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Abstract: With global warming, the increase in the frequency and intensity of droughts have severely
affected the balance of terrestrial ecosystems. Although the immediate effects of drought on vegetation
growth have been widely studied, the time-lagged effects have been neglected, particularly in
ecologically fragile karst areas. We examined the vegetation growth trends and abrupt changes in
southwest China from 1990 to 2018 by reconstructing the normalized difference vegetation index
(NDVI); we then used the standardized precipitation and evapotranspiration index (SPEI) to explore
the drought evolution characteristics and the time-lagged effect of drought on vegetation growth.
The results showed that 97% of the study area exhibited a greening trend, which accelerated after
1995. Spring drought increased noticeably. We demonstrated that drought had a time-lagged effect on
vegetation growth; 27.28% of the vegetation lands had a lag time of less than 3 months, and the mean
lagged time in karst areas was shorter than that in non-karst areas. Compared to other vegetation
types, the cultivated vegetation had weaker drought resistance, while the mixed-forest had stronger
tolerance to drought. This study contributes to a further understanding of the drought–vegetation
relationship and has important implications for optimizing vegetation conservation strategies in
southwest China while coping with climate change.

Keywords: EEMD; BFAST; vegetation; NDVI; drought; time-lagged effect; southwest China

1. Introduction

Vegetation, as a producer of terrestrial ecosystems, is the fundamental link that con-
nects soil, water, and atmosphere, playing an irreplaceable role in regulating energy ex-
change, the terrestrial carbon cycle, and climate change [1]. As such, understanding the
vegetation dynamics and growth trends over a long time series is important for monitoring
terrestrial ecosystem changes as well as sustainable development. However, it is hard
to accurately quantify the large-scale vegetation evolution process and characteristics by
traditional methods under the complex interaction of multiple factors, such as climate
change, natural calamities, and human activities [2–4]. With the rapid development of
remote sensing technology, multi-temporal remote sensing images have been widely used
to detect vegetation cover changes. The satellite-based normalized difference vegetation
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index (NDVI) can accurately represent the metabolic intensity of vegetation through red
and near-infrared reflection data, which has been identified as a common index to evaluate
vegetation activity [5,6]. However, with atmospheric disturbances, cloud cover, and sensor
failures making the NDVI time series heavily noisy, as well as a lack of evidence from
long-term field observations, the efficiency of NDVI in monitoring long-term changes in
vegetation phenology still needs further exploration [7].

As a result of fertilization effects from increased CO2 concentrations [8] and the
implementation of effective land management policies [9], recent studies have determined
that one-third of the global vegetation has been turning green since the early 1980s [10],
and the NDVI at mid- and high-latitudes has improved significantly [11]. However, on
the other hand, owing to intensified extreme climate change and continued agricultural
expansion, some studies also show that global vegetation resilience has clearly declined
since the early 2000s, and the greening trend is weaker in the southern hemisphere than in
the northern hemisphere [12,13]. Many regions, such as equatorial rainforests, northern
Eurasia and the southwestern United States, might have reversed their long-term greening,
and even large-scale vegetation browning trends have occurred [14–16].

Although it remains controversial whether terrestrial net primary productivity has
declined, these studies consistently show significantly different greening trends across
regions. Studies for vegetation trends based on a single linear regression would likely enable
vegetation browning to be overshadowed by overall vegetation greening. To overcome
this problem, several methods have been proposed for detecting trend mutations, such
as Landsat-based detection of Trends (LandTrendr) [17], the Vegetation Change Tracker
(VCT) [18], the Breaks for Additive Seasonal and Trend (BFAST) algorithm [19], and the
Detecting Breakpoints and Estimating Segments in Trend (DBEST) algorithm [20]. Among
these, the BFAST algorithm allows the detection of abrupt changes in successive years of a
time series NDVI, estimates the number, timing and magnitude of breakpoints per pixel,
and has been widely used to monitor vegetation changes caused by forest disturbance and
restoration [21,22]. However, outliers, seasonality and noise in the long time-series NDVI
used for detection are usually neglected, which can influence the breakpoint detection
results [23]. Ensemble Empirical Mode Decomposition (EEMD), as an adaptive method,
can separate nonlinear and non-smooth physical components from signal sequences and
its effectiveness has been proven [24–26].

Drought, the most economically destructive natural disaster of the 21st century, in-
creases tree mortality [27], alters above- and below-ground carbon processes [28], and
causes agricultural yield reductions [29]. Under the background of global warming, the
frequency and severity of drought are increasing, which seriously threatens the global
ecosystem balance [30]. A comprehensive understanding of the spatiotemporal charac-
teristics and effect on vegetation of drought can contribute to drought mitigation and
adaptation. However, it has been noticed that the effects of a drought event on vege-
tation growth do not appear immediately. The phenomenon where current vegetation
growth is influenced by earlier water shortages is generally referred to as the time-lagged
effect [31,32]. Wei et al. [33] found that drought had a time-lagged effect of 88.37% of the
global grassland. However, the time and the intensity of time-lagged effects varies across
vegetation types and range; the time-lag effect of drought occurs within 2 to 3 months on
loess plateau grasslands [34] but can last 1–4 years in temperate and boreal forests [35].
Although many studies have been conducted on the lagging effects of global temperate
habitats and grassland, research using remotely sensed vegetation data and understanding
of subtropical and other vegetation-type zones are still limited.

In the past two decades, with large-scale afforestation and natural restoration, south-
west China has become a hotspot for the “greening” of global vegetation cover, and it is the
largest terrestrial carbon sink in China [36,37]. Furthermore, this area is the largest continu-
ous karst landscape distribution region in the world; the area of karst is over 3 × 105 km2

and is equal to one-quarter of the entire karst area in China, which makes the region vulner-
able to seasonal droughts [38]. Ecological degradation represented by rock desertification
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has become the biggest obstacle to regional social development [39]. Owing to severe
soil erosion and low environmental capacity, it is difficult for the vegetation in this area
to recover naturally after an extreme drought event [40]. In the future, with the drought
center shifting to the south [41], southwest China will suffer from more frequent drought
events. Although studies have been conducted to analyze the response of vegetation to
drought and the resilience after drought events in the region, there are few studies on
the lagged response of different vegetation types in karst and non-karst areas. Therefore,
understanding vegetation evolution trends and their lagged response to drought in the
southwest is important for formulating suitable policies for karst ecological restoration and
actively responding to the ecological crisis brought about by global climate changes. In
this study, we aimed to (1) detect the spatiotemporal evolutionary trends of vegetation in
southwest China and when and where the abrupt changes occurred from NDVI extracted
by EEMD; (2) compare the time-lagged effect of drought on different vegetation types in
karst and non-karst areas.

2. Materials and Methods
2.1. Study Area

The study area in southwest China (20◦–35◦ N, 96◦–113◦ E) is composed of five
provinces (municipalities and autonomous region), i.e., Sichuan, Yunnan, Guangxi, Guizhou,
and Chongqing, covering an area of 1.37 million km2 (Figure 1). The elevation ranges from
−20 m to 6304 m, gradually declining from northwest to southeast. The area is dominated
by a subtropical monsoon climate, characterized by rain and heat in the same period, and
the mean annual rainfall is above 1100 mm [42]. The main vegetation types are coniferous
forest, broad-leaved forest, mixed forest, grassland, shrub, alpine vegetation, and cultivated
vegetation. However, as one of the largest contiguous karst regions in the world, southwest
China is characterized by a fragile ecological environment [43], which makes the vegetation
growth in the region more vulnerable to meteorological drought.
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2.2. Data

Commonly used NDVI datasets include the SPOT-VGT NDVI, the GIMMS3g NDVI,
the AVHRR NDVI and the MODIS NDVI. The time series of the GIMMS3g NDVI dataset
is longer (from July 1981 to December 2015) but data from the past 3 years are lacking
and their resolution is low (8 km). The spatial resolution of SPOT-VGT and MODIS NDVI
is high (approximately 1 km), but the time series is short, covering only approximately
20 years. The raw NDVI dataset selected for this study was provided by the NOAA
Climate Data Record (CDR) of the AVHRR NDVI product, which is a daily product [44].
To reduce the influence of clouds, atmosphere, and solar altitude angle, the maximum
value composite method was performed by using the rgee package in R from the Google
Earth Engine platform to obtain monthly NDVI [45]. Then, the terra package was called
for band fusion and cropping. We finally acquired a long-term series NDVI of the study
area with a resolution of 5 km, covering the period 1990–2018. The dataset was taken from
the National Science & Technology Infrastructure database of the National Earth System
Science Data Center of China (http://www.geodata.cn, accessed on 3 October 2022). To
ensure the consistency and accuracy of the 29-year AVHRR NDVI dataset, the raw MODIS
and AVHRR NDVI datasets (2000–2018) were fitted by linear regression methods [46,47].
The results of the intercomparison of values and interannual trends between the AVHRR
and MODIS NDVI datasets were mapped to slopes and correlation coefficients (r), which
showed good agreement in magnitude and trend (Figure 2). The MODIS product used for
validation during 2000–2018 was provided by the International Scientific and Technical
Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn, accessed on 7 October 2022).
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Figure 2. The intercomparison of the accuracy and consistency between the AVHRR and MODIS
NDVI datasets during the overlapped period.

We acquired two meteorological datasets [48] with a spatial resolution of 1 km, includ-
ing precipitation and potential evapotranspiration (PET), provided by the National Tibetan
Plateau Data Center, Chinese Academy of Sciences (http://data.tpdc.ac.cn/zh-hans/, ac-
cessed on 14 October 2022). The precipitation datasets were generated by the Delta spatial
downscaling scheme from the global 0.5◦ climate data of the Climate Research Unit and the
global high-resolution climate data of WorldClim [49]. Using data from 496 independent
meteorological observation stations across China for validation, the results were credible.
The PET was estimated by the Hargreaves equation based on mean annual temperatures.
Though there are other methods to calculate PET, such as the Penman–Monteith equa-
tion [50] and the Thornthwaite equation [51], the biggest advantage of the Hargreaves
equation is that it is more applicable to estimate PET for long time steps [52].

http://www.geodata.cn
http://www.gscloud.cn
http://data.tpdc.ac.cn/zh-hans/
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Additional data, such as the updated high-resolution vegetation types (1:1,000,000) [53]
were collected from the website (https://gfbica06e19c435df441bhq6wvbbwpuknx6bvnfiac.
eds.tju.edu.cn/#/, accessed on 5 September 2022). The delineation of karst and non-
karst regions was based on the results of China geological surveys. The administrative
boundaries were sourced from the Resource and Environment Science and Data Center,
Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 17 September 2022).
In order to conduct the analysis, we re-sampled all the grid data at 5 km × 5 km with the
timescale from 1990 to 2018.

2.3. Methodology
2.3.1. Reconstructing NDVI Time-Series Based on EEMD

The flowchart of the methodology is shown in Figure 3. First, EEMD is a newly
developed adaptive method for signal analysis of nonlinear and non-stationary time-
series data and has been improved based on the empirical mode decomposition (EMD)
method [54]. EEMD decomposes the raw NDVI time series into several intrinsic mode
functions (IMFs) components with different period scales and a trend component by adding
white noise to the raw data and then calculating the ensemble average, which effectively
alleviates the “mode mixing” problem of EMD and retains binary filter capability [24]. The
decomposition process can be described as Equation (1), but it is worth noting that all IMFs
must meet two conditions, namely (1) the numbers of extreme points and zero points must
be equal to or differ by at most one; and (2) the mean value of the up-and-down envelope
corresponding to the maxima and minima is zero at any time [25].

S(t) =
n

∑
i=1

IMF(t) + R(t) (1)

In this study, all pixel values of monthly NDVI data from 1990 to 2018 were spatially
averaged, and an original S(t) time series with 348 values was obtained. Noises were
iteratively added with 100 numbers and a 0.1 standard deviation to the standardized
series, then we obtained IMFs and residual R(t); the results are shown in Figure 4. All
processing was implemented in MATLAB2021b; the EEMD package was sourced from
National Central University (https://ncu.edu.tw/, accessed on 23 June 2022).
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2.3.2. Analyzing Linear and Nonlinear Trends in Interannual NDVI

In this study, an ordinary least squares linear regression method was taken to detect
the overall trends of the NDVI interannual component from 1990 to 2018:

yi = a0 + b0x + ε (2)

where yi indicates the dependent variable interannual NDVI and x is the time; a0 and b0
represent regression intercept and slope, respectively; ε is the error term.

The interannual variation of NDVI was probably disturbed by sudden events, such as
wildfires, droughts and insect attacks, but such abrupt changes can be overshadowed in the
overall trend [55]. Therefore, we used the BFAST detection method to detect abrupt changes
in vegetation growth, and the trends in the NDVI time series differed before and after the
breakpoint. The main detection processes for breakpoints in time and space sequences
were implemented in R. When setting the seasonal model for the input parameters, the
seasonal element of the NDVI time series was removed in the EEMD process, so we set the
seasonal model to “none”. To avoid overly complex results and detect the most significant
breakpoint, we also set the maximum number of breakpoints to 1.

2.3.3. Calculating Standardized Precipitation and Evapotranspiration Index (SPEI)

SPEI is a widely used meteorological index in drought research proposed by Vicente
Serrano et al. [56]. Based on climatic water balance, it is calculated by integrating meteoro-
logical elements such as temperature, precipitation and evapotranspiration. We used the
monthly mean precipitation and PET to calculate the monthly SPEI across southwest China
from 1990 to 2018; the main procedures are as follows:

Step 1: The accumulation series of moisture gain and loss on different time scales Di
was established.

Di = Pi − PETi (3)

PETi and Pi indicate monthly potential evapotranspiration and precipitation, respec-
tively, and Di represents the differential between precipitation and evapotranspiration.
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Step 2: Since there may be negative values in the original data sequence Di, the 3-
parameter Log-logistic probability distribution was used to standardize the cumulative
probability density; the general form of the probability density function is as follows.

F(x) =

[
1 +

(
α

x − γ

)β
]−1

(4)

Here is how to calculate α, β, γ:
α = (ω0−2ω1)β

Γ(1+1/β)Γ(1−1/β)

β = 2ω1−ω0
6ω1−ω0−6ω2

γ = ω0 − αΓ(1 + 1/β)Γ(1 − 1/β)

(5)

Γ is the factorial function; ω0, ω1, ω2 are the probability-weighted moments of the
data sequence Di.

Step 3: To calculate SPEI, convert the cumulative probability to a normal standard
variable with mean zero and variance 1.

P = 1 − F(x) (6)

When p ≤ 0.5,

ω =
√
−2 ln(P) (7)

SPEI = ω − C0 + C1ω + C2ω2

1 + d1ω + d2ω2d3ω3 (8)

In the formula, C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
d3 = 0.001308. If the p-value is larger than 0.5, then the value of p is replaced with p−1.

To analyze seasonal droughts in southwest China, we calculated cumulative SPEI
values on a three-month time scale in May, August, November and the following February
as SPEI of spring, summer, autumn, and winter, respectively. The SPEI algorithm was im-
plemented by the “SPEI” package in Python (http://hdl.handle.net/10261/10002, accessed
on 14 May 2022). The drought classification criteria are presented in Table 1.

Table 1. Drought classification criteria based on SPEI.

SPEI Values Class

0.5 ≤ SPEI No drought
−0.5 ≤ SPEI < 0.5 Semi-arid or semi humid
−1.0 ≤ SPEI < −0.5 Mild drought
−1.5 ≤ SPEI < −1.0 Moderate drought

SPEI ≤ −1.5 Severe drought

2.3.4. Determining the Time-Lagged Effect of Drought on Vegetation

To assess the time-lagged effect of drought on vegetation growth, the Pearson correla-
tion coefficient (r) was used. We aimed to determine the maximum significant correlation
coefficient (Rmax_lag) between the present NDVI and the 1-month SPEI of the previous
12 months and in which month it occurred. Specifically, we combined the NDVI of each
month with the 1-month SPEI of the previous i months to create a time series, and com-
puted r with a time scale of i months (Equation (9)). Then, the Rmax_lag was determined
when ri was the maximum correlation coefficient of each grid; the corresponding i was the
time scale of the lag month (Equation (10)). For example, if the Rmax_lag occurred between

http://hdl.handle.net/10261/10002
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the monthly NDVI in April and the 1-month SPEI in November of the previous year, the
time-lagged scale was 5 months.

ri = corr(NDVI, SPEIi) 0 ≤ i ≤ 12 (9)

Rmax_lag = max(ri) 0 ≤ i ≤ 12 (10)

where: i represents the lag month (0 indicated no lagged effect), ri is the Pearson correlation
coefficient, NDVI is the monthly NDVI time series based on EEMD, and SPEIi means the
monthly SPEI time series with a lag of i months.

In addition, to further estimate the relationship between water balance and time-lagged
scales, we used the cumulative SPEI in December (i.e., annual SPEI) covering 1990–2018,
which represented the annual water balance conditions. The water balance gradient was
identified by the equal interval of the mean value of the annual SPEI (0.1) [34,57].

3. Results
3.1. Spatiotemporal Variations and Abrupt Change in Vegetation Growth

The interannual NDVI in southwest China displayed significant spatial heterogeneity.
The mean values ranged from 0.01 to 0.78 from 1990 to 2018 and were higher in the
southwest of the study area than that in the northeast (Figure 5a). By comparing the mean
NDVI of different vegetation types between non-karst and karst areas, it was found that,
except for marsh and alpine vegetation, the vegetation in non-karst areas grew better than
in karst areas (Figure 5b).
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Figure 5. (a) Spatial distribution of interannual mean NDVI after reconstructing from 1990 to 2018;
(b) interannual mean NDVI value of different vegetation types in karst and non-karst areas from 1990
to 2018.

In general, for the past 30 years, the vegetation growth in both non-karst and karst
areas has shown a significant greening trend, with the interannual NDVI increasing at a
rate of 0.0396/10a and 0.0357/10a, respectively (Figure 6a). Based on the linear analysis,
approximately 97% of the whole study area was observed to have a distinctly greening
trend (slope > 0, p < 0.05) during the period of 1990–2018 (Figure 6b). The greening trend
of different vegetation types varied slightly (Figure 6c); the interannual NDVI increasing
trends of coniferous forest, grassland and cultivated vegetation were higher than others,
and the vegetation greening trend was stronger in karst areas than in non-karst areas,
except marsh.
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Figure 6. (a) Temporal change trends in interannual mean NDVI from 1990 to 2018. (b) Spatial
change trends in interannual mean NDVI from 1990 to 2018. (c) The mean change trends of different
vegetation types in karst and non-karst areas from 1990 to 2018.

For southwest China, we detected an interannual NDVI trend breakpoint by BFAST in
1995 (Figure 7). Before the breakpoint, the vegetation greening trend was not significant
(slope = 0.0005 year−1, p = 0.82); after the breakpoint, this trend showed a clear and sharp
increase (slope = 0.0033 year−1, p < 0.001). Furthermore, we detected breakpoints across
different vegetation types (Figure 8). The breakpoints of coniferous forest, mixed forest,
broad-leaved forest, shrub, grassland, marsh, and cultivated vegetation all occurred near
1995, while meadow and alpine vegetation were found around 2000. Before the breakpoint,
unlike the decreasing trend shown by coniferous forests, mixed forest, and marsh (slope
= −0.0114–−0.0021 year−1), the interannual NDVI of other vegetation types exhibited a
weakly significant increase (slope = 0.0003–0.0042 year−1); after the breakpoint, the NDVI
variations of other vegetation types increased rapidly (slope = 0.0005–0.0043 year−1), except
for alpine vegetation and meadow.
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Figure 8. BFAST results for mean NDVI in the different vegetation types of southwest China.
(a) Abrupt breakpoints detected. Yt: the observed data at time t, St: the period component, Tt: the
long-term trend component, et: the remaining component, t: the time of the observation; the X-axis is
spaced in months, e.g., 1 for January 1990 and 348 for December 2018. (b) Abrupt change in trends.

Spatially, almost all grids of southwest China had breakpoints in interannual NDVI
trends, more than half of which occurred in the 1990s (with a proportion of 59.43%), mainly
distributed in the southwest of the study area (Figure 9a). Only approximately 10% of the
breakpoint pixels occurred in the 2010s, mainly located in the Sichuan Basin. By analyzing
the years when the breakpoints appeared in the karst and non-karst areas, it was found
that a majority of breakpoints in both areas mainly appeared during 1995–2000; before
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1995, there was little breakpoint (Figure 9b). For the karst areas, the proportion of pixels
with breakpoints in the 1990s, 2000s, and 2010s were 58.1%, 30.6%, and 11.8% of the region,
respectively, but for non-karst areas were 61.5%, 29%, and 9.5%, respectively.
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Figure 9. (a) Spatial distribution of the timing of breakpoints. (b) Timing of breakpoints in karst and
non-karst areas.

3.2. Meteorological Drought Spatiotemporal Changes

The spatial patterns of the mean SPEI for the whole year and for spring, summer,
autumn, and winter from 1990 to 2018 are represented in Figures 10 and 11a–d. The mean
SPEI values for the whole year were lower in the middle and higher ground, and only 0.9%
of the study area was under mild drought. Meanwhile, there was a significant difference in
the water balance conditions for the four seasons. The order of the mean SPEI was summer
(0.25) > winter (−0.11) > spring (−0.53) > autumn (−0.91). In spring, nearly 46.53% of
the study area suffered from mild drought and 13.84% was under moderate drought; in
summer, only 9.7% of the pixels experienced mild drought, mainly in the north region. In
autumn, over half of the area was subjected to moderate drought (approximately 53.97%),
and this was mainly concentrated in the south and northwest of the study area. In winter,
21.24% and 19.39% of the pixels experienced mild and moderate drought, respectively.

Forests 2023, 14, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 9. (a) Spatial distribution of the timing of breakpoints. (b) Timing of breakpoints in karst and 

non-karst areas. 

3.2. Meteorological Drought Spatiotemporal Changes 

The spatial patterns of the mean SPEI for the whole year and for spring, summer, 

autumn, and winter from 1990 to 2018 are represented in Figures 10 and 11a–d. The mean 

SPEI values for the whole year were lower in the middle and higher ground, and only 

0.9% of the study area was under mild drought. Meanwhile, there was a significant difference 

in the water balance conditions for the four seasons. The order of the mean SPEI was summer 

(0.25) > winter (−0.11) > spring (−0.53) > autumn (−0.91). In spring, nearly 46.53% of the study 

area suffered from mild drought and 13.84% was under moderate drought; in summer, only 

9.7% of the pixels experienced mild drought, mainly in the north region. In autumn, over half 

of the area was subjected to moderate drought (approximately 53.97%), and this was mainly 

concentrated in the south and northwest of the study area. In winter, 21.24% and 19.39% of 

the pixels experienced mild and moderate drought, respectively. 

 

Figure 10. Spatial distribution of annual mean SPEI from 1990 to 2018. 

Figure 12 illustrates the change trends of SPEI in the whole year and the four seasons 

of southwest China from 1990 to 2018. In general, SPEI showed an upward trend at a rate 

of 0.0014 year−1. The year 2009 was the driest year in southwest China with an SPEI value 

of −0.48, while 2016 was the we�est year with an SPEI of 0.45. In addition, it was found 

that the trend of drought alleviation appeared in all seasons except for spring. In summer, 

autumn, and winter, the SPEI increased at rates of 0.0033 year−1, 0.0031 year−1, and 0.0001 

Figure 10. Spatial distribution of annual mean SPEI from 1990 to 2018.



Forests 2023, 14, 781 12 of 21

Forests 2023, 14, x FOR PEER REVIEW 12 of 20 
 

 

year−1, respectively. In contrast, the SPEI in spring showed a decreasing trend at the rate 

of −0.023, indicating a marked trend towards drought. 

 

Figure 11. Spatial distribution of mean SPEI from 1990 to 2018. (a) Spring; (b) summer; (c) autumn; 

(d) winter. 

 

Figure 12. Temporal change trends in mean SPEI from 1990 to 2018. (a) Annual; (b) spring; (c) sum-

mer; (d) autumn; (e) winter. 

Figure 11. Spatial distribution of mean SPEI from 1990 to 2018. (a) Spring; (b) summer; (c) autumn;
(d) winter.

Figure 12 illustrates the change trends of SPEI in the whole year and the four seasons
of southwest China from 1990 to 2018. In general, SPEI showed an upward trend at a
rate of 0.0014 year−1. The year 2009 was the driest year in southwest China with an SPEI
value of −0.48, while 2016 was the wettest year with an SPEI of 0.45. In addition, it was
found that the trend of drought alleviation appeared in all seasons except for spring. In
summer, autumn, and winter, the SPEI increased at rates of 0.0033 year−1, 0.0031 year−1,
and 0.0001 year−1, respectively. In contrast, the SPEI in spring showed a decreasing trend
at the rate of −0.023, indicating a marked trend towards drought.
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Figure 13a represents spatial pattern of trends in annual SPEI across southwest China.
The change trends ranged from −0.039 year−1 to 0.034 year−1 for the period between
1990 and 2018. We observed a significant decrease in SPEI across the west of the study
area (p < 0.05), accounting for 34.64% of the total area. For seasons, the spatial patterns in
SPEI change trends differed. As shown in Figure 13b–e, the drought trend increased most
strongly in spring (nearly 94.27% of the pixels), followed by winter, and was alleviated in
autumn and summer. In spring, the drought intensified as a whole except for in the Sichuan
Basin and the southern Yunnan Province. In summer, 36.07% of areas had a decrease in
SPEI, and the drought was alleviated in the center of the study area. In autumn and winter,
drought reduction was concentrated in the eastern regions.

3.3. Time-Lagged Effect of Drought on Vegetation

Figure 14a shows the spatial pattern of the maximum correlation coefficient (Rmax_lag)
between NDVI and SPEI. In general, 87.63% of the vegetation had a significant correlation,
with 67.94% and 19.67% of the grids having positive and negative correlations, respectively.
The highest positive Rmax_lag was more than 0.24, primarily observed in the Sichuan Basin.
Negative correlations were mainly found northwest of the study area.
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tial distribution of time-lagged months when Rmax_lag occurred.

For the pixels with time-lagged effect (Figure 14b), the lag time was observed from 1
to 12 months. The percentage with a lag time of 12 months was the highest, accounting
for 15.03% of the vegetation lands, followed by a 1-month lag (11.63%), and the smallest
area percentage was found in the 4-month lag, only accounting for 4.71%. Moreover, nearly
27.28% of the vegetation lands had a short time lag (i.e., 1 to 3 months), mostly in the
northeast and southwest of the study area. For the long time scales (i.e., 9 to 12 months),
these were mainly located in the southeast with a percentage area of 39.28%.

Overall, the mean lag months were shorter in karst than in non-karst areas, indicating
that vegetation in this area was more frequently affected by drought. In non-karst areas,
approximately 55.17% of the grids had a lag time greater than 9 months, compared to
42.40% in karst areas (Figure 15a). For the different vegetation types, regardless of karst or
non-karst areas, the marsh exhibited the longest lagged months while cultivated vegetation
was the shortest (Figure 15b,c). The grassland, shrub, and broad-leaved forest in karst areas
showed longer response time to drought than those in non-karst areas, but for the other
vegetation types, the mean lagged time was not clearly different.

Through statistical analysis, potential relationships were found between the water
balance gradient (mean SPEI) and Rmax_lag and the lag time scales (Figure 16). As the mean
annual SPEI increased, the mean value of the positive Rmax-lag increased at first and then
dropped (R2 = 0.36, p < 0.05), which means that the intensity of the time-lagged effect of
drought on vegetation growth weakened as water conditions improved (Figure 16a). There
was a U-shaped relationship between the lagged time scale and mean SPEI, indicating that
in areas with more favorable hydrological conditions, the drought effects on vegetation
would be apparent only after a longer period of time (Figure 16b).
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4. Discussion

As a major carbon reservoir in China, as well as a typical ecologically fragile area,
the vegetation restoration in southwest China has been of great concern. This study
reconstructed NDVI using EEMD for long-term trend study and found that 95% of the
vegetation in southwest China showed a greening trend and a significant increase in
vegetation cover over the past three decades, further indicating that southwest China has
become a hotspot for vegetation growth [58,59]. In contrast, the greening rate of karst areas
(0.0357/10a) was slower than that of non-karst areas (0.0396/10a), which may be related to
the special topographical features of karst areas. The high permeability of limestone makes
the surface water in karst areas extremely susceptible to loss with poor soil development
conditions [60], which is not conducive to the growth and development of vegetation.
However, the increasing trend of interannual NDVI was not continuous, and we found that
59.43% of the study area experienced a trend reversal in the 1990s using BFAST breakpoint
detection. Vegetation in most areas showed a rapid upward trend after the breakpoint,
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but alpine vegetation tended to decline. This abrupt change in the vegetation greening
process is often ignored; in fact, the analysis of the abrupt change and understanding of
the hidden changes in the greening would help to reveal the actual trend of vegetation
growth and grasp the potential risk of vegetation browning [1,23,61]. Ecological restoration
projects are considered to be the main driver for accelerated vegetation greening after
abrupt change [62]. Since 2000, a series of forestry conservation management projects have
been implemented in southwest China to combat the increasing stone desertification in
karst areas, including the Grain to Green Program and natural forest protection, which have
enabled a great improvement in vegetation cover, supported by the study of Tong et al. [36].

Previous studies have used different drought indices to quantify the meteorological
drought variability and the severity of drought events in southwest China [63,64]. In this
study, we found that drought intensity was enhanced in the western part of the study area
by calculating the SPEI trends, which was consistent with the findings of Sun et al. [65].
In the context of climate warming, the weakened Indian Ocean monsoon has reduced
water vapor availability, which has led to more severe drought trends in this region [66,67].
Meanwhile, spring drought has significantly intensified, and the water deficit before the
vegetation green-up period will have a serious negative impact on the vegetation growth in
the middle and late growing seasons, which may lead to increased ecosystem vulnerability
to drought [68,69].

Understanding the drought–vegetation relationship is essential for predicting veg-
etation growth and ecosystem productivity under global warming. However, this will
remain a challenge in the future, as previous studies have demonstrated that early moisture
conditions could affect current vegetation growth [33], and the findings in this study also
found that vegetation growth tends to respond with a lag to drought events. However,
for different regions, there are obvious differences in the time-lagged months. It was
found that the lag time in karst areas was one month shorter than that in non-karst areas,
mainly because the rocks in karst areas have larger pores and fissures with strong infil-
tration, and also the shallower soil layer is not conducive to water storage, which makes
the response time of vegetation to drought shorter in this region [70]. For the different
vegetation types, the marsh and mixed-forest exhibit longer lagged months, which may
be attributed to the fact that different vegetation types have different responses and adap-
tation strategies to drought [71]. Woody plants, characterized by species richness and
complex root systems [72], can self-regulate to adapt to various climatic and hydrological
conditions [73]. These results will improve our understanding of the drought–vegetation
relationships. When assessing ecological health in the future, more attention should be
paid to the time-lagged effect of drought on different vegetation types and to developing
appropriate ecological restoration management measures based on the natural conditions
in karst and non-karst areas to achieve improved overall drought resistance of vegetation
for future climate change.

The AVHRR NDVI dataset has good performance in monitoring long-term vegetation
cover, but there are still some limitations. In this study, NDVI data at 5km resolution were
used to analyze different vegetation types, neglecting the more fine-scale vegetation frag-
mentations. Furthermore, fragmented vegetation types have strong scale differences [74]
and a single scale analysis is not conducive to capturing the real condition of vegeta-
tion NDVI.

5. Conclusions

In this study, we monitored the overall NDVI evolution trends and abrupt changes
after Ensemble Empirical Mode Decomposition (EEMD) reconstruction in southwest China
from 1990 to 2018. Subsequently, we analyzed the seasonal drought evolution trends using
the standardized precipitation and evapotranspiration index (SPEI), as well as the lag effect
of drought on vegetation growth across karst and non-karst areas. The results showed
that 97% of the whole study area observed a gradually greening trend from 1990 to 2018.
However, this greening trend has a non-linear characteristic, and we found an abrupt
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change in 1995 over the whole study area using the Breaks for Additive Seasonal and
Trend (BFAST) algorithm, where the vegetation greening trend increased rapidly after the
mutation point. For most of the vegetation types, the breakpoint occurred in the 1990s,
and the breakpoint occurrence time and the trend before and after the breakpoint differed
across vegetation types. Moreover, the drought in the study area gradually intensified
during the study period, especially in the western region. In regard to seasonality, drought
in spring and winter significantly intensified, while it eased in summer and autumn. The
shortage of water in the previous period can affect current vegetation growth, and the
time-lagged months in this area ranged from 1–12. Nearly 27.28% of the vegetation lands
had a lag time of less than 3 months, mostly in the northeast and southwest of the study
area. A U-shaped relationship was observed between SPEI and lag months, i.e., the better
the moisture conditions, the longer the lag time. The mean lagged time scales in karst areas
were shorter than in non-karst areas, the vegetation in this area was much less drought
tolerant. For various vegetation types, the mixed forest and marsh had a longer lagged
time and were more resistant to drought than other vegetation types. Our study reveals the
non-linear characteristics of different vegetation types in karst and non-karst areas and the
lagged response to drought, which is helpful for gaining a deeper understanding of the
evolutionary trends of vegetation and a more accurate grasp of the relationship between
vegetation and drought.
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