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Abstract: Coconut palms (Cocos nucifera L.) are globally significant palms with both economic and
cultural value. Despite the increasing demand for coconut products, production is decreasing globally
due to palm senility, pests, and diseases. It has been estimated that over half of the world’s coconut
palms need to be replaced immediately. The coconut industry has acknowledged that conventional
propagation methods are unlikely to yield sufficient high-quality planting material. Therefore, co-
conut tissue culture is considered a potential solution to this problem. By using coconut tissue
culture, a large number of plantlets can be obtained in a short period of time. In this study, the
quality of explants and the development stage (visible shoot/non-visible shoot) of coconut used for
micropropagation were examined. To our knowledge, little research has been undertaken on this
aspect of coconut micropropagation. Our results indicated that tender coconut fruit exhibited an
advantage over mature fruits. In addition, coconut plumule explants subjected to an extended storage
of 15 days demonstrated enhanced development compared to those without storage. Notably, smaller
embryos utilized as explants displayed superior callus formation compared to their larger counter-
parts. Finally, embryos possessing shoots exhibited improved callus initiation, albeit accompanied by
a more pronounced browning effect. Further investigations are required to obtain more knowledge
about the most suitable conditions for plumule explants that lead to optimal callus initiation.

Keywords: coconut; somatic embryogenesis; plumule; age of fruit; callus induction

1. Introduction

The coconut (Cocos nucifera L.) belongs to the palm tree family (Arecaceae) and is
the only surviving species within the Cocos genus [1]. This tree holds great significance
economically and culturally worldwide [2]. It is called the “Tree of Life” due to the many
valuable uses of its various parts. For example, coconuts serve as a primary source of
dietary fat in the diets of people in South Asia and Southeast Asia [3], while coconut
water is a nutrient-rich beverage loved by people worldwide [4]. The husk and shell are
utilized to produce activated charcoal and fiber [5], and the dried kernel is processed into
copra for the extraction of crude coconut oil and copra meal [6]. The coconut palm plays
a vital role in various cultural and traditional contexts, particularly within the realms of
Hinduism and Buddhism [7]. However, the growing population has caused a substantial

Forests 2024, 15, 764. https://doi.org/10.3390/f15050764 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15050764
https://doi.org/10.3390/f15050764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-4963-0807
https://orcid.org/0000-0002-8704-0536
https://doi.org/10.3390/f15050764
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15050764?type=check_update&version=2


Forests 2024, 15, 764 2 of 12

rise in the need for both producing and consuming coconuts. The global market value
of coconut products amounted to approximately $13 billion in 2019, and it is projected to
potentially reach $31 billion by 2024 [8]. The sustainability and expansion of the industry
face noteworthy challenges due to the existence of aged and unproductive coconut trees
in these plantations, environmental pressures, and the absence of high-yield coconut
varieties [9]. The international coconut water market is expanding swiftly, with the United
States taking the lead, closely trailed by Europe, Brazil, and India, but the scarcity of
young coconuts has been an obstacle for a period of time [10]. A similar situation can
be found in the seedling market as well. However, high-quality seedlings have hindered
the industry’s sustainable development [9]. A number of elite varieties, such as, the
aromatics and makapuno, cannot be obtained from seeds, for instance [11]. The inherent
growth structure of the monocot coconut palm inhibits the initiation of shoots through
branching [12]. Thus, traditional coconut breeding methods are not able to meet the
growing need for high-performance varieties and disease-resistant seedlings because of
the limitations mentioned above. In vitro methods (micropropagation, embryo culture,
and protoplast-based approaches [13]) were created to address this issue. The induction of
calluses during the micropropagation process is one of the most important stages in somatic
embryogenesis, directly linked to the final multiplication rate [2,14]. The micropropagation
of the coconut palm is influenced by various factors, including the composition of the
culture medium, the type of explants used [15], the presence of plant growth regulators,
heterogeneous responses, and the acclimatization procedure [16]. The quality of the explant
is certainly important, as indicated by Nwite et al. [16]. Specifically, vigor, physiological
state and pre-treatment could influence the development and growth of callus [2,17].
Using healthy, vigorous explants increases the chances of successful culture initiation and
development [18,19]. However, the impact of coconut embryo explants on the initiation
of callus formation has not yet been studied. The aim of this research is to closely look
into the influence of size and age on plumule-based embryogenic callus initiation. The
initiation of callus and its conditions are crucial for the subsequent generation of somatic
embryos and in vitro plantlets. By optimizing tissue culture conditions, a large quantity of
plantlets can be produced, providing continuous momentum for the development of the
global coconut industry.

2. Materials and Methods
2.1. Plant Materials Preparations

Approximately 300 Hainan Tall coconut fruits, aged between 8 and 12 months (Figure 1a),
were gathered from Wenzi Village, Qionghai City, located in Hainan Province, China.
Twenty-five green (younger) fruits and 25 brown (older) fruits were individually selected
for the next step of processing. Another 50 fruits were taken as experimental material
to test the impact of different storage times on the final results of callus formation. The
coconut fruits underwent the process of dehusking and were subsequently split using a
machete in the field. The endosperm plugs, each containing an embryo, were extracted
from each fruit using a cork borer that had been sterilized with a 70% ethanol solution. In
batches of 10, these plugs were washed with tap water and transferred to clean glass jars.
All fruits and endosperm plugs were promptly transported to the laboratory at the Sanya
Nanfan Research Institute of Hainan University in Yazhou, Hainan Province, China, for
further preparation. Upon arrival, these endosperm plugs were placed in a new sterile
container and positioned within a laminar airflow hood. Subsequently, the endosperm
plugs were rinsed with a 70% (v/v) ethanol solution for 3 min. Then, the embryos were
isolated using forceps and a fine scalpel blade. These isolated embryos were then placed in
sterile glass jars (120 × 80 mm). Following this, the embryos were subjected to a one-minute
rinse in 70% (v/v) ethanol and were then immersed in a 2.1% (v/v) sodium hypochlorite
(NaOCl) solution, with agitation, for a duration of 15 min. The embryos were subsequently
washed three times with sterile distilled water. After the surface sterilization process,
all embryos were transferred from the glass jars to sterile, autoclaved paper sheets for
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drainage. Following a 5 to 10 min drying period, the embryos were individually placed into
micro-centrifugation tubes for further use. Embryos were then individually placed onto
a fresh pre-culture medium (PCM, 5 mL) in thin glass bottles (50 mL, Falcon®, Corning,
NY, USA) and moved into a darkened incubator (27 ± 1 ◦C). This method was described in
detail by Mu (2020) [20].
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image of a coconut embryo without a shoot.
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2.2. Medium Preparations

All the culture media were prepared three days prior to their use, and all tissue-
culture-approved chemicals were sourced from Guangzhou Chemical Reagent Factory;
the media were autoclaved at 121 ◦C for 30 min before use. The detailed compositions of
the media were in accordance with the description by Mu (2022) [2]. The basal medium
(BM) employed for embryo culture was Y3 medium [21], comprising Y3 macro- and micro-
nutrients, MS vitamins [22], agar (6 g L−1), and activated charcoal (AC; 2.5 g L−1). The
pre-culture medium (PCM) was derived from BM, with the addition of ferrous sulphate
heptahydrate (10 mL FeEDTA; 41.7010 mg/L Fe2SO4·7H2O), 6-benzylaminopurine (BAP;
5 µM), sucrose (60 g L−1), agar (6 g L−1), and AC (2.5 g L−1). The callus induction medium
(CIM) was prepared using BM supplemented with FeEDTA (10 mL), BAP (5 µM), sucrose
(30 g L−1), agar (6 g L−1), AC (2.5 g L−1), and 2,4-D (600 µM). Once prepared, each medium
(approximately 30 mL) was poured into Petri dishes (90 × 20 mm). The pH was adjusted
to 5.7 before adding the gelling agent and activated charcoal (AC).

2.3. Experiment Set-Up

Experiment on the age of coconuts: The external husk color of a coconut can serve as a
visual indicator of its age and maturity. Generally, older coconuts have a drier, brown, or
tan husk, while younger coconuts have a greener husk. In this study, 8-month-old coconuts
(Figure 1b) and 10-month-old coconuts (Figure 1c) were employed. The treating method of
embryos was described above. Twenty-five green (younger) fruits and 25 brown (older)
fruits were randomly selected for each treatment level. Five embryos were inoculated in
one vessel, and this process was replicated 5 times.

Experiment on storage time: Experimental coconuts were stored in a cool, shaded
area for 15 days, while the control group was processed immediately upon arrival at
the laboratory. Fifty fruits were selected as experimental material to test the impact of
different storage times on the final results of callus formation. Twenty-five fruits were
randomly picked for use in one treatment with 5 replicates. This experiment simulates
the situation where coconuts, acting as implants, need to be stored and transported over
long distances. This scenario commonly happens in many coconut tissue culture research
institutes worldwide.

Experiment on embryo size: After the sterilization processes, experimental embryos
are selected according to their size and divided into three groups (Figure 1d): 4–8 mm
length, 8–12 mm length, and beyond 12 mm. Forty-five fruits were randomly selected
and used in this study; each treatment consisted of 5 replicate vessels, each containing
3 explants.

Experiment on embryogenic shoot/non-shoot formation: The timing of germina-
tion varies, with the appearance of the plumule (ca. 2 mm in length) occurring between
10 and 15 days. Germinated embryos were then removed. After 15 days, all embryos were
separated into two groups, those with shoot or without shoot (Figure 1e,f). Upon emer-
gence, the plumules were isolated with a scalpel blade and moved to the CIM mentioned
above. Plumules from the ungerminated embryos cannot be seen from the outside, but
they were extracted under microscope, as described by Nguyen (2018) [18]. Fifty embryos
were used in this study, with 25 used for each treatment. Five explants were cultured per
vessel, and each treatment was designed with 5 replicates.

2.4. Assessment and Data Analysis

After 60 days of treatments without light and under 27 ± 2 ◦C, the rate of callus
initiation, the proportion of cultures forming somatic embryogenic callus, and culture
necrosis (by browning level) were assessed (as shown in Figure 2a). The rate of callus
initiation was measured by counting the number of plumule cultures that formed callus
after one month of culture. Subsequently, during the subculture, which occurred at three
months, the rate of somatic embryogenic callus formation was determined by calculating
the proportion of callus cultures producing somatic embryos. At the same third subculture,
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an evaluation of culture necrosis was conducted. Explants that demonstrated a browning
index of 6 or higher (as shown in Figure 2b) were categorized as undergoing necrosis [2]. If
more than 80% of the area showed signs of necrosis, we considered it nonviable. Statistical
analysis for all experimental data involved the application of Student’s t-test and analysis
of variance (ANOVA).
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3. Results
3.1. The Impact of Coconut Fruit Age on the Initiation of Callus

Firstly, the identification and definition of embryogenic callus and browned callus are
quite important in this study. Embryogenic callus (Figure 3a) has the capacity of generating
somatic embryos, which are distinguished by their smooth, translucent, and clearly defined
somatic structure. On the other hand, the non-embryogenic callus (Figure 3c) exhibits a
rough, yellowish, and sponge-like appearance [14]. Non-embryogenic callus refers to a type
of callus in plant tissue culture that does not possess the ability to develop into embryos.
The occurrence of browning in coconut tissue culture is a significant drawback in both
embryogenic and non-embryogenic callus, leading to the deterioration of the tissues [23].
The definition and criteria for browned tissue were described above (Figure 2), and the
appearances of browned tissue are revealed in Figure 3b. The browned callus tissue will
quickly spread, negatively affecting the normal callus tissue, as demonstrated in Figure 3d.
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Figure 3. Different types of calluses are mentioned in this study: (a) embryogenic callus with a
translucent surface; (b) browned callus with embryogenic callus attached; (c) non-embryogenic callus
with a yellowish, rough surface. (d) An explant that has embryogenic callus, non-embryogenic callus,
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This experiment was conducted to determine the optimal developmental stage of
coconut nut as a type of explant. In this study, coconut nuts at different growth stages
(mature or tender) were used. Similarly, explants from tender coconut formed significantly
more embryogenic callus (56.7%) compared to the mature coconut fruits (25.0%). It was
also found that using mature fruits as explants leads to greater necrosis (83.3%) and a larger
necrotic area (41.3%), as indicated in Figure 4. Overall, our results demonstrate that the
developmental stage is a critical factor for the initiation of embryogenic callus.
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3.2. The Influence of Storage Time of Coconut on the Production of Callus

An experiment was undertaken to examine the influence of coconut storage time on
the initiation and development of the embryogenic callus of coconut. A 15-day storage
period may elevate the germination rate of coconut’s zygotic embryos from 76.2% to
91.7%. A storage period of 15 days could elevate the generation of embryogenic callus
from 52.4% to 75.0%, as shown in Figure 5. Meanwhile, coconut explants from the non-
stored fruits demonstrated a higher level of necrosis and larger necrotic areas. Our results
demonstrate that storing coconut fruits for 15 days significantly elevated the formation of
embryogenic callus.
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3.3. The Influence of Embryo Size of Coconut Fruits on Callus Initiation

The results of this study indicate that the callus generated from embryos of all sizes
demonstrated similar germination rates, namely 100% (large), 90% (medium), and 93%
(small). Specifically, the embryogenic callus rate of embryos of different sizes was measured
three months after callus initiation. The small embryos showed a significantly higher
induction rate of embryogenic callus (ca. 53%) compared to the medium and large embryos
(ca. 40% and 22%, respectively, as shown in Figure 6). Regarding necrosis, embryos of
all sizes did not show any significant difference, while the medium embryos led to a
significantly larger necrotic area (ca. 29%) compared to the others. Our results suggest
that smaller zygotic embryos of coconut may lead to a higher embryogenic callus rate.
As the size of the explant increases, there is a decreasing trend in the embryogenic callus
rate. However, the size of the embryos does not exhibit a correlation with the degree of
callus necrosis.
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3.4. The Effect of Applying Embryos with Shoot or Non-Shoot as the Explant for Callus Initiation

Our results indicate that when using embryos with shoots as explants, an improved
embryogenic rate and more browning could be achieved. Callus generated from those
embryos with/without shoots demonstrated similar survival rates (ca. 94% for both).
However, embryos with shoots had a significantly higher embryogenic callus rate (ca.
67%) compared to the embryos without shoots (ca. 56%), as demonstrated in Figure 7. On
the contrary, the application of embryos with shoots may lead to a significantly higher
browning rate (ca. 55%) than that of embryos without shoots (ca. 32%), as well as a greater
browning area (ca. 28% to 12%). In Figure 8, it is clearly observed that callus derived
from embryos with shoots showed more severe browning while exhibiting rapid growth
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and producing more embryogenic callus. On the other hand, the embryos without shoots
showed the opposite trend.
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Figure 8. The differences between callus derived from coconut zygotic embryos with and without
shoots. (a) Callus from zygotic embryos with shoots, 1 month after callus initiation; (b) callus from
zygotic embryos with shoots, 2 months after callus initiation: severe browning can be observed;
(c) callus derived from zygotic embryos without shoots, 1 month after callus initiation; (d) callus
derived from zygotic embryos without shoots, 2 months after callus initiation: less browning tissue
can be found. All pictures were taken using the same scale.
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4. Discussion

While protocols for coconut somatic embryogenesis (SE) from plumule tissues have
been established for the last 20 years, the ideal developmental stage and physiological
condition of the explant tissue from coconut are still unknown. To achieve an optimized
callogenesis pathway, we revealed influences of the explant quality and physiological
conditions on the initiation of primary callus.

The success of callus production is significantly influenced by the maturity of the
explant [24]. A comprehensive investigation into the impact of maturity on the success of
coconut tissue culture was conducted in this study. The research on maturity was divided
into two parts: the maturity of coconut fruit and the maturity of in vitro tissues (explants)
and their influence on tissue culture. The maturity of the zygotic embryo (age of the coconut
fruit) is an important factor that impacts somatic embryogenesis (SE), as it can influence
the generation and expansion of callus, ultimately affecting the process of SE. Embryos at
the age of 8 months exhibited callus formation in approximately only 30 to 40%, with the
resulting callus typically displaying slow growth in culture. On the other hand, embryos
aged 9 months failed to generate any callus [25]. In current coconut tissue culture proto-
cols, mature embryos aged 8–10+ months are commonly employed as explants [18,26–28],
although some studies also utilize embryos aged 10–12 months [2]. These studies often use
the estimated age of the embryo as a metric, but time measurements are subjective and
rough, and visual observability is not applied. In this study, the appearance of the fruit was
used as a more intuitive assessment of maturity. We also found that when using coconut
fruits aged 12–14 months as explants, germinated coconut fruits (unsuitable for tissue
culture) cannot be determined visually by external appearance. This results in the wastage
of a significant number of fruits. The method described in this study can address this
issue by utilizing green (or half green/half brown) coconut fruits. Additionally, experimen-
tal findings indicate that green coconut fruits can achieve a higher somatic embryogenic
rate compared to mature coconuts. To ensure the maturation of each green coconut, we
subjected experimental coconuts to a 15-day pre-treatment. The results indicated that
pre-treatment could further enhance the success of tissue culture. It was speculated that the
storage pre-treatment might activate the internal germination mechanism of the coconuts,
imparting greater vitality to the explants [29]. Storing the coconut fruits for 15 days during
shipment would not pose an issue and could even boost the callusing rate, which links
back to the previous concern regarding long-distance shipment. Therefore, the optimal
treatment for coconut is to harvest them when the outer skin still retains some green color,
followed by pre-treatment (approximately 15 days of storage in a cool, shaded area at room
temperature). However, the underlying mechanism behind this process remains unclear
and requires further investigation.

To locate and maturate the plumule, a pre-culture was required, but previous studies
did not provide clear information regarding the maturity of the plumule tissues at the
time of excision. To reach an optimal pre-culture, scholars placed more emphasis on
the pre-culture time rather than the growth stage of the plumule. However, this study
leans towards using the plumule growth stage as the parameter, rather than relying on
pre-culture time, to determine whether to extract the plumule for somatic embryogenesis.
Due to genetic differences of varieties worldwide, the pre-culture time to reach the same
developmental stage may vary. A study conducted by López-Villalobos (2002) suggested
that 10 days may be the optimal pre-culture period for coconut somatic embryogenesis [30],
while Fernando et al. (2004) pointed out that pre-culture mature zygotic embryos in a
germination media for 15–17 days before plumule extraction could increase the successful
rate of somatic embryogenesis of coconut [31]. Nguyen (2018) indicated that a two-week pre-
culture of embryos containing plumules leads to the best callus initiation. The plumule must
be excised as an explant for coconut somatic embryogenesis when the tissue culture reaches
a size recognizable to the naked eye [18]. Mu (2022) also employed a 14-day pre-culture
before plumule isolation [2]. In other coconut plumule culture protocols, the duration of
pre-culturing the embryo was not clearly documented, thereby reducing the reproducibility
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of these methods [27,32]. In this study, we clearly found that coconut zygotic embryos
with small shoots on the top (it usually takes 14–20 days to reach this developmental stage)
demonstrated a significantly higher embryogenic rate than those without shoots. Our
results are supported by other studies. Nguyen (2018) also suggested that the emergence
of small shoots from zygotic embryos signals the need for plumule isolation [18]. This
phenomenon may relate to the meristematic competence of developing tissues, leading to
variability in the callus response [33,34]. Similar reactions were found in callus initiation
utilizing immature inflorescences of coconut at various stages of development [17,35].
However, the molecular mechanism still remains unknown, further research being required
with regard to this scientific issue. A storage process can also be considered as a pre-
treatment for embryos, facilitating germination processes during the storage period [29].
This may be the reason why stored coconut demonstrated a better performance regarding
somatic embryogenesis.

At the early stages of plant tissue culture, scientists observed that the size of the
explant is closely linked to the final outcome of tissue culture [36]. The selection of explant
size is a crucial factor that affects the success of tissue culture procedures [37,38]. The
size of the explant can impact nutrient absorption, growth rate, and differentiation [39].
These assertions have been justified in coconut tissue culture. In their study on coconut,
Malaurie et al. indicated that explants, such as plumules, with a small size (ca. 1 mm) lead
to a higher density of meristematic cells in coconut tissue culture [40]. Bazrafshan (2022)
justified that the size of the embryo may have notable impacts on the embryos’ germination
ability, as well as on subsequent steps, such as tissue culture and cryopreservation [19]. In
our research, we found that utilizing smaller embryos may lead to a greater amount of
primary callus, while generating an acceptable portion of necrotic tissue. This result could
be attributed to the development stage of the embryos, which is connected to their size.
More studies are needed to explain the mechanism behind this phenomenon.

5. Conclusions

In conclusion, our findings shed light on key factors influencing the success of plumule-
based coconut micropropagation. Immature (tender) coconut fruits emerged as the optimal
starting material, displaying a heightened capacity for generating embryogenic callus
while minimizing browning. The 15-day pre-treatment, facilitating self-maturation, proved
instrumental in achieving superior rates of embryogenic callus formation, coupled with
reduced browning. Notably, the use of smaller embryos during the in vitro stage yielded
the most favorable outcomes, with no significant differences observed between large and
medium embryos in terms of browning. Intriguingly, embryos with small shoots exhibited
a higher embryogenic rate, albeit with an associated increase in browning tissue. Therefore,
for an optimal coconut tissue culture protocol, it is recommended to utilize tender coconut,
subject it to a 15-day pre-treatment, select smaller embryos during the in vitro cultivation,
and prioritize those with small shoots to attain the most successful results in coconut tissue
culture using plumule tissue.
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