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Abstract: Wood volume is an important indicator in timber trading, and log diameter is one of
the primary parameters used to calculate wood volume. Currently, the most common methods for
measuring log diameters are manual measurement or visual estimation by log scalers, which are
laborious, time consuming, costly, and error prone owing to the irregular placement of logs and
large numbers of roots. Additionally, this approach can easily lead to misrepresentation of data
for profit. This study proposes a model for automatic log diameter measurement that is based on
deep learning and uses images to address the existing problems. The specific measures to improve
the performance and accuracy of log-diameter detection are as follows: (1) A dual network model
is constructed combining the Yolov3 algorithm and DeepLabv3+ architecture to adapt to different
log-end color states that considers the complexity of log-end faces. (2) AprilTag vision library is
added to estimate the camera position during image acquisition to achieve real-time adjustment of
the shooting angle and reduce the effect of log-image deformation on the results. (3) The backbone
network is replaced with a MobileNetv2 convolutional neural network to migrate the model to mobile
devices, which reduces the number of network parameters while maintaining detection accuracy.
The training results show that the mean average precision of log-diameter detection reaches 97.28%
and the mean intersection over union (mIoU) of log segmentation reaches 92.22%. Comparisons with
other measurement models demonstrate that the proposed model is accurate and stable in measuring
log diameter under different environments and lighting conditions, with an average accuracy of
96.26%. In the forestry test, the measurement errors for the volume of an entire truckload of logs and
a single log diameter are 1.20% and 0.73%, respectively, which are less than the corresponding error
requirements specified in the industry standards. These results indicate that the proposed method
can provide a viable and cost-effective solution for measuring log diameters and offering the potential
to improve the efficiency of log measurement and promote fair trade practices in the lumber industry.

Keywords: log diameter; Yolov3; DeepLabv3+; MobileNetv2; AprilTag

1. Introduction

Taking log diameter and length measurements are essential and recurring tasks in
forestry work that provide vital data for calculating log volume [1]. Through analyzing
these data, forest plantation plans can be better managed. With the development of
technology, harvesting machines have been commonly used to achieve equal-length felling
of logs. However, manual methods are still being employed for log diameter measurements.
This type of measurement method has a high work intensity, is time-consuming, and
the results are often subjective. This may lead to exaggerated or falsely reported data
from the measurers for personal interests that negatively affect the fairness of market
transactions [2,3]. At present, there are relatively few mature, commercially available
methods for detecting log diameters. Therefore, the development of a new method for the
rapid and objective measurement of log diameters is of practical importance. It would assist
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trading parties in promptly verifying timber quantities and preventing log substitution
or theft during a transportation. Moreover, it would enable forest managers to better
understand tree-related data, thereby enhancing forest resource management effectiveness.

With technology advancing, researchers are actively exploring efficient approaches
for detecting and measuring logs. These methods are primarily categorized into laser-
based approaches [4–6] and vision-based methods, depending on how log data is acquired.
While laser measurement can collect more precise image data, vision-based methods offer
advantages in terms of equipment cost and portability. Computer vision technology has
undergone tremendous development over the past few decades, offering new possibilities
for log-diameter measurements. Image processing techniques are commonly used for fast-
diameter estimation, and several studies have been conducted by scholars centered around
these aspects of log-region detection, log-end segmentation, and log-profile counting. Chen
et al. [7] proposed a method to detect log-diameter classes using binocular vision. They
achieved log-area detection by using a maximum threshold and connectivity domain
identification, and the log diameter was obtained by fitting a mathematical model to the
segmented end face using the reconstructed 3D coordinates. Lin et al. [8] proposed a
contour-recognition method for bundled logs. This method combined principal component
analysis [9] with histogram statistics in the hue, saturation, and value (HSV) color space [10]
to analyze the color features of the pictures to separate the log-end faces. Finally, the
diameter of each identified log was obtained by applying reference-scale pixel calculations.
Xinxiu et al. [11] obtained log pixels by transforming an image into the CIELAB color
space [12] and realizing K-means clustering [13] for the A and B color channels on the
transformed image. The clustering results were then subjected to the Hough transform [14],
and the log root count was realized by Hough fitting to the logs while realizing the
segmentation of the connected region. The counting accuracy was 95.78%. Although many
log-measurement methods based on traditional image-processing techniques have been
proposed, these approaches have strict requirements for lighting, log shape, shading degree,
and background. Images taken in an actual forestry field have interference factors that
make it difficult for the above methods to be widely used for log-diameter measurement,
such as different degrees of log shading, irregular cutting, and uneven lighting.

In recent years, convolutional neural networks that can effectively learn features from
training samples, particularly in image data analysis, have been widely used in agriculture and
forestry. Kuznetsova et al. [15] used Yolov3 as the detection system for a fruit-picking robot
and achieved the results, with an average apple detection time of 19 ms, 7.8% misidentified
apples, and 9.2% unidentified apples. Cai et al. [16] proposed a method for segmenting
spotted fragrant tree leaf images using a modified DeepLabv3+ network. The model exhibited
excellent segmentation performance for different levels of scattered spot segmentation that
could quickly assess the disease condition, and thus contributed to garden conservation.
Zhu et al. [17] proposed a two-stage DeepLabv3+ algorithm with adaptive losses to segment
apple leaf disease images in complex scenarios. The model achieved intersection-over-union
(IoU) values of 98.70% for leaf segmentation and 86.56% for spot extraction, providing an
effective solution for leaf and disease spot extraction in complex environments. There have
also been studies using convolutional neural networks to detect log-ends. Samdangdech
et al. [18] achieved detection and counting of log sections at the end of lumber trucks by
labeling segmentation of pixel points in log end and non-log region through the Single Shot
MultiBox Detector (SSD) [19] and VGG16 network [20]. Lin et al. [21] designed a wood volume
detection system combining yolov3-tiny and Hough transforms with good robustness.

Single-stage object-detection algorithms have been proposed to improve detection
speed in the field of object detection, such as the SSD and You Only Look Once (YOLO)
algorithms [22]. Unlike the SSD series, which has redundant parameters and a large model
structure, the YOLO series is characterized by its simple structure and fast recognition
speed [23]. In the YOLO families, Yolov3 performs better in detecting dense and small
objects than other versions, and its stability and reliability have been confirmed in research.
Detecting logs is essentially a single-class dense object detection, so Yolov3 is very viable
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for detecting the end of logs. However, the ultimate goal is to obtain log diameters,
and traditional image processing methods cannot adapt well to tightly packed logs with
complex end conditions. Therefore, a new end-faces segmentation method is needed. Chen
et al. [24] first proposed the DeepLab series of networks as a representative algorithm for
semantic segmentation based on the VGG16 network. DeepLabv3+ was proposed after
continuous optimization and improvement, which adopts an encoder-decoder system and
strengthens the decoder section [25]. Consequently, the model can achieve good results
at the edges of semantic segmentation. Compared to segmentation based on image hue
and grayscale, semantic segmentation offers better segmentation performance by dividing
images into different objects from a pixel perspective. Using Deeplabv3+ for log-end
segmentation can prevent the phenomenon of logs adhering to adjacent end surfaces during
the image processing of timber, which will result in expansion of the log area, causing an
error in the fitting range that in turn affects the log-diameter measurement results.

This study proposes a real-time, criteria-compliant, two-neural-network combination method
to measure log diameters at forestry sites. Compared to traditional methods, this approach offers
greater adaptability, is capable of handling various lighting conditions, and facilitates a more
convenient detection process. First, the applicability of the Yolov3 algorithm and DeepLabv3+
architecture for log-diameter measurements was evaluated using a log-image dataset. Second,
AprilTag vision library was used to correct the shooting angle and reduce the influence of the im-
ages on the log-diameter measurement data during measurements. Finally, the log-measurement
model was tested to verify its feasibility and effectiveness in a forestry farm.

2. Materials and Methods

The log diameter measurement consisted of two steps: obtaining an image with the
aid of AprilTag and obtaining the log diameter by processing the image using the trained
model. The steps of the model used to obtain the log diameter are shown in Figure 1. First,
single logs in the wood pile were separated using the MobileNetv2-Yolov3 network, and
the pixel coordinates of each log were obtained relative to the image. Second, a single log
image was input into the MobileNetv2-DeepLabv3+ network to separate the log-end face
and obtain the contours. Finally, the log diameter was obtained by fitting based on the log
contours. When manually measuring the diameter, the shortest direction of the log section
was considered to be its diameter. To accommodate this characteristic, an ellipse was utilized
to fit the end face, with the short axis value of the ellipse being regarded as the diameter.
The MobileNetv2-Yolov3 and MobileNetv2-DeepLabv3+ network structures are presented in
Section 2.2. The optimal angle adjusted according to the AprilTag is described in Section 2.3.
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2.1. Dataset

The images used in this study were obtained from eucalyptus trees that were felled in a
forest in Nanning, Guangxi, China. The images depicted the stacked log-ends at the side or
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back of a vehicle, as shown in Figure 2a,b, respectively. The imaging device is a SAMSUNG
Galaxy S10+ smartphone equipped with the SM-G9750 sensor, featuring a primary camera
boasting 12 million pixels. The focal length and aperture of the camera remained constant
throughout the entire shooting process. A total of 25 photographs were captured using a
smartphone under natural light, with the logs positioned at the center of the photograph;
the cut sections were free of visible obstructions such as foliage. The number of logs in each
picture ranged from 500–700. A training dataset of 56 images was obtained for Yolov3 after
the non-overlapping cropping of the images. The DeepLabv3+ training dataset consisted
of 750 images of individual logs recognized by Yolov3. Both datasets were labeled using
the LabelImg annotation tool and randomly divided into training, testing, and validation
datasets at common ratios of 70%, 20%, and 10%, respectively. The original images and
Yolov3 labels from an annotation tool that assigned rectangular ground-truth bounding
boxes to the log-end faces are shown in Figure 3a,b, respectively. In the annotation process
of the YOLOv3 dataset, there are some rules that should be noted: First, it is imperative that
the bounding boxes enclose all pixels of the target. Even in instances where the target is
partially occluded, it is essential to select bounding boxes that encompass the complete set
of relevant pixels, drawing upon experiences. Second, it is crucial to ensure that the starting
or ending point of the annotation box does not coincide with the edges of the image. Failure
to do so may result in errors during data processing by the network. The annotated data
labels for DeepLabv3+ were converted into binary images, as shown in Figure 4, where red
and black represent the log-section labeling and background, respectively.
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2.2. Backbone Feature Extraction Network

MobileNetV1 is a lightweight model that was proposed by Google in 2017 for cell
phones [26]. MobileNetv2 is an upgraded version of MobileNetv1 that includes a bottleneck
residual block (BRB) module consisting of three parts: a 1 × 1 convolution to increase the
dimensionality of input features, 3 × 3 depth-separable convolution to extract features,
and 1 × 1 convolution to reduce dimensionality [27]. Thus, MobileNetv2 achieves higher
accuracy while maintaining a smaller model size. This is beneficial for migrating subsequent
models to portable devices.

The Darknet53 backbone was replaced with MobileNetv2 in the Yolov3 network,
which changed the feature image fusion method. However, the other network structures
remained unchanged, as shown in the network structure diagram in Figure 5. Here, the red
dashed rectangle represents the MobileNetv2 network structure. After replacement, the
output of the 14th BRB was fused with an upsampled 13 × 13 feature image to obtain a
26 × 26 feature map for the 416 × 416 input image. In addition, the output of the 7th BRB
was fused with an upsampled 26 × 26 feature image to obtain a 52 × 52 feature map.
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Modified Aligned Xception is traditionally used for the backbone feature extraction
network. Here, it was replaced with the lightweight MobileNetv2 in the encoder section
of DeepLabv3+. The network structure after the replacement is shown in Figure 6. The
MobileNetv2 portion of the figure shows the specific structure of the replaced backbone
network and number of low-level feature output layers.
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2.3. Experiment on the Best Shooting Angle

Different angles between the imaging equipment and log pile may result in varying
degrees of deformation on the log-end surfaces when taking pictures, leading to deviations
in the conversion of pixel diameters to physical diameters of the logs and thereby affecting
the accuracy of diameter measurements. Therefore, AprilTag was used to obtain the camera
position and adjust the camera placement angle in real time to reduce the impact of the
shooting angle on the image [28].

AprilTag is a visual reference library similar to QR codes or barcodes that is widely
used in robotics and camera calibration. The algorithm can accurately identify an AprilTag
location despite a complex environment because of its uniqueness. Consequently, AprilTag
can adapt to the changing environment of the forestry field. The camera calibration was
conducted using Zhang’s calibration method before acquiring the angles [29]. The internal
reference matrix of the camera was obtained with x- and y-axis focal lengths of 3100.3 and
3101.8, respectively. The process of obtaining the angle was as follows. First, four vertex
pixel coordinates were returned by AprilTag. Second, the coordinates were combined with
the internal reference matrix of the camera and corresponding points under the world
coordinate system to obtain the rotation R and translation T matrices of the camera around
the world coordinate system. Finally, the three-axis rotation angle of the camera coordinate
system was obtained to realize a real-time display of the angle and adjust the camera
position according to the method proposed by Slabaugh [30].

Variation curves were recorded for the AprilTag pixel edge lengths on the left, center,
and right sides of the shooting screen with the camera’s y-axis shooting angle to determine
the optimal shooting angle of the phone. According to the calibration, the camera angles
were zero, negative, and positive when parallel to the shooting plane, rotated counterclock-
wise, and rotated clockwise, respectively. A schematic of the shooting process and results
of changing the shooting angle are shown in Figure 7. The camera was positioned 3400 mm
from the wall at the same height as the AprilTag, and the side length of each AprilTag was
162 mm. The results showed that the side length of AprilTag A on the left side increased
with an increasing angle (Figure 7b), whereas that of AprilTag C on the right side decreased
(Figure 7d). The edge length of AprilTag B at the center decreased and then increased as
the angle increased (Figure 7c).
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A change in the shooting angle caused a change in the pixels because the imaging
principle of the camera was approximated as a small-aperture imaging model and the
relationship between the lengths of the object and image satisfied:

h/H = f/d (1)

where H denotes the length of the object, h denotes the imaging length of the object, f
denotes the focal length of the camera, and d denotes the distance of the object from
the camera.

d increased and f remained constant as the angle of the camera changed, causing the
scale to decrease. The value of H was fixed, and h decreased to satisfy the ratio, which
explains the trend of the change in the edge length. Regarding the analysis of the AprilTag
A trend changes, the distance between the camera and AprilTag A gradually increased
during the rotation of the camera from left to right, leading to a gradual increase in pixel
length. The imaging length was obtained with a known focal length of 3101.8, object
distance of 3400, object length of 162, and imaging length of 147.8 according to Equation (1).
This value was closest to the pixel length when the angle was close to zero, compared to
the pixel length change curve. Therefore, t the image distortion is minimized.

2.4. Evaluation Indicators

mAP and mIoU were selected to evaluate the recognition and segmentation perfor-
mances, respectively. mAP is the most commonly used evaluation index in object detection
experimental research and represents the average of the average precision (AP) of all
categories. mAP is expressed as:

mAP = ∑c
i =1 AP(i)/c (2)
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where i denotes the i detection category and c denotes the number of detected categories.
AP denotes the area enclosed by the curve formed by the precision (P), recall (R), and
coordinate axis. AP, P, and R are respectively expressed as:

AP =
∫ 1

0
P(R)R (3)

P= T P/(TP + FP) (4)

R = TP/(TP + FN) (5)

where TP denotes the number of correctly determined positive samples, FN denotes
the number of incorrectly determined negative samples, and FP denotes the number of
incorrectly determined positive samples.

mIoU is a standard measurement for semantic segmentation, representing the average
ratio of the intersection to the union of the predicted bounding and ground truth boxes for
all categories, which is expressed as:

mIoU = [1/(c + 1)] · (Σc
i=1TP)/Σc

i=1(TP + FN + FP) (6)

The results of mAP and AP were consistent since only one category of logs was
detected, thus the subsequent text utilized the mAP results.

2.5. Training Environment

The network models were run on the PyTorch [31] platform with a Windows 11
operating system. The computer had a 13th Gen Intel (R) Core (TM) i7-13700K CPU with a
clock rate of 3.40 GHz, 32 GB RAM, and NVIDIA GeForce GTX1080 Ti graphics processor
with 11 GB of RAM.

The appropriate selection of learning rate is crucial for achieving convergence to the
local minimum of the objective function within a reasonably time frame. Therefore, we
compared the accuracy of different models with varying initial learning rates before formal
training. The results are presented in Figure 8, indicating that MobileNetv2-Yolov3 model
achieved the highest accuracy at a learning rate of 0.0001 while MobileNetv2-Deeplabv3+
model performed best at a learning rate of 0.005.
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3. Results
3.1. Results of Model Training

Transfer learning can reduce the impact of insufficient data on the training results,
allowing even small datasets to achieve good training performance [32]. Therefore, transfer
learning was applied to the proposed model to improve log recognition and segmentation.
The training parameters for MobileNetv2-Yolov3 were set as follows: batch size of 6, Adam
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optimizer, initial learning rate of 0.0001, and 320 epochs. The training parameters for
MobileNetv2-DeepLabv3+ were set as follows: batch size of 10, Adam optimizer, initial
learning rate of 0.005, and 100 epochs.

The training results for the Yolov3 and DeepLabv3+ networks are shown in Figure 9,
where black and red represent the changes in the loss value and accuracy rate, respectively.
The loss value and accuracy rate tended to stabilize as the number of training iterations
increased. Yolov3 exhibited a stable loss value after 100 iterations and stable accuracy rate
after 150 iterations. DeepLabv3+ exhibited a stable loss value after 80 iterations and steady
accuracy rate after 80 iterations. The precision, recall, mAP, and mIoU values of the training
dataset are listed in Table 1. The training obtained a mAP of 97.28% and mIoU of 92.22%,
which are high values. Therefore, the training achieved the expected effect.
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Table 1. Training results for Yolov3 and DeepLabv3+.

Backbone
Yolov3 DeepLabv3+

Precision Recall mAP Precision Recall mIoU

MobleNetv2 98.52% 98.34% 97.28% 97.28% 95.84% 92.22%

3.2. Results of Log-Diameter Measurement

The model was tested in a forest, and the actual diameters of the measured logs were
obtained from the pixels of the reference of the ratio of AprilTag pixel edge length to the
actual length. The measurement results are shown in Figure 10 and the fitting results are
shown in Figure 10d. The yellow font denotes the fitted diameters of the corresponding logs.
The Yolov3 and DeepLabv3+ models performed well in identification and segmentation
despite cluttered environments and occluded log ends, demonstrating good stability and
recognition and segmentation performance, as shown in Figure 10b,c, respectively. Log
measurements can take place in various settings depending on the needs of the forest.
Figure 11 illustrates the measurement process in different environments, including on
trucks and in log yards. While logs on trucks are typically organized in a neat manner,
those in log yards are often randomly arranged, which can pose challenges for accurate
measurements due to unstable positioning. However, the figure demonstrates that the
method successfully handled log diameter measurements in diverse scenarios, showcasing
its adaptability. While Figure 11a depicts a log end entirely covered by bark remaining
undetected, such instances are infrequent and can be recognized and avoided during
image capture.
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Several vehicles loaded with logs were tested, and the comparative results of one
vehicle’s measurement data are presented in Table 2. This table includes the number of
logs corresponding to different diameter classes and the total log volume of the vehicle.
The log volume measured by the picture was 16.558 m3, while the volume data provided
by the forest site was 16.356 m3, with a measurement error of 1.2%. Twenty-two logs
were randomly selected and the diameter data was measured and compared with those
of a manually measured model. The comparison results are listed in Table 3, revealing an
average comprehensive error of 0.73%. These results demonstrated that the measurement
errors of log volume and log diameter met industry standards, which are less than 3%.
Considering the natural shape of trees, the cross-sections of felled logs typically exhibit a
circular appearance. Despite the differences in tree species, their cross-sections are similar.
Pine trees were successfully detected during testing, demonstrating that the method can be
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applied to other tree species as well. Therefore, the proposed method could serve as a new
solution for log diameter measurement.

Table 2. Comparison of log volume measurements.

Rank of Log Size (cm) 6 8 10 12 14 16 18 20 Log Volume (m3)

Log Length 2.2 m
Number of logs forest farm 84 153 162 136 77 37 9 1 16.356

image 60 142 163 160 66 34 12 4 16.558

Error of log volume 1.2%

Table 3. Results of randomly individual log diameter measurements.

Log Number Actual Diameters [3] Model Measure Diameters [3] Error (%)

1 91 97 6.06
2 81 85 5.49
3 92 90 −1.97
4 88 84 −4.70
5 96 97 0.54
6 79 85 8.16
7 127 131 3.41
8 98 95 −3.13
9 98 95 −3.13
10 100 101 1.27
11 106 111 4.49
12 101 104 3.40
13 108 111 2.56
14 106 106 0.01
15 109 114 4.52
16 109 108 −1.29
17 142 138 −3.06
18 204 204 0.06
19 121 122 0.69
20 124 128 3.36
21 151 141 −6.74
22 145 139 −3.97

Comprehensive average error (%) 0.73%

4. Discussion
4.1. Comparison of Training Performance of Different Backbone Networks

The original backbone network was replaced with the MobileNetv2 network for the
structural design. A comparison experiment between the original backbone and replace-
ment network was conducted to verify the effectiveness of the replacement network, and
the results are listed in Tables 4 and 5. The experimental results showed that the replace-
ment model parameters and training times were significantly reduced, and the accuracy
was maintained at a similar level in the Yolov3 andDeepLabv3+ models. These experiments
demonstrated that the replacement of the backbone network was correct.

Table 4. Results of Yolov3 with different backbone.

Model Backbone Precision Recall mAP Number of Parameters Training Time

Yolov3
Darknet53 98.91% 98.37% 98.34% 61.52 MB 73 min

MobileNetv2 98.35% 98.34% 97.28% 22.25 MB 67 min

Table 5. Results of DeepLabv3+ with different backbone.

Model Backbone Precision Recall mIoU Number of Parameters Training Time

Deeplabv3+
Xception 96.34% 95.98% 92.61% 54.71 MB 178 min

MobileNetv2 96.05% 95.84% 92.22% 5.81 MB 55 min
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4.2. Performance Comparison of Different Segmentation Methods

Log-end faces show different states when they are affected by external factors (such
as light conditions, shadows, humidity, and leaf shading). Segmentation stability for
different states of log-end face conditions is a crucial challenge in measuring a log diameter
by image.

A comparison was made to validate the segmentation performance and robustness of
the proposed dual-network model; the method was compared with K-Means clustering
and HSV thresholding. Thirty log photos from different scenes were tested and the seg-
mentation results of dual-network model, K-means, and HSV were obtained by counting
the number of log roots. The accuracy was measured as the ratio of successfully fitted
logs to the total number of logs in each image, with average accuracies of 96.26%, 92.95%,
and 69.09%, respectively. Some of the segmentation results are shown in Figure 12. The
segmentation accuracies of the different segmentation methods for each test image are
depicted in Figure 13. The segmentation accuracies show that the dual-network model
achieved more than 90% accuracy for each test image, demonstrating its superior seg-
mentation performance. The proposed model exhibited good stability when adapted to
various environments, lighting conditions, and log placements. Therefore, it is appropriate
to utilize the dual-network model for log diameter measurements. In the test pictures
(Figure 12, the second picture), we discovered that the processing ability of the model
measurement still needs to be improved when faced with a higher level of occlusion on
the log end face. Due to the nature of deep learning, more log images of different forest
scenes should be collected in future to improve the robustness of the proposed method to
measure log diameter measurements.
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4.3. Advantage Analysis of Dual-Network Detection System

The traditional measurement method is often time-consuming and labor-intensive,
particularly when dealing with a large number of logs. A comparison was made to analyze
the advantages of the proposed method. The detection system was compared with the
traditional manual method in measurement efficiency and cost.

When it comes to measuring time, Figure 14 illustrates the log diameter measurement
process in a forest farm. Ordinarily, two individuals perform manual measurement, with
one taking measurements and the other recording data. A truck can contain 500–800 logs,
and it takes about 30 min to manually measure each log. Moreover, measuring logs
on the top of the truck requires the use of a ladder. With the proposed method, if a
computer equipped with a 13th Gen Intel Core i7-13700K CPU processes the data, each
vehicle can measure the diameter of all logs in about 5 min, resulting in a time saving
of 25 min. Regarding measurement cost, the required equipment for the dual-networks
system includes a computer and a mobile phone. The computer is used to analyze images
to obtain detection results, while the mobile phone is used to capture images. There
are no additional training costs for taking pictures, simply instruct the photographer to
adjust the log picture parallel to the mobile phone. While manual measurement workers
require a monthly salary of about 5000 RMB, the measurement system only incurs costs for
purchasing a computer, a smartphone, and a printing AprilTag, which are reusable. Based
on the comparative results, the proposed system effectively improves the efficiency of log
diameter measurement and reduces measurement costs. The implementation of this system
will contribute to enhancing the efficiency of forestry surveys, alleviating the burden on
staff, and offering new solutions for modern forestry management.
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5. Conclusions

Log-diameter measurement is an important task in forestry. This study proposed
a criteria-compliant log-diameter measurement model using a dual network combining
Yolov3 and DeepLabv3+, with MobileNetv2 as the backbone network. The study can be
summarized as follows.

1. The deformation of log images caused by shooting angles was reduced using AprilTags.
2. The proposed method was trained and evaluated using a log dataset and tested in

a forest.
3. A comparative study was conducted to verify the segmentation advantages of the

proposed method over other commonly used segmentation methods, namely K-means
clustering and HSV threshold segmentation.

The proposed log-diameter measurement model worked quickly and accurately in
forest farms and was adaptable and robust to different forest farm measurement scenarios
and log-end faces. The rapid and accurate measurement will help managers to manage and
track the whole process of logs from harvesting to sale and realizes the digital management
of forest resources. The results of the forestry tests showed that the measurement method
met industry standards and could be promoted and applied, which is beneficial to forest
resource management. Future research will focus on improving measurement accuracy
and applicability by collecting more log image data to cover a wider range of log samples
in terms of species, size, and condition, thereby enhancing the model’s ability to generalize.
Additionally, efforts will be made to refine diameter measurement conversion methods
and explore how to incorporate other types of data, such as infrared images, to enhance
measurement accuracy.
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