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Abstract: Fog interference is an unfavorable issue when using vision sensors to monitor forest
environmental resources. The existence of fog causes intelligent forest vision sensor equipment to
fail to obtain accurate information on environmental resources. Therefore, this study proposes a
lightweight forest scene image dehazing network to remove fog interference from the vision system.
To deal with the extraction of detailed forest image features, we propose utilizing joint image priors
including white balance, contrast, and gamma correction feature maps as inputs of the network
to strengthen the learning ability of the deep network. Focusing on reducing the computational
cost of the network, four different kinds of Ghost Bottleneck blocks, which adopt an SE attention
mechanism to better learn the abundant forest image features for our network, are adopted. Moreover,
a lightweight upsampling module combining a bilinear interpolation method and a convolution
operation is proposed, thus reducing the computing space used by the fog removal module in the
intelligent equipment. In order to adapt to the unique color and texture features of forest scene
images, the cost function consisting of L1 loss and multi-scale structural similarity (MS-SSIM) loss is
specially designed to train the proposed network. The experimental results show that our proposed
method obtains more natural visual effects and better evaluation indices. The proposed network is
trained both on indoor and outdoor synthetic datasets and tested on synthetic and real foggy images.
The PSNR achieves an average value of 26.00 dB and SSIM achieves 0.96 on the indoor synthetic
dataset, while PSNR achieves an average value of 25.58 dB and SSIM achieves 0.94 on the outdoor
synthetic test images. The average processing time of our proposed dehazing network for a single
foggy image with a size of 480 × 640 is 0.26 s.

Keywords: forestry scene; image dehazing; prior knowledge; lightweight network

1. Introduction

Fog interference is an unfavorable issue when using vision sensors to monitor forest
environmental resources. Forest areas have unique climatic conditions with large tem-
perature changes, abundant heat, and precipitation, leading to easily generated fog all
year round, thus resulting in the degradation of image quality acquired via vision sensors
of intelligent forestry equipment, which is like covered eyes. Degraded images present
negative features such as texture loss, low contrast, color distortion, and dynamic range
compression [1]. Obtaining inaccurate information about forest resources results in greatly
reduced identification accuracy of forest fruits and standing trees, as well as highly in-
creased false detection rates via monitoring systems, which impairs the effectiveness and
availability of information obtained via vision sensors in forests. In addition, forest scenes
have unique prior characteristics, such as uneven light distribution, single-color features,
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and rich texture details, which makes the accurate operation of forestry vision systems
more challenging. Therefore, combining unique image priors to solve the forest scene
image dehazing problem helps ensure the effectiveness and availability of vision sensors.

At present, research for image dehazing in the computer vision field can be divided
into three categories: (1) traditional image enhancement method, (2) fog removal based on
prior image analyses, and (3) fog removal based on deep learning methods.

Earlier studies have focused on image dehazing through image enhancement tech-
niques, such as histogram equalization [2,3], the design of specific filters [4–6], gamma
correction [7,8], Retinex color theory [9–12], wavelet transform [13,14], and other meth-
ods, which highlight areas of interest in the image while suppressing or removing visual
interference information. Experiments have shown that when the shooting scene has obvi-
ous depth changes or uneven fog distribution, such dehazing methods often fail because
these methods simply improve the contrast of an image and lack the distinction of depth
information, thereby resulting in unsatisfactory results [15].

Fog removal methods based on image priors such as dark channel prior (DCP) [16],
color decay prior (CAP) [17], non-local prior [18], and color distribution line prior [19]
usually estimate the restoration parameters and restore the image by using atmospheric
scattering models of fog formation [20]. Some methods utilize multiple priors for image
dehazing, for example, fusing contrast and exposure for image dehazing [21]. Methods
based on image prior need to fully analyze the specific target scene and assumption
conditions; otherwise, restored images are prone artifacts.

Dehazing methods based on deep learning can be roughly divided into two types.
A series of methods are based on atmospheric scattering models and use deep networks,
such as CNNs, RNNs, and GANs, to learn the restoration parameters of foggy images.
For example, Ren et al. proposed a multi-scale convolutional neural network (MSCNN) [22]
to estimate the transmission map. Cai et al. proposed the DehazeNet [23] network and con-
verted the manual feature extraction method into a convolutional network layer to estimate
the transmission map. By reconstructing the atmospheric scattering model, Li et al. de-
signed an end-to-end dehazing network (AOD-Net) [24] to jointly estimate the transmission
map and atmospheric light, reducing the accumulated errors in the parameter estimation
process. Alona Golts et al. proposed an unsupervised transmission map prediction method
for fog removal based on a context aggregation network (CAN) [25]. Yang et al. introduced
a de-entanglement fog removal network (DDN) [26] to estimate scene brightness, transmit-
tance, and global atmospheric light factor. Jiang et al. [27] estimated the depth of a scene
based on an RNN algorithm to obtain the transmission map, and then restored the fog-free
image through the atmospheric scattering model [28,29].

Another kind of deep-learning-based method is to learn the direct mapping from
the foggy image to the clear image. For example, Zhang et al. proposed a densely con-
nected pyramid network (DCPDN) [30], and Qu et al. proposed a pixel-to-pixel EPDN
network for dehazing [31]. Methods like FD-GAN [32] and CycleGAN [33] are based on
generative adversarial networks (GANs), which use a generator to generate clear images
from foggy images directly; then, the authenticity of the fog removal image is judged via a
discriminator. Wu et al. established an AECR-Net compact dehazing network model [34]
by using a contrastive learning method; Jiang et al. proposed a deep hybrid dehazing
network [35], which regards image dehazing and detail refinement as two independent
tasks, and established two sub-networks for training. Dehazing methods based on vi-
sion Transformers [36] are also emerging. As this kind of method ignores the guidance
information of prior features, it is prone to undesirable artifacts in the recovered results.

There are also some methods that achieve fog removal through the fusion of multiple
images or multiple features of an image [37–40] or through removing fog of a single image
based on additional information, such as depth information [41] and a three-dimensional
model of the scene [42]. These methods require additional data information or rely on the
manual selection of preprocessing methods and multiple images, and are not suitable for
all scenes. According to a literature search, there is a lack of research on image dehazing
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specifically for forest fog. In [43], the authors adopted methods commonly used in the
field of computer vision for forest image dehazing, but the restoration results showed
undesirable artifacts in the shadow areas, which are commonly seen in forest images.

By comparing the dehazing results with other methods, it can be found that if the prior
information of forest images can be fully utilized, the dehazing results can be effectively
improved. A dehazing algorithm based on deep learning can effectively process fog
images with various fog degrees and various scenes owing to its efficient learning ability.
Therefore, this study proposes combining the prior information of images with a deep
learning network, thus establishing a lightweight forest scene image dehazing network
that can reduce computational load while maintaining the best dehazing results.

The research methods and technological approaches of our proposed work can pro-
vide solutions and theoretical foundations for the dehazing problem in visual monitoring
systems in complex agricultural and forestry environments. It can also be widely applied
in outdoor visual information processing fields, including urban video surveillance, au-
tonomous driving, rural video monitoring systems, and military purposes, indicating its
broad application prospects.

The contributions of this paper are four-fold:

1. Firstly, a forest image dehazing method based on a lightweight deep learning network
and joint image priors is proposed. Based on prior feature analysis, we employ the
original degraded fog image and its white balance, contrast, and gamma correction
feature maps as the input to the network to strengthen its ability to learn detailed
image features extracted from forest scene images.

2. Secondly, our proposed dehazing network is designed based on an encoder–decoder
architecture. The encoder structure consists of four different kinds of Ghost Bottle-
neck blocks, which adopt an SE attention mechanism, to better learn the abundant
forest image features. Focusing on reducing the computational cost of the network,
a lightweight upsampling module combining a bilinear interpolation method with a
convolution operation is proposed and used in the decoding part, which decreases
the time and computation to obtain better fog removal results.

3. Thirdly, aiming at obtaining clearer edges and better texture detail while retaining the
color features of forest images, a loss function consisting of L1 loss and multi-scale
structural similarity (MS-SSIM) loss is specially designed.

4. Lastly, to better solve the forest scene image dehazing problem, a forest fog image
dataset is established, and our proposed network presents favorable results when
compared to other methods. Our proposed method is trained on both indoor and
outdoor datasets and can adapt to different dehazing scenarios.

This article is organized as follows: The background of image dehazing and the con-
tributions of this study are presented in Section 1. The related work of the lightweight
GhostNet, white balance prior, contrast prior, and gamma correction are described in
Section 2. Section 3 gives a detailed description of the proposed network architecture.
Section 4 verifies the effectiveness of the proposed dehazing network via abundant experi-
ments. A conclusion is drawn in Section 5.

2. Related Work
2.1. GhostNet

In order to mitigate the computational burden in network calculations, Han, K. et al.
proposed the utilization of a Ghost module as a replacement for traditional convolutional
operations [44]. This Ghost module accomplishes fewer computations through two distinct
steps: (1) generating feature maps with a lower number of channels using conventional con-
volutions; (2) further generating new feature maps through a depth-wise convolution [45],
which are then merged with the feature maps produced in step (1) to obtain the final
feature maps. By stacking and integrating several Ghost modules with skip connections, a
lightweight network architecture, GhostNet, can be constructed.
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2.2. Image Prior

The effectiveness of deep-learning-based image dehazing algorithms largely depends
on the network’s ability to extract image features. Therefore, analyzing the characteristics
of foggy images in forest areas is beneficial for developing image dehazing algorithms
specific to forest regions. In this section, we analyze the features of foggy images in forest
areas, including white balance, contrast, and gamma correction.

2.2.1. White Balance Feature

The human visual system possesses color constancy, which refers to the ability to
perceive consistent colors of objects across different lighting conditions and imaging settings.
However, current computer and intelligent vision systems have not yet achieved such a
level of resolution. Therefore, in the case of hazy weather conditions, techniques are often
employed to eliminate the color cast caused by atmospheric light in captured hazy images.
One commonly used approach is to utilize white balance reference images to correct this
color bias. According to the gray-world method [46], the white balance feature image is
obtained through the following three steps:

1. Calculate the average values of the RGB channels—R, G, and B—and then take the

average again to obtain the “gray” value, Gray = R+G+B
3 ;

2. Calculate the gain coefficients for the RGB channels, KR = Gray
R

, KG = Gray
G

, and

KB = Gray
B

;
3. Using the von Kries diagonal model, adjust the values of the RGB components for

each pixel y in the image using Equation (1), which results in the adjusted white
balance feature image. 

R′ = R× KR

G′ = G× KG

B′ = B× KB

(1)

Figure 1 shows the white balance feature map of the foggy and clear images.

Figure 1. Images of white balance features. (a) Fog-degraded image. (b) White balance map of (a).
(c) Clear image. (d) White balance map of (c).

2.2.2. Contrast Features and Gamma Correction

Contrast features play a significant role in the visibility of an image. Generally, a higher
contrast indicates a clearer image with richer information, while a lower contrast results in
a blurred image. As shown in Figure 2, images captured in hazy weather exhibit a grayish
and blurry appearance, with less distinct contours and details compared to images taken on
a clear day. Tang et al. proposed the use of multi-scale local maximum contrast features to
assist in the analysis of hazy images based on the dark channel prior [47]. They employed
a random forest regression model to achieve the goal of haze removal.

In the GFN dehazing algorithm proposed by Ren et al. [40], the contrast enhancement
feature was introduced as prior information. Along with the original hazy image, other
selected features are then input into a convolutional network to obtain the weights of
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various haze-related features across the entire image. Inspired by Ancuti et al. [37], Ren et al.
calculated the contrast enhancement feature. Cenh, using Equation (2):

Cenh = µ(I − Ĩ) (2)

where I represents the hazy image and Ĩ represents its average luminance image. The co-
efficient µ (µ = 2 × (0.5 + Ĩ)) is utilized to linearly increase the computed luminance.
As shown in Figure 2, in regions with dense fog or white objects, the values of (I − Ĩ)
may dominate, leading to a phenomenon known as “darkening” in the computed contrast
feature image. To address this issue, a gamma-corrected image, Igam, is introduced as a
supplementary contrast enhancement feature:

Igam = αIγ (3)

In Equation (3), when setting α = 1 and γ = 2.5, as shown in Figure 2, gamma
correction effectively removes the black patches in the contrast enhancement feature and
enhances the visibility of the image.

Figure 2. Images of contrast enhancement features and gamma correction features. (a) Image with
fog. (b) Enhanced contrast features. (c) Gamma correction feature.

3. Proposed Lightweight Forest Scene Image Dehazing Network
3.1. Network Architecture

The architecture of our proposed dehazing network is illustrated in Figure 3. For a
single hazy image, we first compute its white balance feature image, contrast enhancement
image, and gamma-corrected image. These prior feature images as well as the original
degraded image are then fed into the proposed dehazing network. Prior information assists
in updating the network weights and preserves richer detailed information. Then, the de-
hazing network estimates the parameters of the atmospheric scattering model, and finally,
the recovered image is obtained.

Figure 3. The overall network architecture of the proposed method.

The proposed network utilizes convolution operations to extract image features and
uses upsampling methods to restore the resolution and channel numbers of the features.
As shown in Figure 3, the first layer of the network consists of a standard 3× 3 convolutional
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layer followed by a batch normalization (BN) layer and an ReLU activation function. Next,
four types of Ghost Bottleneck blocks are alternately stacked and used to extract image
features, with differences in stride and the inclusion of a Squeeze-and-Excitation (SE)
structure. This operation reduces the image resolution while increasing the number of
channels. Then, five upsampling modules are designed to restore the size of the feature
maps. Finally, the deformed form of the atmospheric scattering model is embedded as the
calculation layer at the end of the network to compute the dehazed result.

Figure 4 illustrates the four types of Ghost Bottleneck blocks used in the network archi-
tecture, the SE structure [48], and the structure of the upsampling module. The four types of
Ghost Bottleneck blocks include GBO (stride 1), GBOS (stride 1 with the SE structure), GBT
(stride 2), and GBTS (stride 2 with the SE structure). GBO and GBT structures are similar,
and both consist of a Ghost Module sub-block and a shortcut connection. GBT also includes
an additional depth-wise convolution layer, which is an efficient operation in lightweight
networks for handling spatial information. The shortcut connection operation merges
some features, allowing the network to preserve more detailed information. The Ghost
Module is composed of the concatenation of the outputs of two convolution operations,
extracting features with fewer computations. GBOS and GBTS are based on GBO and
GBT, respectively, with the addition of the SE structure. The SE structure is an attention
mechanism that assigns different weights to each feature, enabling the network to focus on
more important features. The implementation is as follows: Firstly, the feature map with
a size of H ×W × C is globally pooled to size 1× 1× C and then passed through a fully
connected layer to predict the importance of each channel, obtaining the weights of each
channel. This is followed by another fully connected layer to adjust the feature map and
multiply it with the input feature, resulting in the final output. The SE structure assigns
different weights to each feature map, focusing on more important features, as shown in
Figure 4f. The upsampling module consists of a bilinear interpolation upsampling layer
and two convolution layers. The former restores the resolution of the image, while the
latter restores the number of channels.

Figure 4. The structure of different modules. The big arrow represents the shortcut connection.
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3.2. Loss Function
3.2.1. L1 Loss Function

L1 loss function, also known as least absolute error, is defined as shown in Equation (4);
y(i) and y∗(i) represent the restored image and the ground truth image, respectively; and i
represents each pixel of the image.

L1 =
1
n

n

∑
i=1
|y(i)− y∗(i)| (4)

The L1 loss function better reflects the error between the ground truth and predicted
values. A smaller loss value indicates the higher precision of the predicted values using the
model. The derivative of this error, when used with image inputs during back propagation,
is calculated at each pixel. This usually does not lead to gradient explosion issues and has
higher robustness. For image restoration models, the L1 loss function is more accepting of
outliers and is less smooth. This allows it to capture more texture features of the restored
image, resulting in a more natural visual effect.

3.2.2. MS-SSIM Loss Function

Structural Similarity (SSIM) is a metric used to measure the similarity between two
images. It incorporates information about the brightness, contrast, and structural details
of the images, making it more aligned with human visual perception. Generally, models
trained with the SSIM loss function produce restoration results that have more details
compared to L1 or L2 losses, but they may introduce noise in the boundary areas. However,
the Multi-Scale Structural Similarity (MS-SSIM) loss function can address most of the
boundary noise issues. It takes into account the influence of image resolution. It repeatedly
downsamples the restored image and the ground truth image, generating multiple images
with different resolutions (usually five images). Then, it evaluates the SSIM index for
the images with different resolutions and combines the evaluation values, as shown in
Equation (5). Zhao et al. [49] and Huang et al. [50] have explained and utilized this loss
function to improve the boundary information of images and other aspects.

LMS-SSIM = 1−
M

∏
m=1

(
2µpµg + C1

µ2
p + µ2

g + C1
)βm(

2σpg + C2

σ2
p + σ2

g + C2
)γm (5)

In Equation (5), µp, µg, σp, and σg represent the mean and variance of the restored
image and the ground truth image, while σpg represents the covariance between the restored
image and the ground truth image. βm and γm indicate the importance of mean and
variance in each scale, respectively. C1 and C2 are small constants used to avoid division by
zero. In practical applications, in order to achieve higher computational efficiency, Gaussian
kernel convolution is commonly used to calculate the mean, variance, and covariance
of images.

3.2.3. Total Loss Function

SSIM-based loss functions are not sensitive to uniform biases, which can result in
changes in color and brightness, making the restored results darker. However, they can
preserve high-frequency information. However, L1 loss has a better color preservation
ability. Therefore, in order to reduce the deviation in image brightness and color while
preserving more and better edge and detail information, we adopted a combination of L1
loss and MS-SSIM loss to train the network. Zhao et al. provided the calculation formula
for this combined loss function [49]:

LA = α · LMS−SSIM + (1− α) · GσM
G
· L1 (6)

In Equation (6), GσM
G

represents Gaussian filters with standard deviation, σG, used
at M different scales. α represents the weighting factor of the two losses in the total loss
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(α = 0.025). In the context of image dehazing, the emphasis is on the overall restoration of
the reconstructed image. It is important to ensure the clarity of object boundaries, textures,
and other details while maintaining the natural color tone of the image as a whole. In theory,
the joint loss of L1 and MS-SSIM can effectively address the dehazing challenge mentioned
above. Through experimental verification, this combined loss has shown promising results
in improving the visibility of hazy images.

3.3. Dataset and Training Parameters

To train the proposed network, similar to the existing deep-learning-based fog removal
methods, synthetic datasets are used for training. Synthesized datasets are generated based
on atmospheric scattering models [20] using clear images with corresponding depth maps.
A flowchart of the synthetic dataset is shown in Figure 5.

Figure 5. A flowchart of synthetic dataset obtained.

In Figure 5, I is the generated hazy image, J is the original clear image, d is the depth
map of an image, and t is the transmission map calculated via the depth map, d, and
scattering coefficients, β.

In order to apply dehazing to different scenarios, our proposed dehazing network is
trained both on indoor and outdoor hazy datasets. For indoor scenes, the NYU2 Depth
Database [51] was used to synthesize hazy images. The NYU2 depth dataset contains
1449 images from 464 different indoor scenes. We randomly selected 109 images from
different scenes to generate the testing set and the remaining 1340 images were used to
generate the training set. By setting atmospheric light values A ∈ {0.6, 0.7, 0.8, 0.9, 1.0}
and scattering coefficients as β ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}, the synthesized indoor
hazy image set containing 46,900 hazy–clear image pairs was obtained for training via
the method shown in Figure 5. For the testing set, we randomly selected two values of A
and three values of β and, thus, generated 654 images for testing. For outdoor scenes, we
directly used the RESIDE OTS synthetic dataset [52] for training, which is a sub-dataset
of the RESIDE database containing 72,135 synthetic hazy images. For testing, the RESIDE
SOTS dataset, which consists of 500 hazy images, was used.

We implement our proposed lightweight forest scene dehazing network in distribution
mode with two 1080ti GPUs under the Pytorch framework. The network parameters are
initialized using the Kaiming method proposed by He et al. [53]. The ADAM optimization
algorithm is used to train the network, which has four parameters to set, including learning
rate, exponential decay rate of the first-order moment estimate (β1), exponential decay rate
of the second-order moment estimate (β2), and a parameter ε to avoid the occurrence of
0. The training parameters are provided in Table 1. We train the models for 30 epochs
separately on the indoor and outdoor training sets. The models begin to converge around
the 5th epoch, and the best prediction results are obtained at the 11th and 10th epochs for
the indoor and outdoor datasets, respectively.
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Table 1. Training parameter setting of the proposed method.

Parameter Value

Learning rate 0.0001
Exponential decay rate of the first-order moment estimate (β1) 0.9

Exponential decay rate of the second-order moment estimate (β2) 0.999
Parameter ε 1 × 10−8

Batch size 4
Training steps 30

Training image resolution 480× 640

4. Results

In order to evaluate the performance of the proposed network, four types of test sets
are used for the experiments: (1) NYU2 indoor synthetic hazy images; (2) RESIDE OTS
outdoor synthesized hazy images; (3) RTTS real-world hazy images; and (4) real-world
forestry scene hazy images. The first two datasets of fog images have their corresponding
clear images as the ground truth, so we quantitatively analyze the fog removal results
by using objective evaluation indicators, and visibility quality analyses of the proposed
method compared to other state-of-the-art methods are also given. The latter two datasets
of fog images are real-world fog images, and there is no corresponding clear image, so we
compare the results visually.

Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) are utilized to
evaluate the quality of the dehazed images in our experiments, which are the most widely
used objective indices. PSNR is an evaluation index based on the difference between the
corresponding pixels of two images. The larger the value, the better the dehazing results.
SSIM is used to fit the real perception of human beings and evaluate image quality from
three aspects, including brightness, contrast, and structure. The value range is from 0 to
1. The larger the value, the better the dehazing result, and a value of 1 indicates that the
two images evaluated are identical. Moreover, single image processing time is compared to
evaluate the speed of different methods.

4.1. NYU2 Test Set

Figure 6 shows the dehazing results of the proposed model and seven other state-
of-the-art dehazing algorithms on the synthesized indoor test set of NYU2. Based on
subjective visual evaluation, the DCP algorithm does not fully remove the haze because it
was primarily designed for outdoor hazy images. It introduces a parameter to preserve
some haze in distant objects to maintain depth perception. The AMEF algorithm enhances
the overall color of the scene, resulting in rich and clear details in the dehazed results.
However, it tends to darken certain areas of the ground and walls, which appear unnatural,
such as the white floor in the first image and the walls in the fourth image. The DehazeNet
algorithm improves image contrast but loses some fine texture details. The enhanced EPDN
algorithm produces results that are close to the ground truth images with natural colors
and clear textures. The AOD algorithm also produces darker colors and less prominent
texture information but has a fast processing speed. The GFN algorithm exhibits large
black patches in some white areas, such as the white wall region in the fourth image.
Both the GCA algorithm and our proposed method provide reasonable color and texture
information. However, the GCA algorithm falls short in handling the brown tabletop and
floor area, resulting in a visual sense of being partially obscured by a thin haze, as shown in
the third image. In comparison, the results of the proposed algorithm visually resemble the
ground truth images and exhibit a more natural restoration of details and color information.
Additionally, as shown in Table 2, the proposed algorithm performs best in terms of
PSNR and SSIM indices, and the restoration time for a single hazy image is within an
acceptable range.
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Figure 6. Dehazing results on NYU2 testing set.
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Table 2. The quantitative comparison on NYU2 testing set. The best results are in bold.

Method/Evaluation Criteria PSNR SSIM Single-Image Processing Time (s)

DCP [16] 21.7767 0.9234 0.44
AMEF [54] 17.9960 0.8839 0.74

Dehaze Net [23] 20.5656 0.9405 2.00
EPDN [31] 25.2795 0.9513 0.27
AOD [24] 18.9208 0.9190 0.04
GFN [40] 23.0912 0.9469 5.15
GCA [55] 25.2486 0.9579 0.19

Ours 26.0063 0.9594 0.26

4.2. RESIDE OTS Test Set

The algorithms shown in Figure 7 all perform haze removal on synthesized outdoor
hazy images. Among them, the results of the proposed algorithm are visually the most
similar to the ground truth images, with reasonable and clear restoration of texture, edges,
and color details of trees and buildings. The DCP algorithm preserves haze for distant
objects to maintain depth perception, and it also introduces little distortion in the majority
of sky areas in this test set. The AMEF algorithm focuses on enhancing the edge details
of objects. By observing the second and third images, it can be seen that the algorithm
deepens the edges and significantly improves image contrast. The classical dehazing
network DehazeNet and the enhanced EPDN network both produce darker results and
lose a lot of texture details, especially in the dark areas of the original hazy images, such as
the lower area of the pedestrian bridge in the first image and the trees in the second and
fourth images, which are processed into completely black patches. The results of the AOD
algorithm are similar to the algorithm proposed in this section, but the colors in the AOD
algorithm are more vibrant. The GFN algorithm produces black regions due to its overly
dark handling of object colors, blurring the original texture details, and its color restoration
for distant buildings is unreasonable, such as the walls of tall buildings in the fourth image.
The GCA algorithm usually achieves good dehazing results, but there presents unrealistic
colors in sky areas. To quantify the evaluation, the PSNR and SSIM values are compared,
as well as the processing time for a single hazy image, using different dehazing methods.
As shown in Table 3, our proposed method achieves the best metrics, and its processing
speed for a single hazy image is also competitive.

Table 3. The quantitative comparison on OTS testing set. The best results are in bold.

Method/Evaluation Criteria PSNR SSIM Single-Image Processing Time (s)

DCP [16] 21.3657 0.8968 0.45
AMEF [54] 17.7227 0.8683 0.78

Dehaze Net [23] 22.2356 0.9219 2.05
EPDN [31] 22.5700 0.8630 0.27
AOD [24] 19.5119 0.9104 0.06
GFN [40] 22.3000 0.8800 5.25
GCA [55] 22.2013 0.9280 0.18

Ours 25.5830 0.9360 0.26
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Figure 7. Dehazing results on OTS testing set.
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4.3. RTTS Test Set

RTTS image set is a real-world hazy image set containing 4322 images without ground
truth images, which is used as a test set for object detection under bad weather in the
image processing field. As shown in Figure 8, we compare and analyze the dehazing
results of various dehazing algorithms on real outdoor foggy images on the RTTS image
sets. The dehazing results of the DCP algorithm present obvious fog residuals, and distant
objects are more difficult to restore. The AMEF algorithm emphasizes edge information in
the image, especially for nearby edges, but there are also obvious areas with fog residuals,
such as the tree area in the second and third images. The results of DehazeNet and EPDN
algorithms are darker and lose some details, such as DehazeNet’s processing of the person
in the first image and EPDN’s treatment of tree crowns in the third image. The AOD
algorithm shows a loss of details and incomplete dehazing in some areas. This may be
due to complex scenes with thick haze in certain regions, where the lightweight AOD
convolutional network does not extract detailed image features sufficiently. The GFN
algorithm constructs a network based on prior information about white balance and
contrast from hazy images. However, according to our analysis of contrast features, contrast
feature images tend to exhibit black patches more prominently. If the relationship between
hazy features and haze-free images is improperly learned via the network, many black
pixels will appear in its restoration results, leading to a loss of details. The dehazing
results obtained via the GCA algorithm are similar to those achieved via our proposed
method, with clearer dehazing results, and the overall color appears more natural. The
UHD algorithm produces brighter images with a greater restoration of details and textures,
but occasionally, it has difficulties in removing distant fog, such as the middle region
depicted in the second figure. It is worth mentioning that there exist certain differences
between real hazy images and synthesized ones, and deep-learning-based algorithms rely
more on the types of scenes and fog conditions in the training dataset. By comparison, our
proposed dehazing algorithm recovers most of the detailed texture and color information,
and the results are more natural visually.

4.4. Forestry Test Dataset

We collected 212 real forest scene foggy images to test the performance of the proposed
algorithm. Figure 9a presents the real-world foggy image with light mist, while Figure 9b–j
show the results of nine commonly used defogging algorithms, including our proposed
method. According to the dehazing results, the DCP algorithm is more natural and closer
to the color of the original image. The results of the AMEF algorithm are colorful, show
rich details, and emphasize the edge information. The DehazeNet results are close to the
DCP algorithm, but the trunk part is darker. The EPDN algorithm treats tree trunks darkly,
resulting in the loss of some detail, but it shows better performance for distant fog, such
as the woods afar in the second and third images. Some details are lost in the results of
both AOD and GFN algorithms, such as the trunk area in the first image and the tree crown
processing in the fourth image when using the AOD algorithm. The results of the GCA
algorithm and our proposed algorithm are more similar in color. The former is better for
the texture recovery of the trunk, and the latter is slightly darker. The UHD algorithm
obtains the brightest picture, but because of the brightness, some areas still have the visual
effect of being covered by mist, such as the first and second images.

The experimental results show that the proposed algorithm is effective for both in-
door and outdoor composite fog images, real-world fog images, and real forestry fog
images, and can obtain restored images with rich colors, clear textures, and more natural
visual effects.
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Figure 8. Dehazing results on RTTS testing set.
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Figure 9. Dehazing results on forestry testing dataset.
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4.5. The Impact of Prior Information on Model Performance

The main purpose of image dehazing is to make the details, edges, textures, colors,
and other features of the image clearer without making significant changes to the overall
tone, making the image appear more natural. Therefore, feature extraction from the image is
particularly important. The better and more detailed the feature information extracted and
preserved by the model, the clearer and more visually appealing the dehazed result will be.
Considering the network’s extraction of relevant features, i.e., the updating of the weight
parameters in the network, the following controversy arises: which approach, learning
features directly from hazy images or learning features from hazy images combined with
prior information (known features), can yield better dehazing results? This section verifies
the model’s requirements for input information through experiments. Section 2.2 of this
paper describes several commonly used haze-related features, which can be used as prior
information to assist network learning. The GFN image dehazing network adopts feature
fusion, indirectly proving the importance of contrast features and white balance features.
In order to reduce computational complexity for the entire dehazing algorithm, this section
chooses white balance, contrast, and gamma correction prior features, along with hazy
images as inputs, then compares and analyzes the results with single-input hazy images.
In the experiment, the dataset, optimization algorithm, loss function, etc., are unchanged.

Table 4 presents the comparison results between single-input and multi-input ap-
proaches. The results show that using prior information to assist the dehazing network in
feature extraction has certain improvement effects.

Table 4. The effectiveness of prior features. The best results are in bold.

Prior
Information/Evaluation Index PSNR SSIM Single-Image Processing Time (s)

w/o 22.5643 0.9210 0.23
w 26.0063 0.9594 0.26

4.6. The Impact of Upsampling Methods on Model Performance

This section aims to discuss the impact of different upsampling methods on the
performance of the proposed model. Methods such as deconvolution, interpolation (up-
sampling) + convolution, and Dup-sampling [56] + convolution can all restore the feature
map to the same size as the input image. However, deconvolution, being the inverse
process of convolution, requires careful parameter configuration (stride, etc.), as improper
configuration can lead to the appearance of a checkerboard grid artifact. Therefore, this
section only focuses on an experimental comparison of the interpolation + convolution and
Dup-sampling + convolution upsampling methods.

The interpolation + convolution upsampling method uses interpolation, such as
bilinear interpolation or nearest-neighbor interpolation, to restore the image resolution
and uses convolution to restore the channel number of the image. In this section, bilinear
interpolation + two convolutions are used to construct the upsampling module, as shown
in Figure 10a.

The Dup-sampling upsampling method proposed by Tian et al. can simultaneously
restore the resolution and channel number of the feature map [56]. As shown in Figure 11,
considering an input feature matrix of size H×W× C, this input matrix is first divided into
H ×W small matrices of size 1 × C. Then, each of these 1 × C small matrices is multiplied
by a matrix W of size C × N, resulting in several 1 × N matrices (where W is obtained
through training). Next, these 1 × N matrices are rearranged and combined to form
several 2× 2× N/4 matrices, where each 2 × 2 × N/4 small matrix represents a horizontal
stretch and vertical compression operation. Finally, these several 2 × 2 × N/4 small
matrices are neatly arranged together, completing one round of Dup-sampling. As shown
in Figure 10b, in this section, Dup-sampling is used together with two convolutions to form
an upsampling module. Experimental analysis and comparison are conducted between
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this method and the interpolation + convolution method while keeping the training set,
optimization method, and test set unchanged. Table 5 presents the comparison results
of the two upsampling methods. The results indicate that the interpolation upsampling
method using bilinear interpolation produces better haze removal results.

Figure 10. The structure of different upsampling modules. (a) Conv + upsampling structure (b) Dup-
sampling structure.

Figure 11. The structure of Dup-sampling method.

Table 5. The results of different upsampling methods. The best results are in bold.

Upsampling Information/
Evaluation Index PSNR SSIM Single-Image Processing Time (s)

Dup-sampling 23.6496 0.9426 0.28
Conv + upsample 26.0063 0.9594 0.26

5. Conclusions

In this study, we propose a lightweight forest scene image dehazing network based
on joint image priors. Based on the prior feature analysis of fog-free and foggy images of
forest scenes, the degraded foggy image and its three important feature maps, including
white balance, contrast, and gamma correction, are used as inputs to the network to assist
the network in learning and extracting more detailed image features. To better facilitate the
deployment of dehazing networks in forestry edge devices, a lightweight deep network is
designed. Four different kinds of Ghost Bottleneck blocks, which adopt an SE attention
mechanism to better learn the abundant forest image features for our network, are designed.
Focusing on reducing the computational cost of the network, a lightweight upsampling
module combining a bilinear interpolation method and a convolution operation is proposed
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and used in the decoding part, which requires less time and computation to obtain better
fog removal results. In order to better retain the texture features of the restored images and
make the recovery image visually more natural, a loss function combining L1 loss function
and multi-scale structural similarity (MS-SSIM) is adopted. As a result, the network
can learn more abundant image features and, thus, improve the overall image dehazing
capability in forest scene images.

The experimental results on both indoor and outdoor datasets demonstrated that the
proposed method achieves better performance when compared to other state-of-the-art
dehazing methods for forest scene images. However, like most of the existing methods,
there will be a certain degree of residual haze in thick hazy regions for real-world foggy
images. In our future work, we will further exploit the relevant prior features of hazy forest
scene images, improve our algorithm, and explore deep learning networks to better solve
the problem of residual haze in thick hazy regions of an image.
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