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Abstract: As one of the common mulberry tree species, Morus notabilis C. K. Schneid plays a significant
role in various industries such as silkworm rearing, papermaking, and medicine due to its valuable
mulberry leaves, fruits, and wood. This study utilizes the maximum entropy (MaxEnt) model to
predict the potential distribution of M. notabilis in China under future environmental changes. By
integrating the relative percentage contribution score of environmental factors with jackknife test
analysis, important variables influencing the distribution of M. notabilis were identified along with
their optimal values. The results indicate that Annual Precipitation (bio12), Precipitation of Driest
Month (bio14), Min Temperature of Coldest Month (bio6), Temperature Annual Range (bio5–bio6)
(bio7), Precipitation of Warmest Quarter (bio18), and Precipitation of Coldest Quarter (bio19) are the
primary environmental variables affecting its potential distribution. Currently, M. notabilis exhibits
high suitability over an area spanning 11,568 km2, while medium suitability covers 34,244 km2.
Both current and future suitable areas for M. notabilis are predominantly concentrated in Sichuan,
Yunnan, and Guizhou provinces, as well as Chongqing city in southwest China. Under the SSP5-8.5
scenario representing high greenhouse gas concentrations by 2050s and 2090s, there is an increase
in high suitability area by 2952 km2 and 3440 km2, with growth rates reaching 25.52% and 29.74%,
respectively. Notably, these two scenarios exhibit substantial expansion in suitable habitats for this
species compared to others analyzed within this study period.

Keywords: MaxEnt; environmental variables; suitable habitats; potential distribution area; habitat
suitability simulation

1. Introduction

Morus notabilis C.K. Schneid (Moraceae) is a species of mulberry. Mulberry leaves
are a crucial economic feed crop for silkworms [1]. The delectable taste of mulberry fruits
is highly regarded [2]. Mulberry paper, derived from the bark of the mulberry tree, was
initially produced and utilized during the Han Dynasty [3]. With medicinal value in all
its parts, mulberry trees hold significant importance as one of China’s key crops. Origi-
nating from China’s vast land, mulberry cultivation and sericulture boast a long-standing
history [4]. These popular trees thrive in diverse climates and complex terrain within an
ecological environment. Over time, the germplasm resources of mulberry trees have been
meticulously selected through artificial means [5,6], also known as round leaf or hairy vein
mulberry, which represents one common variety with deciduous characteristics [7,8]. M.
notabilis predominantly thrives in mountain valleys, forests, and canyons where it coexists
with broad-leaved forests; however, its distribution area necessitates high humidity levels
found specifically in high-altitude regions [9].
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Currently, research on M. notabilis primarily focuses on its biological characteristics
and genetic improvement, with no available research reports predicting its potential dis-
tribution [10,11]. The spatial distribution area of a species is a crucial ecological and
evolutionary characteristic. In addition to traditional field investigations, studying species
distribution has opened up new avenues for research [12]. By establishing an ecological
niche model based on the theory of ecological niche, we can better understand and apply
this species. The niche model predicts the future distribution of a species by examining the
relationship between its existence and environmental variables, thereby determining its
potential distribution area in the future [13,14]. Among various niche models, the MaxEnt
model stands out due to its advantages, such as its small sample size requirements and
accurate predictions [15]. The short run time, ease of operation, and high accuracy were
also important reasons for choosing this model [16]. The MaxEnt model has been used for
different species in different countries, for example, Thakur et al. [17] predicted suitable dis-
tribution areas for Elwendia persica (Boiss.) in the Indian Himalayan region, and Ji et al. [18]
predicted suitable distribution areas for Daktulosphaira vitifoliae (Fitch) globally. In this
study, we employ the MaxEnt model along with ArcGIS technology to predict both current
and future potential suitability distribution areas for M. notabilis under different climate
conditions [19,20]. This analysis aims to elucidate how environmental changes impact the
distribution patterns of M. notabilis while providing a solid foundation for further research
on this species.

2. Materials and Methods
2.1. Species Data Sources and Processing

M. notabilis, which is native to China, mainly distributes in the Sichuan, Yunnan, and
Guizhou provinces of China. In order to better understand the distribution of M. notabilis,
the information on M. notabilis was downloaded from the Global Biodiversity Information
Service (GBIF, https://www.gbif.org/, accessed on 12 January 2022) in this study [21]. The
retrieved distribution data were preliminary compared with the existing literature on this
species, and the latitude and longitude information of each distribution point was further
determined on Google Earth (http://www.earthol.com/, accessed on 12 January 2022). The
obtained geographic distribution data are the basic information for studying the ecology of
M. notabilis species. Strong spatial correlation between points would result in overfitting.
Buffer analysis was used to set the spatial resolution of environmental data at 2.5 arc-min
(about 4.5 km), and the buffer radius of 1.5 km was screened in ArcGIS 10.8 software
(Environmental Systems Research Institute, for USA, state of California) [22]. Finally, a total
of 101 effective distribution points of mulberry were obtained (Figure 1). Referring to the
MaxEnt 3.4.4 operation manual (https://biodiversityinformatics.amnh.org/open_source/
maxent/, accessed on 12 January 2022, RRID: SCR_021830), the longitude and latitude
coordinates were input into Excel and saved as *.CSV format [23].

2.2. Environmental Factors

The distribution of biological populations and the formation of ecological niches are
influenced by multiple factors, with environmental factors being particularly significant. To
comprehensively analyze the impact of the environment on the distribution of M. notabilis
in China, this study selected natural environmental factors from various aspects, including
bioclimate, topography, soil, and chemistry [24]. These factors were observed for their
influence on the distribution patterns of M. notabilis in China. A total of 19 bioclimatic
variables (bio1–bio19) reflecting precipitation and temperature characteristics were chosen
from the world’s climate database (http://www.worldclim.org/, accessed on 12 January
2022). In order to avoid autocorrelation between variables, a jackknife test was conducted
using MaxEnt 3.4.4 software (American Museum of Natural History, for USA, state of
New York) to identify dominant variables with higher contribution rates to the model
(Table 1) [25,26]. Following this test, two environmental variables (bio2 and bio17) that
made no contribution to the model were removed. Spearman correlation coefficient analysis

https://www.gbif.org/
http://www.earthol.com/
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
http://www.worldclim.org/
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was then employed to examine correlations among the remaining 17 bioclimatic variables
in order to enhance model prediction accuracy. Variables with correlation coefficients
|r| < 0.8 were selected, while those with significant correlations |r| ≥ 0.8 were identified
as important environmental factors contributing to the model outcome. Based on results
from both tests mentioned above, nine out of the initial 19 bioclimatic variables remained
along with other terrain-related, soil-related, and chemistry-related environmental factors
(Table 2), which together constituted inputs for modeling and analysis using MaxEnt. Soil
variables are obtained from the Food and Agriculture Organization (FAO, https://www.
fao.org/soils-portal/en/, accessed on 25 January 2022). Terrain variables are available from
the National Oceanic and Atmospheric Administration (NOAA, https://www.noaa.gov/,
accessed on 25 January 2022). Chemical variables are available from the World Ozone and
Ultraviolet Radiation Data Centre (WOUDC, https://woudc.org/home.php, accessed on
25 January 2022). Human variables can be downloaded from the Center for International
Earth Science Information Network (CIESIN, http://www.ciesin.org/, accessed on 25
January 2022).

Table 1. Percentage contribution and ranking importance of screened climate variables. Percent
contribution and permutation importance are used as measures to determine the importance of input
variables in the final model.

Bio-Climatic Variables Abbreviation Percent
Contribution/%

Permutation
Importance/%

Annual Precipitation Bio12 39.8 0.3
Min Temperature of Coldest Month Bio6 18.1 0

Temperature Annual Range (bio5–bio6) Bio7 13 3.3
Precipitation of Coldest Quarter Bio19 10.5 11.4

Precipitation of Warmest Quarter Bio18 8.1 1.8
Max Temperature of Warmest Month Bio5 3.4 6

Precipitation Seasonality (Coefficient of Variation) Bio15 2.7 1.5
Mean Temperature of Driest Quarter Bio9 1.1 12.5

Precipitation of Driest Month Bio14 1.1 2.3
Isothermality (bio 2/bio 7) (*100) Bio3 0.8 1.7

Mean Temperature of Warmest Quarter Bio10 0.5 4.1
Temperature Seasonality (SD *100) Bio4 0.4 48.5

Precipitation of Wettest Quarter Bio16 0.2 0
Precipitation of Wettest Month Bio13 0.1 1.4

Mean Temperature of Wettest Quarter Bio8 0.1 3.1
Annual Mean Temperature Bio1 0.1 1.3

Mean Temperature of Coldest Quarter Bio11 0.1 1
Mean Diurnal Range (Mean of monthly [max temp–min temp]) Bio2 0 0

Precipitation of Driest Quarter Bio17 0 0

The BCC-CSM1-1 coupling model (affiliated with the National Climate Center) se-
lected for this experiment is considered the optimal choice among global climate models
for regional climate simulation in China. Future climate data for the 2050s (2041s–2060s)
and 2090s (2081s–2100s) were obtained from the Climate Change, Agriculture and Food
Security website (CCAFS, https://ccafs.cgiar.org/, accessed on 25 January 2022). Based on
different shared socio-economic pathways (SSPs), as outlined in the IPCC’s fifth report, four
typical greenhouse gas concentration scenarios exist. In this study, three scenarios, namely
SSP1-2.6, SSP2-4.5, and SSP5-8.5, were selected to model the future suitable distribution
areas of M. notabilis. SSP1-2.6 is a significant cut in global CO2 emissions, reaching net zero
after 2050; SSP2-4.5 is CO2 emissions hovering at current levels until they begin to decline
in the middle of the century but do not reach net zero by 2100; and SSP5-8.5 is a level of
CO2 emissions that roughly doubles by 2050 (ICPP, http://www.icpp.ch/report/ar6/wg1,
accessed on 25 January 2022).

https://www.fao.org/soils-portal/en/
https://www.fao.org/soils-portal/en/
https://www.noaa.gov/
https://woudc.org/home.php
http://www.ciesin.org/
https://ccafs.cgiar.org/
http://www.icpp.ch/report/ar6/wg1
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Figure 1. Geographical distribution points of Morus notabilis C.K. Schneid.

Table 2. Environmental variables used to predict the distribution of Morus notabilis C. K. Schneid.

Variable Classification Environmental Variables Unit Abbreviation

Bio-climatic variables Annual Precipitation mm Bio12
Min Temperature of Coldest Month ◦C Bio6
Temperature Annual Range (bio5–bio6) ◦C Bio7
Precipitation of Coldest Quarter mm Bio19
Precipitation of Warmest Quarter mm Bio18
Max Temperature of Warmest Month ◦C Bio5
Precipitation Seasonality (Coefficient of Variation) mm Bio15
Precipitation of Driest Month mm Bio14
Isothermality (bio 2/bio 7) (×100) ×100 Bio3

Soil variables Soil reference depth / Ref-depth
Soil acidity and alkalinity / pH
Upper soil sediment content %wt. T-sand
Organic carbon content %wt. TOC
Soil evaluation indicators / USDA

Terrain variables The orientation of the terrain slope Degree Aspect
The degree of steepness and gentleness of surface units ◦ Slope
Altitude m Alt

Chemical variables Ultraviolet-B radiation nm UV-B
Human variables Human footprint / Hf

2.3. MaxEnt Modeling

Utilizing MaxEnt model software version 3.4.4., a total of 101 effective distribution
points along with 19 environmental factors were selected and imported to simulate potential
distributions of M. notabilis both presently and in future scenarios. Training data sets
comprised randomly selected species occurrence data amounting to 75%, while remaining
species data constituted test data sets comprising 25%. Additionally, ten repetitions of
training were conducted to mitigate any random aberrations. The receiver operating
characteristic (ROC) curve was obtained by the jackknife test. The area under the ROC
curve surrounded by the coordinate axis, that is, the area under the curve (AUC) value, was
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used as the judgment basis to evaluate the model simulation results. It generally ranges
from 0.5 to 1. The AUC value is taken as the average of 10 tests. The closer the value is to
1, the better the model’s prediction is, and between 0.70 and 0.80, it indicates an average
prediction. A range of 0.81 to 0.90 indicates that the prediction results are accurate. A value
between 0.91 and 1.00 indicates that the prediction is very accurate.

2.4. Classification of Suitable Grades

Combining with the results of the MaxEnt model, the suitability distribution of Mul-
berry in our country was analyzed by ArcGIS software. According to the probabilistic
classification According to the methodology developed by the IPCC in 2007, four separate
colors are used to indicate habitat suitability status: inappropriate area (white, p < 0.05),
low suitability area (yellow, 0.05 < p < 0.33), medium suitability area (green, 0.33 < p < 0.66),
and high suitability area (blue, 0.66 < p < 1).

3. Results
3.1. Model Optimization Results and Accuracy Evaluation

The ROC curve is a graphical tool that depicts the performance of a model, and the
AUC value represents the area under the ROC curve. In this study, the MaxEnt model
was employed twice to generate corresponding ROC curves. The validation results of
19 bioclimatic variables (bio1–bio19), introduced for the first time, demonstrated that the
AUC value for the training set was 0.945, while it was 0.943 for the test set (Figure 2).
Furthermore, averaging across both predictions based on dominant climate variables and
other environmental factors such as terrain, soil, and chemistry yielded an average AUC
value of 0.938 (Figure 3). Both AUC values fell within the range of 0.9~1.0, indicating highly
accurate predictions by the MaxEnt model.
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3.2. Model Performance and Key Environment Variables

In total, this study selected 19 environmental variables, comprising nine significant
bioclimatic variables and ten related to terrain, soil, chemistry, and other environmen-
tal factors. The relative contribution values of these variables were calculated using the
Maxent model (refer to Table 3). Annual Precipitation (bio12) exhibited the highest con-
tribution rate at 42.6%. Other environmental variables with relative contribution rates
exceeding 1% included Altitude, Min Temperature of Coldest Month (bio6), Human foot-
print (hf), Temperature Annual Range (bio5–bio6) (bio7), Precipitation of Coldest Quarter
(bio19), ultraviolet-B radiation (UV-B), Precipitation of Driest Month (bio14), Precipitation
of Warmest Quarter (bio18), and Soil reference depth (Ref-depth). Cumulatively accounting
for these ten variables, which amounted to a contribution rate of approximately bioclimatic
environmental factors with relatively high correlation, has been performed using Spearman
correlation analysis, and variables with relatively low impact have been omitted from
variables with high correlation. Moreover, 19 environmental variables continue to be put
into the MaxEnt model for modeling.

Table 3. Contribution percentage and ranking importance of environmental variables affecting the
distribution of Morus notabilis C. K. Schneid.

Variable Classification Abbreviation Percent
Contribution/%

Permutation
Importance/%

Annual Precipitation Bio12 42.6 0.4
Altitude alt 11 8.8

Min Temperature of Coldest Month Bio6 9.2 26.3
Human footprint hf 8.5 6.1

Temperature Annual Range (bio5–bio6) Bio7 7.5 19.4
Precipitation of Coldest Quarter Bio19 5.7 15.2

Ultraviolet-B radiation UV-B 4.5 5.8
Precipitation of Driest Month Bio14 3.8 7.2

Precipitation of Warmest Quarter Bio18 3 3.2
Soil reference depth Ref-depth 1 0.7

Soil acidity and alkalinity pH 0.8 1.8
Precipitation Seasonality (Coefficient of Variation) Bio15 0.5 0.2
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Table 3. Cont.

Variable Classification Abbreviation Percent
Contribution/%

Permutation
Importance/%

The orientation of the terrain slope Aspect 0.4 1.1
Soil evaluation indicators USDA 0.4 0.1

Upper soil sediment content T-sand 0.3 2.1
Max Temperature of Warmest Month Bio5 0.3 1

Isothermality (bio 2/bio 7) (×100) Bio3 0.1 0.6
Organic carbon content TOC 0.1 0.1

The degree of steepness and gentleness of surface units Slope 0 0

3.3. Predicting the Current Distribution of Morus notabilis C. K. Schneid in China

The 101 effective distribution points of M. notabilis were imported and analyzed using
the Maxent model combined with environmental variables. Results showed that under
current climate conditions, the distribution of M. notabilis in China exhibits high, medium,
low, and poor suitability (Figure 4). Highly suitable areas are concentrated in the Sichuan,
Yunnan, Guizhou, Chongqing, and Hubei provinces, with a total area of 20.08 × 104 km2

or 39.33% of China’s land area (Table 4). Sichuan is the main high-suitability region for M.
notabilis, accounting for 45.18% of all high-suitability areas in China, while Yunnan-Guizhou
Plateau has a total area of 10.19 × 104 km2 or about half (50.73%) of all high-suitability
regions in China; these two regions account for almost all (95.91%) highly suitable areas
nationwide, indicating that they are mainly located in southwest China along the upper
reaches of the Yangtze River, characterized by subtropical monsoon climate conditions.
It is estimated that the total area of moderately suitable areas is about 59.45 × 104 km2,
accounting for about 6.21% of China’s land area, and mainly distributed in the southwestern
region, Hubei, Hunan, and other areas close to the border of the southwestern region, with
a small amount distributed in the southern region of China, such as Guangxi and Taiwan.
The southwestern region includes Yunnan, Sichuan, Guizhou, Chongqing, and Tibet,
accounting for 88.17% of the total area of moderately suitable land in China. In contrast to
the concentrated distribution of highly and moderately suitable areas, low-suitability areas
are widely dispersed across regions such as Guangxi, Henan, and Shaanxi, as well as the
Southwest, South Central East, and North China. Among all provinces in China surveyed
for this study, Chongqing exhibits the highest proportion of highly suitable land (29.13%),
followed by Sichuan with 19.93%. Additionally, Chongqing has a remarkable percentage
(100%) of its total provincial area classified as suitable land, surpassing other provinces like
Guizhou, Yunnan, and Hainan, where over 90% is deemed suitable.

Table 4. Predicted suitability for Morus notabilis C. K. Schneid in China under current climatic
conditions.

Province High Suitable
Area (104 km2)

Medium
Suitable Area

(104 km2)

Low
Suitable Area

(104 km2)

Percentage of High
Suitable Areas in

Province (%)

Percentage of
Suitable Areas in

Province (%)

Sichuan 9.07 10.40 7.36 19.93 58.94
Yunnan 3.55 22.63 7.73 10.34 98.88
Guizhou 2.79 9.32 3.80 17.47 99.66

Chongqing 2.25 4.92 0.56 29.13 100.00
Hubei 1.60 3.24 7.75 9.12 71.74

Xinjiang 0.48 1.90 6.64 0.42 7.90
Guangxi 0.13 2.43 10.08 0.62 60.42
Shanxi 0.10 1.61 8.93 0.49 52.22
Taiwan 0.04 0.45 1.53 1.27 64.02
Hunan 0.02 0.66 5.11 0.13 29.91
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Table 4. Cont.

Province High Suitable
Area (104 km2)

Medium
Suitable Area

(104 km2)

Low
Suitable Area

(104 km2)

Percentage of High
Suitable Areas in

Province (%)

Percentage of
Suitable Areas in

Province (%)

Gansu 0.02 0.36 3.66 0.05 9.74
Shandong 0.01 0.34 6.43 0.07 44.24

Hainan 0.01 0.11 2.40 0.19 92.89
Jiangsu 0.00 0.17 5.38 0.04 57.60

Guangdong 0.00 0.13 7.89 0.01 52.48
Henan 0.00 0.29 9.97 0.01 63.63
Tianjin 0.00 0.06 0.47 0.14 43.73
Anhui 0.00 0.13 5.25 0.00 40.28
Beijing 0.00 0.07 0.67 0.00 42.64
Fujian 0.00 0.02 4.60 0.00 42.75
Hebei 0.00 0.07 2.87 0.00 14.97

Heilongjiang 0.00 0.00 0.00 0.00 0.01
Jilin 0.00 0.00 0.05 0.00 0.24

Jiangxi 0.00 0.00 0.27 0.00 1.80
Liaoning 0.00 0.05 1.65 0.00 10.90

Inner
Mongolia 0.00 0.00 0.02 0.00 0.02

Ningxia 0.00 0.00 0.06 0.00 1.09
Qinghai 0.00 0.00 0.13 0.00 0.18
Shaanxi 0.00 0.08 3.77 0.00 24.12

Shanghai 0.00 0.00 0.26 0.00 44.48
Xizang 0.00 0.00 0.01 0.00 0.00

Zhejiang 0.00 0.00 1.01 0.00 10.88
China 20.08 59.45 116.32 39.33 20.85
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3.4. Potential Distribution of Morus notabilis C. K. Schneid in the Future Period

In this study, the representative years for future prediction of M. notabilis were selected
as the 2050s and 2090s. Figure 5 shows the distribution of M. notabilis at different times in
each of the three SSP scenarios. Comparing with the current suitability distribution of M.
notabilis, both high- and low-suitability areas are projected to expand in the 2050s and 2090s.
Among all climate conditions, the high suitability area experienced maximum expansion
under the high SSP5-8.5 scenario. By the 2050s, a significant spread of high-suitability areas
is anticipated towards Guizhou and Yunnan provinces in southwest China, while primarily
concentrated in Sichuan and Yunnan provinces, supplemented by Guizhou, Chongqing,
and Hubei provinces; other regions show relatively less distribution at this time point.
By the year 2090s, a direct concentration of high-suitable areas is expected in Guizhou
province, mainly distributed across Sichuan and Guizhou, with supplementary presence in
Yunnan and Chongqing provinces. The current 2.79 × 104 km2 of Guizhou will increase to
7.63 × 104 km2 in the 2090s, and the proportion of high-suitable area in the total area of
the province will increase from 17.47% to 47.82%, with an increase rate of 173.73%. Based
on the data analysis of the future suitability changes of M. notabilis, as shown in Table 5,
in the 2050s and 2090s, the areas of high suitability and low suitability will increase to
varying degrees under the three SSP climate changes, while the areas of medium suitability
will decrease to varying degrees. As a whole, the total area of all suitable areas, including
high, medium, and low, will increase under all scenarios predicted in this study, among
which the SSP2-4.5 climate change in the 2050s will increase the area the most, with a total
increase of 15.65 × 104 km2.

Table 5. Predicted suitable areas for Morus notabilis C. K. Schneid under current and future cli-
matic conditions.

Predicted Area (104 km2) Comparison with Current Distribution (%)

Decade Scenarios High Suitable Medium Suitable Low Suitable High Suitable Medium Suitable Low Suitable

Current - 20.08 59.45 116.32 - - -
2050s SSP1-2.6 21.79 54.29 122.98 8.51 −8.68 5.72

SSP2-4.5 21.33 56.83 133.35 6.21 −4.40 14.63
SSP5-8.5 25.21 53.19 123.66 25.52 −10.53 6.30

2090s SSP1-2.6 22.00 54.08 127.50 9.53 −9.04 9.60
SSP2-4.5 24.97 49.94 128.63 24.34 −15.99 10.58
SSP5-8.5 26.06 48.99 128.36 29.74 −17.60 10.35

SSP2-2.6 represents the low-concentration climate scenario. Under this scenario in the
2050s, there will be an increase of 6.66 × 104 km2 and 1.71 × 104 km2 in the high-suitable
area and low-suitable area, respectively, compared to the current distribution, resulting
in an increase ratio of 8.51% and 5.72%. In the scenario of the 2090s, it is predicted that
both high-suitable areas and low-suitable areas will experience a respective increase of
9.53% and 9.60% compared to their current distribution, with changes similar to those
observed in the 2050s. The expansion of these suitability changes under low concentration
conditions was minimal and not regionally significant. Under SSP2-4.5, representing the
medium concentration climate scenario, M. notabilis exhibits small increases in both high
suitability (6.21%) and medium suitability (−4.40%) areas relative to its current suitable
range; however, there is a substantial expansion (14.63%) in low-suitability areas towards
Anhui, Shandong, Henan, and other regions in East China. In the 2090s, predictions
show more pronounced changes than those observed for the 2050s; specifically, there is
a significant increase (24.34%) in high-suitability areas by approximately 4.89 × 104 km2

mainly concentrated in Guizhou and Yunnan provinces. The high-concentration climate
scenario is represented by SSP5-8.5. Under this scenario, the predicted distribution of
different suitability areas for M. notabilis exhibits the most significant changes compared to
its current distribution [27]. In the 2050s and 2090s, the high-suitability areas will increase
by 5.13 × 104 km2 and 5.97 × 104 km2, respectively, with an increase ratio of 25.52%
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and 29.74%. Among the three climate conditions considered, SSP5-8.5 shows the highest
decrease in medium-suitable regions, with a decrease ratio of 17.60% in the 2090s due to
their conversion into high-suitable regions primarily in Yunnan and Guizhou provinces.

Forests 2024, 15, 352 10 of 17 
 

 

distribution [27]. In the 2050s and 2090s, the high-suitability areas will increase by 5.13 × 
104 km2 and 5.97 × 104 km2, respectively, with an increase ratio of 25.52% and 29.74%. 
Among the three climate conditions considered, SSP5-8.5 shows the highest decrease in 
medium-suitable regions, with a decrease ratio of 17.60% in the 2090s due to their conver-
sion into high-suitable regions primarily in Yunnan and Guizhou provinces. 

 
Figure 5. Potential distribution of Morus notabilis C. K. Schneid in the future period (2050s and 2090s) 
under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate change scenarios. Blue indicates a highly suitable 
area with a probability of higher than 0.66, light green indicates a moderately suitable area with a 
probability of 0.33–0.66, yellow indicates a poorly suitable area with a probability ranging from 0.05 
to 0.33, and white represents unsuitable areas. 

Table 5. Predicted suitable areas for Morus notabilis C. K. Schneid under current and future cli-
matic conditions. 

  Predicted Area (104 km2) Comparison with Current Distribution (%) 
Decade Scenarios High Suitable Medium Suitable Low Suitable High Suitable Medium Suitable Low Suitable 
Current - 20.08 59.45 116.32 - - - 

2050s SSP1-2.6 21.79 54.29 122.98 8.51 −8.68 5.72 
 SSP2-4.5 21.33 56.83 133.35 6.21 −4.40 14.63 
 SSP5-8.5 25.21 53.19 123.66 25.52 −10.53 6.30 

2090s SSP1-2.6 22.00 54.08 127.50 9.53 −9.04 9.60 
 SSP2-4.5 24.97 49.94 128.63 24.34 −15.99 10.58 
 SSP5-8.5 26.06 48.99 128.36 29.74 −17.60 10.35 

Figure 5. Potential distribution of Morus notabilis C. K. Schneid in the future period (2050s and 2090s)
under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate change scenarios. Blue indicates a highly suitable
area with a probability of higher than 0.66, light green indicates a moderately suitable area with a
probability of 0.33–0.66, yellow indicates a poorly suitable area with a probability ranging from 0.05
to 0.33, and white represents unsuitable areas.

3.5. Environmental Variable Analysis

According to preliminary screening work, a total of 19 environmental impact fac-
tors, including climate, terrain, soil, and chemistry, were selected as inputs for modeling
using the MaxEnt model (Figure 6). The jackknife test revealed that all 19 selected en-
vironmental variables significantly influenced the potential distribution of M. notabilis
to varying degrees. Analyzing the “with only variable”, “without variable”, and “with
all variables” scenarios depicted in Figure 6 reveals that each individual environmental
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variable contributes differently towards species’ distribution potential, as indicated by blue
strip lengths representing their importance when used alone. Consequently, Annual Precip-
itation (bio12), Precipitation of Driest Month (bio14), Min Temperature of Coldest Month
(bio6), Temperature Annual Range (bio5–bio6) (bio7), Precipitation of Warmest Quarter
(bio18), and Precipitation of Coldest Quarter (bio19) emerged as six key environmental
variables exerting substantial influence on M. notabilis potential distribution.
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According to the probability division method determined by the IPCC (IPCC, 2007),
a threshold of 0.33 is considered the lower limit for suitability regions. Figure 7 shows
the response curves of key environmental variables with respect to the probability of
distribution of M. notabilis, indicating that the suitability of the species varies with the
environment. The figure reveals an optimal value within an appropriate range for each
environmental variable’s influence on suitability distribution, resulting in the highest
probability of suitability distribution.

Based on this distribution probability response curve, we further determine the suit-
able range of potential distributions for each variable related to M. notabilis within our
research and testing scope (refer to Table 6). Analysis of the precipitation response curve
during the warmest quarter reveals that M. notabilis cannot survive in environments with
insufficient rainfall but has a relatively good tolerance for excessive water under sufficient
sunlight conditions. In the coldest region, variations in precipitation response curves are
similar to those observed during the driest month, with a small range between 27.53 mm
and 124.09 mm; an appropriate value of 0.92 is achieved at a precipitation level of 56.68 mm.
The adaptive response curves of annual precipitation, precipitation in the driest month,
and precipitation in the coldest area exhibit a distinct peak, with sharp rises and falls at
the zero point of the vertical axis and a narrow range of variation. This indicates that
precipitation directly influences the growth of M. notabilis, which has strict requirements
for suitable growth conditions. Insufficient or excessive water is unsuitable for its growth.
Consequently, the suitability distribution of M. notabilis is scarcely found in Inner Mongolia
due to low and uneven precipitation as well as drastic seasonal changes, as well as in
Xinjiang, where a dry climate leads to scarce rainfall. The minimum temperature during
the coldest month ranges from −6.05 ◦C to 12.05 ◦C; however, it is virtually absent when
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temperatures drop below −17 ◦C. The optimal temperature for M. notabilis is 2.58 ◦C with
a corresponding suitability value of 0.79; above this threshold (15.89 ◦C), the suitability
value remains constant at 0.19, indicating unsuitability for growth conditions. The annual
temperature suitable range spans from 10.00 ◦C to 31.02 ◦C, reaching its peak suitability
value at 26.50 ◦C before rapidly declining with further increases.
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Table 6. A suitable range of environmental variables for the potential distribution of Morus notabilis.

Environmental Variables Unit Suitable Range Optimum Value

Annual Precipitation (bio12) mm 824.15–1682.20 1088.98
Precipitation of Driest Month (bio14) Mm 6.94–30.27 17.37
Min Temperature of Coldest Month (bio6) ◦C −6.05–12.05 2.58
Temperature Annual Range (bio5–bio6) (bio7) ◦C 10.00–31.02 26.50
Precipitation of Warmest Quarter (bio18) Mm 448.09–1955 761.12
Precipitation of Coldest Quarter (bio19) mm 27.53–124.09 56.68
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4. Discussion

The MaxEnt model was established in this study using 101 distribution sites for
selected species and relevant environmental variables. The jackknife test analysis yielded
an AUC value of 0.938, indicating high accuracy of the model’s simulation results. Using the
MaxEnt model, we determined the current geographical range of suitability distribution for
M. notabilis and predicted its future changes in suitability distribution and environmental
adaptation under varying concentrations [28].

The prediction results of the MaxEnt model indicate that the current highly suitable
area for M. notabilis is primarily concentrated in Sichuan, with additional scattered distribu-
tion observed in Yunnan, Guizhou, Chongqing, and Hubei. The distribution of moderately
suitable areas is mainly found in Yunnan, with a significant regional presence also observed
in Sichuan, Guizhou, Chongqing, and Tibet. Conversely, low-suitability areas exhibit a
relatively extensive distribution pattern encompassing Guangxi, Henan, and Shaanxi, as
well as scattered regions across central China, South China, and Northwest China. While
the low-suitability areas are dispersed throughout various locations, the moderately and
highly suitable areas display notable concentration primarily within the renowned south-
western provinces and city of Sichuan, Yunnan, Guizhou, and Chongqing, respectively.
These four provinces have cold air blocked by the Qinling Mountains and influenced by
both East Asian monsoon and South Asian tropical monsoon systems, resulting in diverse
climate types characterized by abundant natural resources along with high terrain towards
the northwest transitioning to lower elevations towards the southeast [29]. The Sichuan
Basin exhibits a subtropical monsoon humid climate, characterized by mild winters and
hot summers, as well as distinct seasonal variations. The Yunnan-Guizhou Plateau is a
subtropical humid region with minimal temperature fluctuations throughout the year but
clearly defined dry and wet seasons. The climatic conditions in these four provinces and
cities are highly favorable for plant growth, making them an optimal choice. M. notabilis has
a limited distribution range and is typically found in mountain forests, canyons, mountain
gullies, and mixed broad-leaved forests. It is evident that the selection of suitable climatic
conditions for the growth environment of this species is quite stringent [30].

In the predicted 2050s and 2090s, the areas of high and low suitability are expected
to expand under three different climate conditions, while the area of medium suitability
is anticipated to decrease. Moreover, the highest increase in suitability is predicted under
the climate conditions of a high SSP5-8.5 emissions scenario. Under the low concentra-
tion scenario, there was a minor change in M. notabilis suitability by less than 10%, with
small changes and no significant regional expansion observed. However, under the high
concentration scenario, there was a substantial increase in suitability with an increased
area proportion ranging from 20% to 30%. SSP5-8.5 represents the highest greenhouse gas
emission scenario, and it has been found that M. notabilis exhibits optimal growth effects
under higher concentrations of greenhouse gases due to its photosynthetic capacity as
well as its adaptation to warmer winters and hotter summers caused by carbon dioxide
emissions-induced climate warming [31]. The predicted areas of high suitability mainly
expanded towards Guizhou and Yunnan provinces, indicating that these regions will
continue to be key habitats for Morus notabilis in future development [32,33].

In the course of this experiment, the jackknife test and Pearson correlation coefficient
were employed to identify 9 significant climate variables out of the initial selection of 19.
The growth environment of trees is influenced by numerous factors, with essential nutrients
for tree growth primarily absorbed through the root system from the soil [34]. Hence, in ad-
dition to climate factors, this study also considered soil and other environmental variables.
The MaxEnt model identified 10 crucial variables that affect the distribution of M. notabilis
among these environmental factors: Annual Precipitation, Altitude, Min Temperature of
Coldest Month, Human footprint, Temperature Annual Range (bio5–bio6), Precipitation
of Coldest Quarter, ultraviolet-B radiation, Precipitation of Driest Month, Precipitation
Warmest Quarter, and Soil reference depth. Similar findings were found when predicting
other plant species with MaxEnt. The mean UV-B of the highest month, seasonality of pre-
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cipitation, and human footprint were found to influence the distribution in the prediction of
suitable areas for Isoetes by Yang et al. [35]. Annual precipitation and soil depth were found
to influence the distribution in the prediction of Ephedra by He et al. [16]. Combining these
findings with the jackknife test revealed that the most influential environmental variables
are: Annual Precipitation, Precipitation Driest Month, Min Temperature Coldest Month,
Temperature Annual Range (bio5–bio6), Precipitation Warmest Quarter, and Precipitation
Coldest Quarter. The optimal range for these six influential environmental variables on
potential forest distribution indicated that precipitation during mid-age had an optimum
value of 1088.98 mm, precipitation during the driest month had an optimum value of
17.37 mm, precipitation during the warmest quarter had an optimum value of 761.12 mm,
and precipitation in the coldest areas had an optimum value of 56.68 mm. The response
curves for annual precipitation, precipitation in the driest month, and precipitation in the
coldest area exhibited distinct peak shapes characterized by steep inclines and declines
along a narrow variation interval. This suggests that M. notabilis has a limited suitable
range for precipitation and possesses poor tolerance to droughts and floods under dry and
cold air conditions [33,36].

In the warmest quarter, as precipitation decreased, the suitability of M. notabilis trees
increased significantly until reaching an optimal amount of precipitation. Beyond this point,
suitability slowly declined within a range of water amounts but still maintained a value of
0.47 in the end, indicating medium suitability for distribution [37]. Thus, while M. notabilis
has poor drought tolerance in warm climates with full sunshine, its flood tolerance is
significantly enhanced by rapid water evaporation [36]. The minimum temperature during
the coldest month ranges from −6.05 ◦C to 12.05 ◦C (with an optimal value of 2.58 ◦C), and
annual temperatures range from 10.00°C to 31.02 ◦C (with an optimal value of 26.50 ◦C).
These small temperature ranges suggest that M. notabilis has limited adaptability to varying
temperatures and may not be suitable for regions like Inner Mongolia or Xinjiang due
to their harsh climate conditions characterized by low precipitation or large temperature
differences between day and night, respectively [38]. For successful planting guidelines for
M. notabilis trees, it is recommended that the soil be irrigated and well-drained with high
fertility levels [39].

As a maximum entropy-based niche model, the MaxEnt model possesses several
advantages over other prediction models, including its ability to accurately predict with
small sample sizes and exhibit robust performance [40]. However, the MaxEnt model relies
on known distribution data for target species and selected environmental variables to study
the probability distribution of M. notabilis in a specific area [41,42]. The limited availability
of relevant data for M. notabilis may impact the accuracy of the model’s predictions to
some extent. M. notabilis is a mulberry tree that is influenced by various factors, such as
soil composition, climate conditions, light exposure, wind intensity, and air quality [43].
Although this study considers multiple environmental factors like climate, soil properties,
ultraviolet radiation levels, organic carbon content, and human activities, it should be
noted that species growth is influenced by numerous interacting variables, which were not
comprehensively addressed in this paper [30,32]. Mulberry leaves serve as the primary
feed for silkworms, while mulberry fruit has both medicinal and dietary uses. As society
develops and demands for silk production change, along with alterations in mulberry leaf
utilization and fruit consumption patterns [44], unpredictable effects from human activities
on M. notabilis distribution may arise [44]. Therefore, future studies should update their
predictions accordingly based on evolving circumstances [28].

5. Conclusions

Based on the existing distribution information of M. notabilis and selected environmen-
tal factors, combined with ArcGIS technology and the MaxEnt model, this study obtained
the current suitable habitat distribution of M. notabilis and also predicted the change in
suitability distribution and environmental adaptation of M. notabilis under different con-
centration climate conditions in the future. The results showed that the current and future
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middle-high suitable areas of Sichuan and M. notabilis were mainly concentrated in the
southwest of Sichuan, Yunnan, Guizhou, and Chongqing. In the scenario of high temper-
ature chamber gas concentration SSP5-8.5, the percentage increase in the high suitability
region was 25.52% and 29.74% in the 2050s and 2090s, respectively, and the growth of
suitable habitat was the most obvious. The key environmental variables affecting the
distribution of M. notabilis were Annual Precipitation (bio12), Precipitation of Driest Month
(bio14), Min Temperature of Coldest Month (bio6), Temperature Annual Range (bio5–bio6)
(bio7), Precipitation of Warmest Quarter (bio18), and Precipitation of Coldest Quarter
(bio19). In this study, the influence of the MaxEnt model on the distribution of suitable
habitat for M. notabilis was discussed, which provided some information for the planting of
M. notabilis in agriculture. Further research will be carried out with updated information in
the future.
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