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Abstract: The objective of this study is to examine the impact of climate and technology on forest
efficiency (FE) in China’s provinces from 2002 to 2020. First, the study used SBM-data envelopment
analysis (SBM-DEA) to estimate Chinese provinces’ FE using multidimensional forest inputs and
outputs. The climate influence is assessed using temperature, precipitation, sunlight hours, and
carbon dioxide levels in the second phase. A climate index was created using principal component
analysis (PCA) for a complete estimation. In addition to prior research, we analyze the technology
impact through two technological indicators: (i) research and development, and (ii) investment
in forests. Furthermore, we explore the non-linear influence of economic development on both
FE and climate quality. The regression study by CupFM and CupBC found that temperature and
precipitation increase FE, whereas sunlight hours and carbon emissions decrease it. The positive
association observed between Climate Index1, and the negative relationship noted for Climate Index2,
suggests that forests positively influence climate conditions, signifying that an improvement in FE
leads to an improvement in climate quality. Technology boosts forest productivity and climatic
quality. The environmental Kuznets curve shows an inverted U-shape relationship between economic
development and FE. Similarly, climate and economic development have an inverted U-shaped EKC
relationship. Urbanization reduces FE due to human growth and activity. Our findings are important
for forest management, climate change, and sustainable development policymakers and scholars.

Keywords: climate index; temperature-precipitation-sunlight-CO2; technology; forest efficiency;
principal component analysis; environmental Kuznets curve

1. Introduction

There has not been enough attention on how climate factors and technology can make
forest use more efficient. To address this knowledge void, the primary objective of this study
is to analyze the impact of climate factors such as temperature, precipitation, sunlight hours,
and CO2 on China’s forest efficiency (FE). Simultaneously, the question naturally posits here:
why is China positioned as a pivotal locus for research in this domain? Two compelling
reasons underline the significance of China in this regard. Firstly, China is a major actor in
the global forestry scene due to its vast forest cover, which extends throughout temperate,
subtropical, and tropical zones [1,2]. With approximately 211 million hectares (Mha) of
tree cover, China ranks fifth globally in terms of forested area. Secondly, China’s steadfast
commitment to fostering sustainable forestry practices assumes paramount importance in
the broader context of endeavors aimed at achieving carbon neutrality by 2060.

Recognizing the crucial role of forests in environmental conservation, China has
undertaken extensive initiatives for forest restoration and afforestation. To increase its
forest stock volume, since 2015, the Chinese government has committed considerably to its
nationally determined contributions (NDCs) [3]. China has had a remarkable rise in forest
coverage, going from 8.6% in 1949 to 23.04% by the end of 2020. The country’s large and
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diverse topography contains a substantial portion of the world’s forest resources. Much of
this expansion is attributable to the fruitful reforestation campaigns of the 1960s and 1970s.
The government is also working to improve forest sector risk management systems related
to climate change.

The impact of climate on forests has great implications and influences their health,
composition, and overall ecological dynamics [4]. For instance, changes in temperature,
precipitation patterns, and intense weather events can affect forest ecosystems, disrupt-
ing the supply of plant and animal species and the overall biodiversity [5]. However,
the effect of climate on FE is positive or negative depending on location and weather.
For example, one primary climate factor is temperature, which affects FE in two ways.
Temperature change can affect the growth and metabolism of trees and other plants [6].
Rising temperatures may lead to shifts in geographic distributions of certain species and
the composition of forest growth. Furthermore, warmer temperatures may contribute to
more efficient carbon sequestration, as enhanced tree growth can lead to greater carbon
uptake and storage in forest ecosystems [7,8]. On the other hand, intense temperature can
also negatively impact FE. High temperatures can disrupt the timing of seasonal events in
forests and affect the synchronization of ecological interactions. The second important fac-
tor is the precipitation pattern, which can take the form of prolonged droughts or increased
rainfall, and can impact plant water availability. Drought conditions lead to water stress,
reduced growth, and increased susceptibility to pests and diseases [9]. According to Shi
et al. (2016) [10], changes in precipitation patterns and rising temperatures may negatively
impact the growing circumstances of many tree species. As a result, adjustments need to
be made to planting and harvesting techniques.

Apart from that, carbon dioxide (CO2) in the atmosphere can significantly impact forest
ecosystems, influencing their efficiency, health, and overall functionality [11,12]. Rapid
changes in CO2 levels can be positive and negative, depending on various factors such as the
concentration of atmospheric carbon dioxide, environmental conditions, and management
practices. For instance, through the carbon fertilization effect, rising atmospheric CO2
concentrations can drive photosynthetic activity in trees and other plant life, thereby
increasing output [13]. Higher CO2 levels allow plants to maintain photosynthesis while
lowering water loss through stomatal control [14]. This can improve forest resistance
to drought stress and resource efficiency in water-limited areas. However, increasing
carbon emissions can disrupt forest ecosystem connections by interrupting their timing and
altering the chemical composition of plant tissues. In summary, climate change, through
temperature, sunlight hours, carbon, and precipitation pattern, poses challenges to FE by
influencing species composition, disrupting natural regeneration processes, and increasing
the vulnerability of forests to pests and diseases.

Many scholars have identified the various dynamic nexuses between FE and climate.
For instance, Reyer et al. (2017) [15] examined how climate change affects forest produc-
tivity. Addas’s (2023) [16] study highlights the importance of forests in enhancing human
well-being and addressing environmental issues such as air pollution. According to Torun
and Altunel (2020) [17], windstorms pose a significant risk to Turkey’s woods. Boisvenue
and Running (2006), García-Valdés et al. (2020), Pecchi et al. (2019), and Soucy et al.
(2021) [18–21] are among the numerous researchers that have discovered the long-term
effects of climate on forest growth. Forest carbon sink efficacy in 30 locations in China was
also studied by Wei and Shen (2022) [22].

Along with that, technology has substantial potential to enhance forest resource man-
agement. Thus, the second objective is to analyze the role of technology in improving
Chinese FE. The Chinese government has also implemented significant measures to ex-
pand forest cover further and optimize total factor productivity through sustainable forest
management practices. Furthermore, China intends to utilize technological advancements,
mechanization, and scientific research to enhance its forest resource efficiency and reduce
environmental impacts [23]. According to Montoya et al. (2023) [24], technology gives
forest administrators the ability to make knowledgeable judgments about the distribution
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of resources, the identification of wildfires, and the management of pests, all of which
improve the general vitality of the forest. Li et al. (2017) [25] highlighted the critical need
for China to increase investment in technology to enhance resource efficiency. Cheng et al.
(2010) [26] looked at the flow properties of wood and wood byproducts throughout the
early years of China’s economic development between 1953 and 2000. They emphasize
increasing research and development efforts to promote innovation and limit the exploita-
tion of resources. Wei and Shen (2022) [22] assessed the effectiveness of trees in absorbing
carbon dioxide, emphasizing the need to improve the industry’s structure through scientific
and technological advancements. Investing in human capital and incorporating technology
should be top priorities for sustainable forestry operations [27]. Hence, the government
must give priority to these issues to improve the effectiveness and long-term viability of
forest management [28–30], which serves as the foundation for the subsequent assump-
tions. Improving efficiency in the forestry industry is essential for maintaining a balance
between economic development and environmental sustainability. These activities boost
economic growth and affect the forest’s sustainable use of resources, including carbon
sequestration, biodiversity conservation, and timber availability [31]. Further, technology
has substantial potential to enhance forest resource management as remote sensing, GIS,
and satellite images are examples of cutting-edge technologies that could greatly improve
forest resource management by providing current information on forest health, monitoring,
and management [25,26].

The study’s objective is to evaluate the impact of climate and technology on FE of
China provinces from 2002 to 2020. Simultaneously, the study captured the impact of
FE on improving climate quality. According to our knowledge of the topic, we have not
found a comprehensive study regarding climate factors and FE. Therefore, this study
fills this gap in the existing research in the following way. First, the study measures
the FE of the 30 Chinese provinces using inputs and outputs. Second, this study used
various climate factors (temperature, precipitation, sunlight hours, and carbon dioxide)
to assess the climate impact on FE. Third, the study used two technology indicators (high
technology expenditure indicators and investments in forest technology). Fourth, the study
incorporated the non-linear impact of economic development on FE and simultaneous
climate quality. This makes this study a distinguishing addition to the literature. Based on
the study objectives, this study revolves around the following five research questions:

1. Do various climate factors such as temperature, precipitation, sunlight hours, and
carbon dioxide levels influence forest efficiency?

2. What is the combined impact of these climate factors on forest efficiency, and how can
it be quantified using a climate index?

3. How do technological advancements affect forest productivity and climatic quality?
4. What is the relationship between economic development and forest efficiency, and

does it follow the environmental Kuznets curve?
5. How does urbanization influence forest efficiency considering human growth

and activity?

2. Materials and Methods

This study analyzes the nexuses between climate factors, technology, and FE in China.
This study utilized a sample of 30 Chinese provinces (Table A1) from 2002 to 2020. The
identification of a time frame depends on the presence of data. Table 1 displays a compre-
hensive summary of the variables and their corresponding descriptive statistics. Both the
dependent and independent variable trends for 2020 are shown in Figures 1 and 2, and are
essential to our analysis.
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Table 1. Descriptive Analysis of Variables.

Variable (s) Acronyms Data Unit (s) Mean Std. Min Max

Forest
Efficiency FE

Input variables:
(i) Forest area (measured in

10,000 hectares),
(ii) Investment (measured

in 10,000 Yuan),
(iii) Number of employees

(measured in 10,000
persons).Output variable:
(i) Forestry output value

(measured in 100
million yuan).

0.528674 0.316123 0.0367 1

Temperature Temp Temp (◦C) 14.80526 6.500424 1 113

Precipitation Precp Precp (millimeter) 973.6053 1057.641 75 22,111

Sunlight SH SH(Hours) 2083.616 1272.826 598 26,512

Carbon
Emission CO2 CO2 emissions (mt) 299.133 267.4526 1.009399 1924.954

Economic
Development GDP GDP per capita (yuan) 38,037.18 27,576.64 3257 164,889.5

Technology1 Tech1 High-tech spending on
scientific research activities 38,519.1 27,780.62 3257 164,889

Technology2 Tech2 Completed investment in
forest (10,000) 827,440.9 1,291,055 3591 1.10 × 107

Urbanization Urb Urban population 52.23012 15.42139 20.85 90.26
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Figure 1. Forest Efficiency (dependent variable) trend for Year 2020.
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Figure 2. Independent variables trends of all provinces for 2020.

2.1. Forest Efficiency (Dependent Variable)

Forest efficiency, the dependent variable, is measured through several inputs, includ-
ing (i) forest area, (ii) investment, and (iii) number of employees. Output is measured by
(i) forestry output value by data envelopment method (for formula, see Section 3).

2.2. Climate and Technology (Major Independent Variables)
2.2.1. Climate Indicators’ Index

The first primary independent factors are related to climate. When discussing climate,
crucial elements such as temperature, precipitation, sunlight duration, and carbon dioxide
emission are regarded as key aspects [32]. These climatic variables have a decisive impact
on the environmental circumstances that directly and indirectly affect forest ecosystems.
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For instance, the development and health of trees are influenced by temperature and
precipitation patterns. At the same time, the duration of sunlight hours is a basic activity
for forest foliage. Furthermore, it is crucial to monitor carbon dioxide levels since it is
a fundamental greenhouse gas that significantly impacts the global climate. The study
intends to analyze climate-related variables and their impact on FE. It offers significant
insights into the complex interaction between climatic elements and technology features
in sustainable forest management. Simultaneously, the study highlights the importance
of forests in climate quality. The study constructed the two-climate index using principal
component analysis (PCA).

2.2.2. Calculation of Climate Index (Principal Component Analysis)

The current study utilized the PCA method, initially developed by Pearson (1901) [33]
and subsequently enhanced by Hotelling (1933) [34], to construct a composite climate index.
The study constructs two climate indices. Climate Index1 used three climate indicators:
(i) temperature (temp (◦C)), (ii) precipitation (millimetre), and (iii) sunlight (hours). These
variables are commonly used to assess climate conditions.

Climate Index2 used four climate indicators: (i) temperature (temp (◦C)), (ii) precipita-
tion (millimetre), (iii) sunlight (hours), and carbon emission (mt). The addition of carbon
dioxide emissions enhances Climate Index2 over Climate Index1. Climate Index2, which
considers CO2 emissions and traditional climatic parameters, may provide a more complete
and comparative assessment of climate trends and their economic implications.

2.2.3. Technology Indicators

The productivity of forest management is greatly affected by technological advances [35].
Thus, the study included two technology indicators: (i) technological development-1 (Tech1)
and (ii) technological development 2 (Tech2). The impact of Tech1 is measured through
the high technology expenditure indicators, while the impact of Tech2 is assessed through
investments in forest technology.

2.2.4. GDP and Urbanization Indicators

Consistent with Hao et al. (2019) [36], we utilized GDP per capita and squared GDP
per capita as indicators of economic development at the provincial level. This analysis aims
to assess the influence of the different developmental levels of Chinese provinces on forest
and climate conditions. Furthermore, this analysis included the influence of urbanization
as a controlled variable developed from previous research to reduce the possibility of biases
caused by omitted factors. Therefore, the variable is included in the study based on the
works of Liu et al. (2019) [37].

2.3. Empirical Modelling

In the previous section, we measured the climate indexes and the FE. However, these
are not enough to empirically estimate the climate impact on FE. This study composed
an empirical research model to examine the impact of climate, technology, economic
growth, and urbanization on FE, which was considered the dependent variable. The basic
framework of the baseline models is outlined as follows:

FEit = f
(

CFitTechit, GDPit, GDP2
it , Urbit

)
(1)

FEit = f
(

CF indexitTechit, GDPit, GDP2
it Urbit

)
(2)

CF indexit = f
(

FEitTechit, GDPit, GDP2
it Urbit

)
(3)

On the left-hand side, FE is the forest efficiency of the Chinese province. CF represents
the four climate factors. While CF Index is the climate indexes (i) CF index1 indicates the
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Climate Index1, and (ii) CF index2, is the Climate Index2. i is the cross-section of panels,
and t represents time.

We enhance the empirical baseline models in the subsequent empirical models’ equations.

Model − 1 : FEit = α0 + α1CFit + α2Techit + α3GDPit + α4GDP2
it + α5Urbit + µit (4)

CF Climate factors that are measured through temperature, precipitation, sunlight
hours, and carbon dioxide emission, Tech ( Tech1, and Tech2), are the technological mea-
surement, determined by expenditure on high technology and investment in the forest,
GDP is per capita economic development to measure the initial level of development,
while GDP2 measure the later economic development phase, Urb is the urbanization of
Chinese provinces.

Model − 2 : FEit = α0 + α1CF indexit + α2Techit + α3GDPit + α4GDP2
it + α5Urbit + µit (5)

Model − 3 : CF indexit = α0 + α1FE it + α2Techit + α3GDPit + α4GDP2
it + α5Urbit + µit (6)

In Model-2, CF index represents (CF index1 and CF index2), the climate indices measured
through PCA. CF index1 is measured using temperature, precipitation, and sunlight hours,
while CF index2 is measured using temperature, precipitation, sunlight hours, and carbon
dioxide for comprehensive analysis.

3. Empirical Approaches

The current study analysis started by examining the variability in slopes due to cross-
sectional dependence, and then analyzed unit roots and assessed co-integration. Finally,
the long-term parameters of the variables under study are meticulously estimated.

Step-1: SBM Data Envelopment (DEA) for FE.

Tone (2002) [38] introduced the non-radial Slacks-based measure (SBM) method for ef-
ficiency assessment in data envelopment analysis (DEA). SBM is practical as it immediately
handles surplus inputs and insufficient outcomes. SBM evaluates efficiency nuancedly by
considering slack (the variance between inputs and outputs at the production frontier).
This approach function can be explained as:

Consider a hypothetical study comprising n decision-making units (DMUs) desig-
nated as “Provinces.” m input indicators and s output indicators define each DMU. Let
Bj Represent the j-th DMU, where j ranges from 1 to n. The input indicators of DMU
Bj, denoted as

[
xij

]
, encompass a vector of dimension m × 1, where i varies from 1 to

m. Similarly, the output indicators of DMU Bj, denoted as
[
yrj

]
, consist of a vector of

dimension s × 1, where r ranges from 1 to s. The relative efficiency value of the j_0-th
DMU is represented as hj0. Subsequently, let us elucidate the operational mechanism of the
output-oriented SBM-DEA model with variable returns to scale.

Minhj0 = θ

s.t



n
∑

j=1
λjxij ≤ θxij0, i = 1, . . . , m

n
∑

j=1
λjyrj ≥ yij, r = 1, . . . , s

n
∑

j=1
λj = 1, λj ≥ 0, j = 1, . . . , n

(7)

The efficiency value denoted as θ at the j-th position is determined by a non-negative
vector λj. A DMU is classified as efficient exclusively when θ equals 1, signifying its
operation at maximum efficiency. Conversely, a value of θ other than 1 indicates inefficiency,
implying potential for enhancement in the DMU’s performance.

Step-2: Cross-sectional dependence (CD) and Slope Heterogeneity (SH)
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Subsequently, we utilized advanced econometric algorithms suitable for analyzing the
suggested model’s Equations (4)–(6). The algorithms consider the consistency of gradients
and the correlation between distinct groups’ cross-sections. Pesaran’s (2006) [39] research
emphasized the importance of accounting for cross-sectional dependence in panel data
analysis to prevent substantial bias and inaccuracies in estimated results. First, the data
is checked for the presence of CD before calculating the elasticities of coefficients. Then,
the uniformity of slopes across panels is examined. We employed the test CD developed
by Pesaran (2004) [40]. Further, the study employed the Pesaran and Yamagata (2008) [32]
slope homogeneity (SH) test for the absence of slope differences between panels.

Step-3: Unit Root Checks

Testing time series data for unit roots is essential to avoid erroneous regression findings
due to non-stationarity issues during model estimation [41]. The investigation commenced
by examining the presence of unit roots and originally employed the Im et al. (2003) [42]
integrated panel stationarity (IPS) test. This test allows for autoregressive (AR) parameter
variations across all the cross-sections based on the Dickey-Fuller procedures. In addition,
we conducted Pesaran’s (2007) [43] unit root test on each series, which takes into account
the cross-sectional dependency to analyze the stationary characteristics of the series.

Step-4: Co-integration Exploration

Unit root testing itself is insufficient for establishing the presence of co-integration
among the series. This research utilized co-integration as a first step before calculating
the elasticities of the coefficients [44]. Traditional first-generation co-integration tests may
not be appropriate for panel data analysis if variables show cross-sectional connection,
potentially leading to misleading results [45]. We used the Westerlund (2008) [46] method
to detect co-integrating vectors in panel datasets. This strategy presents a dual-testing
approach while also considering the potential negative effects of cross-sectional dependence.
The test individually examines the extent of error correction for each group and the full
panel. Westerlund utilized two distinct group-mean tests to examine the null hypothesis
of no co-integration. The first group utilizes Gt and Ga statistics, while the second group
depends on panel testing based on Pt and Pa. This test yields impartial outcomes in the
presence of serially correlated and heteroscedastic error factors. Furthermore, it considers
the association between different sections and any interruptions in the data [46].

Step-5: Long-run Parameter Estimations

Although many econometric methods for estimating parameter elasticities are avail-
able in the literature, the best course of action is to narrow down the econometric method
options according to properties of the data. While the approach adapts to the specifics of
the selected data dimension, researchers should be free to select an estimator that best suits
their needs after carefully considering the data’s benefits and drawbacks. Following, this
study used the “Continuously Updated and Fully Modified (CupFM)” and “Continuously
Updated and Bias Corrected (CupBC)” estimators developed by Bai and Kao (2006) [47].

We may obtain the continuously updated (CuP) estimator by iterating on these
two models.

b̂ =
(
∑k

i=1 x́im f̂ xi)
−1∑k

i=1 x́im f̂ ei (8)

ˆf vnt =
[(

nt2)−1∑k
i=1(ei − xi b̂

)(
ei − xi b̂)́

]
f̂ (9)

Here, m f̂ = it − t−2 f̂ ˆ́f , ir = t−2 ´̂f f̂ , vnt represents a decreasing diagonal matrix of r
maximum eigenvalues. So, Bai et al. (2009) [48] presented the Cup Fully Modified and Cup
Bias Corrected estimators, which are fully adjusted to reduce bias. The CupFM estimator is
obtained by solving the following two equations successively.

CupFM =

[
k

∑
i=1

x′ im⌢
f

xi

]−1 k

∑
i=1

[
x′ im⌢

f
e+i − t[

⌢

∆
+

eui −
⌢
φ i

⌢

∆
+

nu]

]
(10)
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⌢
f vnt =

[
(nt2)

−1
] n

∑
i=1

(ei − xi
⌢
b CupFM)(ei − xi

⌢
b CupFM)′

⌢
f (11)

where e+it = eit + ΩubiΩ
−
bi(

∆xit
∆ ft

). Whereas the CupBC proposed by Bai et al. (2009) [48] can be

approximated with,
⌢
b CupBC = bCup − t−1

⌢
ϕnt, where

⌢
ϕnt =

{
(nt2)

−1 k
∑

i=1

⌢
z

/
i
⌢
z i

}−1

[n−1
k
∑

i=1

⌢
φ i]

is the estimator of the bias term. Their associated covariances
⌢

Ωi =
t−1
∑

T=t+1
Y
[

i
k

]⌢
Ψρ[i] and

long-term covariance matrix
⌢

∆ i =
t−1
∑

i=0
Y
[

i
k

]⌢
Ψρ[i] are calculated. CupFM and CupBC are

distributed according to a normal distribution, allowing for typical conclusions to be made.
This method offers significant benefits compared to similar methods. The CupFM

and CupBC estimators surpass traditional econometric methods by properly handling
cross-sectional dependence, endogeneity, and autocorrelation concerns. They consistently
produce dependable outcomes when used with panel datasets. These estimators perform
well in various analytical situations, especially in producing reliable and thorough esti-
mates of the external features of regressors while ensuring efficiency for all integration
orders except for higher-order integrated series (I(2) or higher). Despite endogeneity, these
estimators give positive outcomes [48]. We utilized CupFM and CupBC estimators because
of their advantages in this investigation. The study utilized the fully modified OLS method
to guarantee the precision and dependability of the results.

4. Results and Discussion
4.1. Findings of Data Envelopment Analysis for Forest Efficiency

Figure 3 displays the FE values measured by the SBM-DEA method for the provinces
of China between 2002 and 2020. FE is a metric that assesses how a province utilizes
its forest resources, with a higher FE value signifying a greater degree of efficiency. The
province of Anhui shows the consistently highest FE. Similarly, Fujian, Guangdong, and
Guangxi also demonstrate high levels of FE over the years, suggesting effective usage of
their forest resources. Chongqing FE is continuously increasing.
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Xinjiang shows lower rankings in FE, indicating possible issues or inequities in manag-
ing forest resources. The study shows the different ways that China’s forest resources have
been used wisely in different parts of the country over the last 20 years. Figure 4 shows
the average FE of different regions, with southern and eastern China having the highest
average efficiency and Northwest China and Northern China having the lowest FE.
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4.2. Findings of Climate Indices’ Principal Component Analysis

Table 2 displays the essential components of Climate Index1, generated from three
significant climate factors: temperature, precipitation, and sunlight hours. The findings
indicate that the initial component possesses eigenvalues of 1.47419. Conversely, the
value of the second component is 0.840774, exhibiting a consistent decline until the third
component, which manifests a negligible deviation of 0.685034%. The statistics indicate
that the initial component demonstrates the greatest degree of variability. However, the
subsequent section of Table 2 presents the eigenloadings, which are negative and statistically
insignificant. This research aims to generate the Climatic Index1 by utilizing Comp-1.

Table 2. PCA of Climate Index1.

Component Eigenvalue Difference Proportion Cumulative

Comp1 1.47419 0.633417 0.4914 0.4914
Comp2 0.840774 0.15574 0.2803 0.7717
Comp3 0.685034 . 0.2283 1

Variable (s) Comp1 Comp2 Comp3
Temperature 0.628 0.1557 0.7625
Precipitation 0.5811 0.5579 −0.5925

Sunlight hours −0.5177 0.8152 0.2598

To obtain comprehensive results, the research employed the four primary components
of the Climate Index2: temperature, precipitation, sunlight hours, and CO2, as illustrated in
Table 3. The essential components of Climate Index2 are presented in Table 3. The findings
indicate that the initial component possesses an eigenvalue of 1.48648. Conversely, the value
of the second component is 0.973458, and it decreases gradually until it reaches the fourth
component, which fluctuates by a negligible amount of 0.693239%. The statistics indicate
that the initial component demonstrates the greatest degree of variability. Nevertheless,
the minimal loadings are denoted by the eigenloads presented in the subsequent section
of Table 3. The results of the scree plot, component loading, and score variables (PCA)
tests for Climate Index1, shown in Figure 5a–c. While the scree plot, component loading,
and score variables for Climate Index2, given in Figure 6a–c. PCA shows that Comp-1
was the right choice for Climate Index1 and Climate Index2. The overarching objective of
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this study is thus to develop the Climate Index2 utilizing Comp-1 in preparation for the
present examination.

Table 3. PCA of Climate Index2.

Component Eigenvalue Difference Proportion Cumulative

Comp1 1.48648 0.513022 0.3716 0.3716
Comp2 0.973458 0.126635 0.2434 0.615
Comp3 0.846823 0.153583 0.2117 0.8267
Comp4 0.693239 . 0.1733 1

Variable (s) Comp1 Comp2 Comp3 Comp4

Temperature 0.6068 0.1696 0.2075 0.7483
Precipitation 0.5751 0.0045 0.5378 −0.6165

Sunlight hours −0.4884 −0.2693 0.7956 0.2365
CO2 −0.2501 0.948 0.1864 −0.0638
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4.3. Findings of Econometrics Primary Evaluation

Correlation is utilized to assess the initial state of the parameters. The correlation
assessment is outlined in Table 4. The results indicate that temperature and precipitation
have a positive impact on enhancing forest productivity. There is a negative association
between sunlight hours and CO2 levels in forests. The initial level of economic develop-
ment, as measured by GDP, exhibits a positive association, whereas further development
demonstrates a negative correlation. Greater technological progress may align with a
higher occurrence rate and enhanced efficiency in forest management. Furthermore, there
exists a robust positive/negative correlation between CF Index1 and CF Index2, suggesting
a high degree of consistency between two distinct measures of a certain variable. Overall,
the correlation matrix provides valuable insights into the interdependencies among the
analyzed variables, identifying prospective topics for future inquiry or analysis.
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Table 4. Correlation matrix analysis.

Variable (s) FE Temp Precp SH CO2 GDP GDP2 Tech1 Tech2 Urb CF In-
dex1

CF In-
dex2

FE 1
Temp 0.392 1
Precp 0.2525 0.2505 1

SH −0.1867 −0.1902 −0.137 1
CO2 −0.0563 −0.0778 −0.1242 0.0318 1
GDP 0.0494 −0.0142 −0.031 0.0717 0.2285 1
GDP2 −0.041 −0.0107 −0.0397 0.0607 0.2316 0.9488 1
Tech1 0.1941 0.1175 0.0722 −0.0577 0.0716 0.2828 0.2199 1
Tech2 0.3571 0.1777 0.1002 −0.0787 0.1221 0.3577 0.3687 0.0593 1
Urb −0.3088 −0.0168 −0.0004 0.0614 −0.0217 −0.3702 −0.3173 0.0337 −0.5345 1

CF Index1 0.2525 0.2505 1 −0.137 −0.1242 −0.031 −0.0397 0.0722 0.1002 −0.0004 1
CF Index2 −0.4057 0.7076 0.697 −0.5875 −0.3161 −0.0989 −0.0974 0.1026 0.1443 −0.0299 0.697 1

We utilized CD for the determination of cross-sectional properties. This stage enables
the identification of feasible methodologies for analyzing stationarity and calculating
long-term parameters. The estimations are displayed in Table 5. The findings of the
CD tests refute the absence of the CD in the dataset and establish a link within the data.
The findings indicate that the policies implemented by the provinces’ economy have
a ripple effect, highlighting the importance for countries to be cautious in their policy
development. In addition, we conducted separate tests (Table 6) on the three models to
assess the homogeneity of their slopes. The results show that the models’ slopes are not
uniform, therefore disproving the hypothesis of homogeneous slopes. The analysis of
the data on cross-sectional dependence and slope heterogeneity (SH) has given enough
information to select the subsequent econometric series.

Table 5. Findings of cross-dependence (CD) test.

Variable (s) CD (2004) p-Value

FE 11.567 0.000
Temp 13.132 0.000
Precp 4.803 0.000

SH 4.822 0.000
CO2 75.545 0.000

CF Index1 4.804 0.000
CF Index2 6.373 0.000

GDP 87.96 0.000
GDP2 85.542 0.000
Tech1 71.837 0.000
Tech2 67.278 0.000
Urb 78.904 0.000

Table 6. Findings of slope heterogeneity (SH) analysis.

Slope Homogeneity

Model
Tested

Climate to Forest Efficiency
Model1

Climate to Forest Efficiency
Model2

Forest Efficiency to Climate
Model3

Test ∆ Adj.∆ ∆ Adj.∆ ∆ Adj.∆
Statistics 12.889 14.506 11.686 13.614 10.350 12.058
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Thus, we utilized the IPS and CIPS tests to examine panel unit roots. Based on
the statistics presented in Table 7, the variables show unit roots at the level but display
stationary features when exposed to the first difference testing. Therefore, it may be
concluded that the chosen series exhibits characteristics of first-order stationarity. Based on
data that showed cross-sectional correlation, diverse slopes, and unit roots in the series,
we used the method described by Westerlund to perform co-integration tests. There is a
long-standing relationship between these factors (Table 8).
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Table 7. Findings of unit root analysis.

Variable (s) I.P.S. Unit Root Test CIPS Unit Root Test

Statistics p-Value Statistics p-Value Level First Diff Order I (1)

FE 2.1222 1.0000 −3.0345 0.0000 −2.388 −4.556 Yes
Temp 0.3160 0.6240 −9.9929 0.0000 −2.260 −4.649 Yes
Precp −0.1212 0.4518 −3.1089 0.0009 −1.987 −4.629 Yes

SH 0.5631 0.7133 −7.8220 0.0000 −2.029 −4.489 Yes
CO2 −0.6340 0.2630 −5.1836 0.0000 −1.463 −3.664 Yes

CF Index1 −0.2742 0.3920 −5.2452 0.0000 −2.051 −5.712 Yes
CF Index2 −1.0970 0.1363 −3.4894 0.0002 −1.903 −3.535 Yes

GDP 0.7634 1.0000 −3.2391 0.0000 −1.016 −3.129 Yes
GDP2 5.2731 1.0000 −13.2442 0.0000 −1.406 −3.560 Yes
Tech1 15.3119 1.0000 −2.3455 0.0095 −2.140 −3.585 Yes
Tech2 −1.0519 0.1464 −5.9803 0.0000 −1.185 −4.254 Yes
Urb 0.3158 0.6239 −2.3490 0.0094 −2.089 −3.613 Yes

Table 8. Findings of co-integration analysis.

Westerlund ECM Panel Cointegration Tests (2008)

Model
Tested Climate to Forest Efficiency Model1 Climate to Forest Efficiency Model2 Forest Efficiency to Climate Model3

Statistics Gt Ga Pt Pa Gt Ga Pt Pa Gt Ga Pt Pa

Value −2.908 −4.005 −2.908 −3.531 −2.806 −3.351 −12.620 −3.153 −2.261 −6.044 −10.538 −5.123

Z-Value −3.817 5.506 −3.817 3.100 −3.272 5.973 −1.894 3.360 −2.949 1.549 −2.537 −0.740

p-value 0.000 1.000 0.000 0.999 0.001 1.000 0.029 1.000 0.002 0.939 0.006 0.230

4.4. Findings of Long-Run Analysis

CupFM and CupBC were chosen for the long-run study’s findings because of their
superior characteristics in comparison to other traditional estimators. The obtained results
from these estimators are presented in Table 9. Initially, when considering FE as the
dependent variable, we assessed each climate factor (temperature, precipitation, and
sunlight hours (column 1 to column 4)) individually.

Table 9. Impact of Climate Index1 on FE.

Variable (s) Dependent Variable (Forest Efficiency)

CupFM CupBC

Temp 0.292 *** 0.172 *** 0.103 ***
(6.63) (4.75) (4.17)

Precp 0.23 5 *** 0.248 *** 0.237 ***
(10.49) (9.32) (9.87)

SH −0.0697 * −0.279 *** −0.0729 ***
(−1.69) (−5.12) (−3.43)

GDP 5.312 *** 5.234 *** 7.426 *** 3.339 *** 2.517 *
(4.31) (4.62) (5.87) (3.34) (1.79)

GDP2 −0.234 *** −0.233 *** −0.329 *** −0.145 *** −0.115 *
(−4.07) (−4.38) (−5.54) (−3.10) (−1.81)

Tech1 0.0423 *** 0.0421 *** 0.0931 *** 0.0378 *** 0.0748 ***
(4.02) (4.22) (10.55) (3.63) (7.48)

Tech2 0.0334 * 0.0451 *** 0.0388 * 0.0417 *** 0.0728 ***
(1.65) (2.63) (1.83) (2.85) (3.46)

Urb −0.0610 −0.132 −0.191 *** −0.136 * −0.00261 ***
(−0.98) (−1.51) (−2.98) (−1.64) (−3.23)

CF Index1 0.765 *** 0.228 ***
(10.06) (9.87)

Number of groups 30 30 30 30 30

Note: t-values in parentheses *** p < 0.01, * p < 0.1.
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The results showed that temperature tends to escalate the FE of Chinese provinces by
0.292%, which is in line with Collalti et al. (2020) [49].

In column 2, findings show that a 1% increase in precipitation would raise the FE by
0.235%. These results are in line with (Collalti et al. 2020; Sheil., 2018; Xu et al. 2024) [49–51],
who stated that precipitation is important for forests. Increased precipitation can boost
FE in Chinese regions. For instance, sufficient precipitation allows trees to maintain
photosynthesis and transpiration by providing moisture. This boosts biomass output
and forest health. Furthermore, precipitation refills soil moisture, which tree roots need
to absorb and cycle nutrients. Precipitation increases forest biodiversity and ecological
resilience. However, sunlight hours do not positively increase the FE, indicating that a 1%
increase in sunlight would lower the efficiency of the forest by −0.0697%.

Subsequently, we composed the Climate Index1 (CF Index1) using three climate factors
to assess the communal effects of climate. The results showed that the overall impact of
Climate Index1 is positive. It implies that a 1% increase in precipitation, sunlight hours,
and temperature would increase the FE by 0.765%.

Rapid economic growth often occurs in tandem with the depletion of forest resources.
Thus, the non-linear impact of economic growth in the lens of EKC is observed. The
results showed that continuous economic growth is unfavorable for FE, as the initial impact
is positive, but the later effect is negative. As an example, column 1 findings showed
that a 1% increase in economic growth may lead to a boost in FE by 5.312% at the initial
level. However, the economic development the FE would be decreased by −0.234%. In
other words, the study finds an inverted U-shaped Kuznets curve. The results can be
verified with Hao et al. (2019) [36]. The impact of technology (Tech1) in terms of research
and development on FE is positive, indicating a 1% increase in research and development
activities would increase the FE by 0.04% in column 1. Similarly, the forest-based investment
(Tech2) is significantly positive to escalate the FE of the Chinese province by 0.0334%. These
findings can be robust with Venanzi et al. (2023) [52], who argued that technology can be
effective in improving the efficiency of forests by managing and monitoring forest activity.
Further, El-Lakany et al. (2001) [53] backed our study findings as they highlighted that
technological developments have had a constructive impact on forest areas and conditions.
In contrast, the urbanization expansion significantly harms the efficiency of forests. A 1%
increase in urbanization would reduce the FE by −0.06% to 0.1% (columns 1–4). These
results are in line with (Zhang et al., 2020) [54].

Climate Index1 did not consider carbon emission impact, which is a significant factor
in climate. Thus, we estimate the Climate Index2 (CF Index2) with CO2 and the findings
described in Table 10. First, the individual impact of carbon emission (CO2) on FE is
negative, indicating that a 1% increase in carbon emission would decrease the FE by
−0.0987% to −0.110%. Further, the index also showed a negative influence (−0.0748%)
towards FE after the insertion of CO2. Table 10 findings are again indorsed an inverted
U-shaped Kuznets curve, as the initial impact of economic growth is positive and later
is negative. Technology is found to be positive for the increase of FE, consistent with
previous findings.

Simultaneously, forests are also important to improve the climate condition. Consider-
ing this, the study evaluates the FE impact for improving climate conditions. The climate
index (temperature, precipitation, sunlight hours, and CO2) is the dependent variable. The
results described in Table 11 showed that forests positively increase climate quality by con-
trolling carbon emissions and other factors. It implies that a 1% increase in FE would lead
to improve the climate quality by −1.512%. UNDP [55] asserts that healthy forests have
a significant impact on climate change mitigation through their function as carbon sinks,
effectively absorbing billions of metric tons of CO2 on an annual basis. The study found
the inverted U-shaped EKC of climate at an earlier stage as economic growth increases the
climate factors in terms of temperature, carbon, precipitation, and sunlight, reducing the air
atmosphere’s climate quality. At the same time, the later phase of development positively
impacts climate by reducing the negative effects of climate factors. Similar to previous
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findings, technology impact is positive to improve the climate quality. A 1% increase in
Tech1 and Tech2 would reduce the negative impact of climate factors by −0.0972% and
−0.104%, respectively. In contrast, urbanization reduces the climate quality by 0.687%.

Table 10. Impact of Climate Index2 on FE.

Variable (s) Dependent (Forest Efficiency)

CupFM CupBC

GDP −0.125 *** 0.0431 *** 0.0431 ***
(−3.52) (3.62) (4.18)

GDP2 −0.0546 *** −0.107 ***
(−6.18) (−3.71)

Tech1 0.125 *** 0.131 *** 0.0823 ***
(17.80) (23.35) (10.03)

Tech2 0.0113 0.00924 ** 0.103 ***
(1.52) (1.99) (4.17)

Urb 0.0247 0.00107 0.143 **
(0.53) (0.02) (2.80)

CO2 −0.0987 *** −0.110 *** −0.0701 ***
(−8.43) (−8.87) (−6.87)

CF Index2 −0.0748 *** −0.0776 **
(−7.48) (−2.21)

Number of groups 30 30 30
Note: t-values in parentheses *** p < 0.01, ** p < 0.05.

Table 11. Impact of FE on climate change.

Variable (s) Dependent Variable (Climate Index)

CupFM CupBC

FE −1.512 *** −1.520 ***
(−9.27) (−9.10)

GDP 0.0728 *** 0.237 ***
(3.46) (9.87)

GDP2 −0.00274 *** −0.0701 ***
(−3.56) (−6.87)

Tech1 −0.0972 ** −0.0925 **
(−2.41) (−2.34)

Tech2 −0.104 ** −0.104 **
(−2.69) (−2.57)

Urb 0.687 ** 0.670 ***
(2.83) (2.93)

Number of groups 30 30
Note: t-values in parentheses *** p < 0.01, ** p < 0.05.

Long-Run Findings Discussion

The long-run findings from Tables 9–11 highlight the significance of climate factors,
economic growth, technology, urbanization, and carbon emissions in shaping China’s FE
and climate quality. However, the influencing dynamics of these factors are different.

For instance, through the lens of findings, we assessed that temperature and precipita-
tion are positive drivers rather than sunlight in enhancing China’s FE. For instance, China
has diverse climatic regions that can exhibit varied responses to temperature, precipitation,
and sunlight hours. The findings indicate that temperature escalation positively impacts FE,
maybe in regions where extended growing seasons facilitate increased biomass production.
Warmer temperatures promote organic matter decomposition, releasing nutrients into the
soil and promoting nutrient cycling, which is essential for forest productivity [56]. However,
temperature escalation may initially increase FE, but it may also worsen water stress and
pest outbreaks, requiring careful management to maintain forest health and productivity.
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Precipitation increases FE by providing moisture for photosynthesis, transpiration, and
nutrient cycling. Sunlight hours, however, do not significantly affect FE. Although sunlight
is essential for forest ecosystems, its impacts on efficiency vary depending on forest layout,
plant species composition, and weather.

China’s rapid economic growth has historically been associated with environmental
degradation, including deforestation and habitat loss. The inverted U-shaped Kuznets
curve illustrates the initial positive impact of economic growth to some extent on FE,
followed by a decline as urbanization and industrialization intensify. According to our
study, continuing economic growth and urbanization can be the reasons for decreasing
FE in China. It implies that the economic development of China puts pressure on forest
resources. Economic development is a primary goal of China as well as local areas and
brings economic development and population aggregation through the consumption of
multiple resources. Our study can be backed by Hao et al. (2019) [36], who found that
with continuous economic growth, the timber output and area of afforestation would at
first increase and then decrease after reaching the corresponding turning points. Higher
GDP levels are commonly linked to heightened industrialization, greater energy usage,
and increased emissions of greenhouse gases, hence contributing to the global temperature
increase caused by the intensified greenhouse effect (Leal and Marques, 2022) [57].

Moreover, economic activities have the potential to impact precipitation patterns
through land changes. Further, economic development can indirectly impact sunlight hours
through weather changes. In addition, there is generally a positive correlation between
GDP growth and CO2 emissions unless there are improvements in energy efficiency and
the implementation of renewable energy sources to reduce emissions. The increasing
population in hillside and mountainous regions has been a major driver of deforestation
throughout China’s history. However, technological innovations in forest management
offer economic opportunities to enhance FE and mitigate environmental impacts.

This study provides condensed evidence about carbon’s role in FE. The efficacy of
forests has a substantial impact on climate dynamics, as it regulates temperature, patterns
of precipitation, duration of sunlight, and levels of CO2. Forests function as natural climate
regulators by utilizing photosynthesis to absorb CO2, aiding in the reduction of greenhouse
gas emissions and maintaining stable levels of atmospheric carbon. In addition, trees
have an impact on the distribution of rainfall in nearby areas by recycling water vapor
through transpiration and aiding in the creation of clouds. Modifications in FE such as the
removal of trees or the establishment of new forests, have the potential to disturb these
processes, resulting in changes in temperature patterns, adjustments in the distribution of
rainfall, and fluctuations in the availability of sunshine. Hence, it is crucial to uphold FE
to preserve climate stability and enhance the ability of ecosystems to adapt to continuous
environmental changes.

In summary, the general basic loop chain among FE, economic growth, urbanization,
climate, and technology is as follows: the interplay among FE, economic growth, urban
dynamics, climate, and technology forms an interconnected loop chain with significant
implications for socioeconomic and environmental systems. For instance, forest resources,
crucial for human sustenance, support population growth by providing essential materials
for livelihoods and serving as a foundation for local economies through activities like
harvesting and processing. However, rapid population growth can strain resources and
lead to environmental degradation. This demographic expansion, in turn, acts as a driving
force for economic development, creating demand for labor and stimulating industrial
growth, which further attracts population influx. Yet, economic activities associated with
this growth such as industrialization and urbanization exert pressure on forest ecosystems
and contribute to climate change. Climate variability and extremes, influenced by these
activities, impact forests directly, affecting their health, productivity, and distribution.

Consequently, climate-induced disruptions can alter economic activities and popula-
tion dynamics, necessitating adaptive strategies. However, technological innovations in
forest management present opportunities to enhance efficiency and resilience, mitigate en-
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vironmental impacts, and promote sustainable economic growth. However, their adoption
must be carefully implemented, considering economic feasibility and local socio-economic
contexts to ensure equitable distribution of benefits and the minimization of adverse en-
vironmental consequences. Thus, this loop chain highlights the intricate relationships
between human societies, natural ecosystems, and technological advancements in shaping
sustainable development pathways for China.

The study findings and discussion can help policymakers understand Chinese provinces’
complicated climate conditions, technology, economic development, and FE connections.
The positive impact of temperature and precipitation emphasizes the need to reduce cli-
mate change’s negative effects through reforestation and sustainable forest management
to preserve and restore forest ecosystems. The study of climate index influence suggests
that forests can improve the surrounding environment and help to achieve a lower carbon
emission economy. So, forests must be preserved and expanded to reduce the negative
effects of urbanization and improve climate quality. For that, policymakers can encourage
investment in the forest sector to advance the forest sector and monitor the related activ-
ities. Further, there is a dire need to balance economic development and environmental
conservation. Forest protection could be part of sustainable development and green growth
policies that prioritize ecological integrity and economic progress.

5. Conclusions

The main objective of this study was to evaluate the impact of climate and technology
on FE across China provinces during the period spanning from 2002 to 2020. By employing
regression techniques such as CupFM and CupBC, our study has generated a number
of noteworthy findings. It is worth noting that our findings indicate an encouraging
correlation between temperature and precipitation with the enhancement of FE. However,
it is also important to highlight that sunlight hours and carbon emissions do not exhibit a
substantial contribution towards improving FE.

Additionally, our analysis has shown that Climate Index1 has a positive effect, whereas
Climate Index2 has a negative effect, suggesting that forests are essential in improving
climate conditions. The results highlight the significance of conserving and improving
forest ecosystems as a means of alleviating the impacts of climate change.

Moreover, our research highlights the significance of technical progress in enhancing
the efficiency of forests and exerting a positive influence on climatic patterns. Nevertheless,
it is imperative to acknowledge the intricate relationship between economic development
and the expansion of forests. Based on our analysis, it is evident that technological develop-
ments have the potential to enhance FE. However, the influence of economic development,
as demonstrated through the lens of EKC, demonstrates a non-linear relationship character-
ized by an inverted U-shaped pattern. Consequently, although the first economic activities
may have a positive impact on the growth of forests, ongoing economic expansion may
have adverse consequences on forest ecosystems.

In a similar vein, our analysis of the environmental Kuznets curve with respect to climate
conditions demonstrates an inverted U-shaped EKC pattern, underscoring the complex
nature of the relationship between economic development and environmental sustainability.

Moreover, urbanization is identified as a prominent determinant that contributes
to decreased FE as a result of population expansion and the accompanying human en-
deavors. It highlights the importance of implementing sustainable urban planning and
forest conservation initiatives to address the negative consequences of urban growth on
forest ecosystems.

In summary, our research offers unique insights that have substantial consequences
for the management of forests, the mitigation of climate change, and the formulation of
sustainable development strategies. Policymakers can strengthen their abilities to pro-
mote forest conservation and enhance environmental sustainability by comprehending the
complex dynamics of climate, technology, economic development, and urbanization.
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Appendix A

Table A1. List of provinces.

Zhejiang Ningxia Hebei
Yunnan Liaoning Hainan
Xinjiang Jilin Guizhou
Tianjin Jiangxi Guangxi
Sichuan Jiangsu Guangdong
Shanxi Inner Mongolia Gansu

Shanghai Hunan Fujian
Shandong Hubei Chongqing
Shaanxi Henan Beijing
Qinghai Heilongjiang Anhui
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