL2 PSO4RNN

Tomita-LSTM 0.23 h 0.12 h 0.11 h
IMDB-LSTM 0.34 h 0.17 h 0.13 h
DLRV-LSTM 0.37 h 0.23 h 0.21 h

Note: the unit of time cost is hours (h).

From the statistical results, it can be seen that after ensuring sufficient accuracy for
the level of abstraction, PSO4RNN has the lowest time consumption in abstract learning
compared to BSL1 and BSL2. This is because the PSO algorithm improves the search
efficiency in the learning process of PFA.

(4) Space complexity of the abstraction model. This metric refers to the scale of storage
cost by the learned model PFA/DFA. In practical situations, the abstraction model can
be represented by an adjacency matrix. Intuitively speaking, the fewer states and edges
there are, the lower its complexity. After adjusting the number of clusters and making their
abstraction errors below 0.4, we counted the total number of states in the six abstraction
models. Table 4 shows the number of states obtained from different abstraction techniques
on the IMDB sentiment dataset.
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Table 4. The number of states abstracted from different models.

Technique Type State Numbers

BSL1 on GRU text sentiment analysis 37
BSL1 on LSTM text sentiment analysis 43
BSL2 on GRU text sentiment analysis 25
BSL2 on LSTM text sentiment analysis 31

PSO4RNN on GRU text sentiment analysis 22
PSO4RNN on LSTM text sentiment analysis 28

It can be seen that, while ensuring an abstraction error below 0.4, the scale of the
abstract model is much smaller than the RNN model. PSO4RNN requires fewer state
nodes to keep the behavior of the original RNN. This also indicates that the probabilistic
model learned by PSO4RNN is more general, and its abstraction effect is more competitive.
DFA learned by BSL1 has a higher number of states because DFA lacks information on
probability distribution.

4.2.2. Usefulness

(1) Explanation Generating

Based on the explanation of PSO4RNN, word clouds and word highlighting are used
to visualize the explanation. As shown in Figure 10, a word cloud of the DLRV dataset is
calculated from the word frequency under each word category. The font size of a word
reflects the appearance frequency in this dataset.
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Figure 10. Word cloud of cross-cluster words, cross-state words, and self-pointed words in the
DLRV dataset. Subfigure (a) corresponds to the word cloud of the cross-cluster words, Subfigure (b)
corresponds to the word cloud of the cross-state words, and Subfigure (c) corresponds to the word
cloud of the self-pointed words.

Here are the explanation examples in Figures 11 and 12. The explanation words are
highlighted in the sentences of the DLRV and IMDB datasets. The scores under each word
are the explanation importance calculated by Algorithm 2.
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Figure 11. Explanation of Highlighted Keywords on DLRV. Sentences (a–c) are text samples in DLRV.
The gray words correspond to self-pointed words. The blue words correspond to cross-state words.
The red words correspond to cross-cluster words.

In Figures 11 and 12, the gray words correspond to self-pointed words, which hardly
affect sentiment classification. The blue words correspond to cross-state words, and they
do not significantly affect sentiment classification. The red words correspond to cross-
cluster words, which influence the sentiment classification. It is not difficult to see that
the highlighted words conform to human cognition. That is, cross-cluster words can
convey and influence the emotions of the sentence. Through experiments on other texts,
we found that this rationality is very common, which can effectively promote human
understanding of the cause of the decision making of an RNN. Compared to directly
generating explanations on the RNN model, generating explanations by PSO4RNN is faster
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and reduces the cost of accessing the model. In addition, visualization techniques, such as
the word cloud and the highlight explanation, make the explanation intuitive.
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IMDB. The gray words correspond to self-pointed words. The blue words correspond to cross-state
words. The red words correspond to cross-cluster words.

(2) Adversarial Text Detection

Compared to the image field, research on adversarial attacks in the text field remains
to be expanded. In addition, the highly discrete nature of text content is different from the
pixels of images, which makes it challenging to transfer image adversarial attacks to the one
of texts. Adversarial attacks can expose the fragility of machine learning models, which will
help to analyze the robustness, especially the explainability of RNNs [36,37]. Identifying
and deleting adversarial samples can prevent the generation of adversarial patterns and
alleviate adversarial attacks. Abstraction models can be used for adversarial text detection.
It has been shown in [38] that adversarial text can be automatically generated by pertur-
bating slightly on non-poisoned text. Typical techniques for generating adversarial text
include replacing words with synonyms and using machine learning models to translate
sentences multiple times (e.g., from English to Spanish and then back to English).

Inspired by Dong et al.’s work [25], this work uses Equation (10) to describe the
adversarial text detection ratio. Given a sentence x, the adversarial text detection ratio can
be defined as follows:

T(x, y) =
P(x, y)
P(x, y)

(10)

where y is the output label predicted by the RNN and P(x, y) is the probability from input
x to output y on PFA. P(x, y) represents the total probability of reaching outputs other
than y from input x. We use the stochastic model checking tool Prism [35] to compute the
probability. We select a threshold Tθ for comparison with T(x, y), which can serve as a
critical value for distinguishing adversarial text from benign text. If the text’s T(x, y) is less
than Tθ , it is considered an adversarial text.

Example 5. Simple Adversarial Text Detection Case.

Let us consider the sentence and PFA in Example 1. Assuming x = “This movie is so
beautiful!” and y = P, y = N. Tθ is set as 3. The input that passes through the trace to label P is
s1− s3− s3− s4. Then, its probability in Equation (10) is P(x, y) = tr(s1, s3)tr(s3, s3)tr(s3, s4)
= 0.2430, where tr(s, s’) means transition probability from s to s’. P(x, y) = tr(s1, s3) ·
tr(s3, s3) ·tr(s3, s5) = 0.0675. According to Equation (10), T(x, y) = 3.6. If it is greater than Tθ ,
then x is not an adversarial text.

Assume there are Nbn benign samples and Npn samples with poisoning attacks. There
are four modes selected for poisoning: (1) insertion, (2) change, (3) delete, and (4) order
swapping. The first step of adversarial text detection is to learn PFA from RNNs. Secondly,
the poisoned sentence x’ is input into PFA, and the probability P(x’, y) is calculated based
on PFA. Thirdly, a clean sequence x is input into PFA, and we calculate P(x, y). Finally, in
Equation (10), the sentences that have a lower ratio T(x, y) than the threshold are identified
as adversarial text. For all adversarial samples, if one of them is detected as benign text,
it fails to detect real adversarial text. We set the number of samples correctly detected
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as numcd, and then detection accuracy can be defined as Accad = numcd/Nbn. Figure 13
provides an overview of this detection effect evaluation process.
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Figure 13. Adversarial text detection evaluation process.

The detection accuracy MSE is the average of Accad in ten experiments. The Accad
MSE of PSO4RNN on three datasets is shown in Table 5. Here, LSTM is an RNN with one
hidden layer and 508 hidden nodes, and the number of state clusters is 12.

Table 5. Adversarial text detection accuracy based on PSO4RNN.

Dataset Adversarial Sample Detection Accuracy MSE

Tomita 93%
IMDB 92%
DLRV 89%

This result demonstrates that the abstraction technique in PSO4RNN ensures high
detection accuracy. It has practical significance in mitigating adversarial text attack sce-
narios, helping to detect adversarial patterns efficiently. The model learning approach not
only provides a way to understand how the RNN works but also has the potential to open
the door to applying software analysis techniques (such as model-based testing, model
checking, runtime monitoring, and validation) to real-world RNN models.

5. Discussion

The accuracy of the abstraction model indicates how an abstraction model approaches
the behavior of RNNs. In Figure 8, it is evident that PSO4RNN performs better than
BSL1. This is partly because the model learned by BSL1 only contains state transitions with
maximum frequency, while PSO4RNN can preserve almost all state transitions through
probability distribution. In addition, it can be observed that BSL2 uses unpropertied pa-
rameters to merge FPT in most cases. The complexity metric answers how many resources
the learned model takes to mimic an RNN. Remarkably, abstraction models learned by
PSO4RNN are the most straightforward.

The restoration degree indicates how a model keeps the original RNN patterns on
the testing set. It stands for the generalizing ability of an abstraction model. PSO4RNN
performs much better in generalizing than BSL1 and BSL2. This means that PSO4RNN
learned more effective rules when analyzing unknown data. This might be attributed to
the random strategy of PSO4RNN to search for BIC parameters. For the abstraction error
curve and time consumption results, PSO4RNN shows the most efficient technique for
learning from an RNN. Because BSL1 takes a lot of time to execute requirements from an
RNN, it needs to maintain a huge observation table. BSL2 is also weaker than PSO4RNN
because BSL2 applies a trial-and-error strategy to learn PFA from the RNN. In contrast,
PSO4RNN uses PSO to search BIC parameters. It does not require testing all possible
BIC parameters from a wide range. Guided by fitness, it can self-adaptively update these
parameters towards a clearer goal.

Concerning the usefulness of explanation, this work provides two forms tailored for
different users: qualitative results and quantitative scores. Common users can directly, ac-
cording to the color, discriminate the importance of features. Professional researchers may
need a quantitative score to analyze in their subsequent studies. In part (2) of Section 4.2.2, we
introduce a text adversarial case to prove the usefulness of learned PFA. The usefulness study
of this work shows that such a quantitative explanation can serve well in real-world tasks.
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Based on the experimental analysis, it can be found that the performance of different
techniques varies because of their advantages and disadvantages. The comparisons are
compiled in Table 6, which offers a clear and systematic evaluation.

Table 6. Characteristics comparison of this work and existing techniques.

Characteristics BSL1 BSL2 PSO4RNN

RNN structure explanation yes yes yes
Feature importance explanation no no yes

Probabilistic information not considered yes yes
BIC parameter searching method none trial and error heuristic

Note: Row 1 in Table 6 shows whether the technique provides an explanation of the global structure of the RNN.
Row 2 means whether the technique provides a quantitative explanation of features. Row 3 means whether the
learned model considers the probabilistic information. Row 4 indicates the method used in the searching process.

6. Conclusions and Future Works
6.1. Conclusions

This paper proposes a PSO-based model abstraction and explanation generation
method for RNNs. This work presents three primary novel contributions as follows:

• Learning PFA to integrate the information into the abstraction model;
• Adding PSO module to optimize the state merging algorithm;
• Abstracting RNN models to simplify the research of explainability;

Compared with the existing RNN abstraction techniques, it performs better in model
accuracy and running efficiency. PSO4RNN optimizes the parameter search instead of trial
and error, providing a novel technical perspective for the application of heuristic algorithms
in state merging. The abstraction provides a novel perspective for explainable artificial
intelligence (XAI). Existing works learned the abstraction model a global structure explana-
tion. Moreover, it generates high-related explanation words and their importance scores
based on PFA, which can be seen as a well-adapted global explanation. This adaptability
mainly comes from the good generalization performance of abstraction model PFA, not
only in training set samples. It also provides visualization ways, such as word clouds and
feature word highlighting, to increase explainability, greatly enhancing the user friendliness
and credibility of abstraction models.

However, this work has several limitations. (1) Restricted by hardware resources,
empirical studies are merely investigated on two real-world datasets. The clustering
parameter k is selected through haphazard tests. If PSO4RNN is applied to other real-
world datasets containing many more samples, the clustering process may not perform
optimally. Therefore, choosing a proper k to achieve a satisfying performance becomes
meaningful. (2) Computational efficiency can be improved. During experiments, an issue
of inadequate computational resources appeared in the state merging process. This means
that the throughput of merging processing needs enhancement.

6.2. Future Works

In PSO4RNN, the k-means is used to extract abstract state traces. Selecting a proper
number of clusters is not automatic. Therefore, combining other clustering algorithms,
such as the DBSCAN or GMM models, is a promising way to overcome this limitation. We
will design such a combination in the subsequent works. There is still room for improving
computational efficiency in state merging. Parallel or distributed learning strategies also
help improve. This will remain to be implemented in future works.

The future work will implement learning the abstraction model at runtime, which
can further adaptively compress the state space of the abstraction model. This will be our
main future work. A reinforcement learning (RL) method can be promising in abstracting
at runtime. Real-world runtime problems usually involve interacting with the dynamic
environment, while RL is suitable for solving these problems.
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In addition, we aim to shift the abstraction of RNNs from specialized to universally
applicable tasks. Empirical research will be conducted on larger-scale pre-trained models,
including the most prevalent large-scale language models
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