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Abstract: Background: Phytophthora cinnamomi is one of the soil-borne pathogens that causes root rot
and stem rot in many plants globally. P. cinnamomi has serious economic, social, and environmental
impacts, threatening natural ecosystems and biodiversity. Methods: In this study, a molecular
detection method based on Recombinant polymorphic amplification (RPA) combined using the
CRISPR/Cas12a system was developed for P. cinnamomi. The method was found to be highly specific
for P. cinnamomi. Results: The results showed that 10 P. cinnamomi isolates were positive; however,
21 Phytophthora species, 4 Phytopythium species, 18 fungal species, and 2 Bursaphelenchus species
were negative. In total, 10 pg·µL−1 of P. cinnamomi genomic DNA can be detected. The detection
process is performed within 20 min at 37 ◦C, which makes it fast and convenient for use. Discussion:
In conclusion, the RPA-CRISPR/Cas12a system in this study is a promising tool for the rapid and
sensitive detection of P. cinnamomi in plant samples.

Keywords: Phytophthora cinnamomi; Rapid detection; Recombinase polymerase amplification;
RPA-CRISPR/Cas12a

1. Introduction

Phytophthora cinnamomi is a soil-borne plant pathogen with a global distribution,
and is listed as one of the 100 worst invasive alien species in the global invasive species
database [1,2]. It infects nearly 5000 species of plants, including many plants important
in agriculture, forestry, and horticulture [3]. P. cinnamomi is one of the most important
pathogenic fungi in forest disease control, threatening natural ecosystems and biodiver-
sity [4]. P. cinnamomi causes the decline of chestnuts and oaks in the Mediterranean region
of Europe and the United States [5].

The first known species of P. cinnamomi, was described by Rands in 1922. Phytophthora
cinnamomi var. cinnamomi (Rands) was found to cause stripe ulcer disease in camphor
plants in Sumatra [6]. P. cinnamomi is widely distributed in America, Europe, Oceania, and
Southeast Asia, and has been reported in more than 70 countries and regions. The host
range is extremely broad, and 182 strains have been isolated from more than 3000 species
of forest trees, agricultural crops, and other host plants. In China, the hosts of P. cinnamomi
include pine needles, camphor, bromeliads, avocado, cedar, chili pepper, acacia, papaya,
cinchona, tobacco, etc. [7].

The detection and analysis of P. cinnamomi has evolved with the development of molec-
ular techniques, while its precision is being challenged by new agents [8]. Conventional
PCR (real-time PCR) methods have been developed for the identification of P. cinnamomi
using molecular detection tests based on isothermal amplification. Manisha B et al. (2019)
developed a P. cinnamomi qPCR assay for detecting P. cinnamomi, which has high sensi-
tivity [9]. However, these analytical methods rely on thermocycling devices and other
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specialized equipment to prepare samples and provide results [10]. This also presents
challenges, including primer interference, signal interference, and the complexity of system
optimization. Furthermore, these traditional molecular assays have limited utility for dis-
ease diagnosis because they require centralized laboratory resources, expensive equipment,
and complex sample preparation [11–14].

CRISPR-Cas (clusters of regularly spaced short palindromic repeats and their asso-
ciated protein systems) technology has revolutionized the field of gene editing and has
also shown great potential for various biological applications, including pathogen detec-
tion [15,16]. The CRISPR-Cas system is a powerful tool for detecting specific nucleic acid
sequences with high sensitivity and specificity, making it an attractive option for the rapid
and accurate diagnosis of diseases [17]. Researchers have developed CRISPR-Cas-based
nucleic acid detection technology that is fast, accurate, and sensitive, making it ideal for
next-generation rapid and sensitive on-site nucleic acid detection. The technology was
recognized by Science as one of the top ten breakthroughs in science and technology
in 2018 [18]. CRISPR-Cas has been successfully used for detecting pathogenic microor-
ganisms, genetic diseases, tumor mutations, small molecules, etc. [19,20]. It was an ideal
next-generation technology for the rapid and sensitive on-site detection of nucleic acids [21].
The use of CRISPR-Cas for pathogen detection offers several advantages over conventional
methods such as PCR [22]. One of the main advantages is the speed of the assay. CRISPR-
Cas systems can be designed to detect multiple targets simultaneously, reducing the time
required for sample processing and analysis. Additionally, the system can be adapted for
use in portable devices, enabling the on-site testing and real-time monitoring of infectious
agents. Another advantage of CRISPR-Cas technology is its versatility [23–25]. The system
can be programmed to target a wide range of pathogens. This makes it suitable for use
in various settings, from clinical diagnostics to environmental monitoring [26]. Moreover,
CRISPR-Cas technology has the potential to improve the accuracy of detection by reducing
the chances of false positives and false negatives. The system can be designed to recog-
nize specific sequences that are unique to a particular pathogen, minimizing the risk of
cross-reactivity with other microorganisms [27,28]. In conclusion, CRISPR-Cas technology
has shown great promise in the field of pathogen detection, offering advantages such as
speed, versatility, and accuracy. As technology continues to evolve, it has the potential to
transform the way we diagnose and manage infectious diseases, ultimately contributing to
improved public health outcomes [29].

In this study, an RPA-CRISPR/Cas12a assay based on a novel target Pcinn204169 using
a comparative genomics approach was developed to detect P. cinnamomi, a devastating plant
pathogen. This method was designed to provide fast results with a high accuracy, which is
crucial for managing plant diseases effectively. Overall, this RPA-CRISPR/Cas12a assay
offers a significant improvement in speed and convenience over traditional PCR-based
methods for detecting P. cinnamomi. The ability to perform the entire process from sample to
result in just 30 min makes it a valuable tool for rapid disease diagnosis and management,
especially in forestry settings where timely intervention can prevent significant forest
losses.

2. Materials and Methods
2.1. Maintenance of Isolates and DNA Extraction

The isolates of fungi and oomycetes tested in this study are listed in Table 1. The
isolates were stored at the Department of Plant Pathology, Nanjing Forestry University
(NFU), China. P. cinnamomi and other oomycetes were isolated and grew on a 10% con-
centration V8 vegetable juice agar on 70-mm Petri dishes at an optimum temperature of
18–25 ◦C. The fungi were isolated and grew on a potato dextrose agar (PDA) on 90-mm
Petri dishes at an optimum temperature of 20 ◦C. Both were incubated in the dark. For
3–5 d, the genomic DNA (gDNA) of the test strain was extracted using the DNA secure
Plant Kit (Tiangen Biotech, Beijing, China) and quantified using a Nanodrop ND-1000
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spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). All DNA samples
were stored in a refrigerator at −20 ◦C.

Table 1. Information and results of CRISPR-Cas12a detection in the Phytophthora, other oomycete
isolates, and fungal isolates used in this investigation.

Number (Sub)Clade Species Isolate
Origin Crisp-Cas12a Deteciton Results

Host/Substrate Source

1

Oomycete

Phytophthora cinnamomi Pci1 Pinus sp. AH, China +

2 P. cinnamomi Pci2 Rhododendron simsii JS, China +

3 P. cinnamomi Pci3 Cedrus deodara JS, China +

4 P. cinnamomi Pci4 Camellia oleifera Abel. JS, China +

5 P. cinnamomi Pci5 Pinus sp. JS, China +

6 P. cinnamomi Pci6 Rhododendron simsii AH, China +

7 P. cinnamomi Pci7 Rhododendron simsii SD, China +

8 P. cinnamomi Pci8 Cedrus deodara SD, China +

9 P. cinnamomi Pci9 Cedrus deodara AH, China +

10 P. cinnamomi Pci10 Pinus sp. SD, China +

11 P. sojae Ps1 Glycine max JS, China -

12 P. sojae Ps2 Glycine max JS, China -

13 P. sojae Ps3 Glycine max JS, China -

14 P. sojae Ps4 Glycine max JS, China -

15 P. sojae Ps5 Glycine max JS, China -

16 P. sojae Psf1 Glycine max FJ, China -

17 P. sojae Psf2 Glycine max FJ, China -

18 P. sojae Psf3 Glycine max FJ, China -

19 P. sojae Psf4 Glycine max FJ, China -

20 p. medicaginis CBS 117685 lucerne Holland -

21 p. medicaginis CBS 117689 lucerne Holland -

22 P. parvispora CBS132771 Arbutus unedo Italy -

23 P. parvispora CBS132772 Arbutus unedo Italy -

24 P. cactorum C1 Malus pumila JS, China -

25 P. cactorum C2 Malus pumila JS, China -

26 P. cactorum C3 Rosa chinensis JS, China -

27 P. nicotianae Pnl Nicotiana tabacum FJ, China -

28 P. nicotianae Pn2 Lycopersicum sp. JS, China -

29 P. pini Ppinil Rhododendron
pulchrum JS, China -

30 P. pini Ppini2 R. pulchrum JS, China -

31 P. hibernalis CBS 270.31 Cirrus sinensis USA -

32 Phytopythium litorale PC-dj1 Rhododendron simsii JS, China -

33 P. helicoides PH-C Rhododendron simsii JS, China -

34 P. helicoides PF-he2 Rhododendron simsii JS, China -

35 P. helicoides PF-he3 Rhododendron simsii JS, China -
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Table 1. Cont.

Number (Sub)Clade Species Isolate
Origin Crisp-Cas12a Deteciton Results

Host/Substrate Source

36

Fungi

Fusarium. proliferatum Fprl Pinus sp. JS, China -

37 F. oxysporum BMZ12185 Cucumber
Rootstocks JS, China -

38 F. lateritium BMZ51357 Freesia lanceolata JS, China -

39 F. incarnatum IL3HQ Medicago sativa JS, China -

40 F. acuminatum Facl Rhizophora apiculata SC, China -

41 F. asiaticum Fasl Triticum aestivum JS, China -

42 F. avenaceum Favl Glycine max JS, China -

43 F. culmorum Fcul Glycine max SC, China -

44 F. commune Fcol Soil HLJ, China -

45 F. equiseti Feq1 Soil JS, China -

46 F. lateritium Flatl Soil JS, China -

47 F. moniforme Fmol Oryza sativa JS, China -

48 F. redolens BMZ103188 litter JS, China -

49

Nematode

Colletotrichum
gloeosporioides BMZ51334 Camellia japonica JS, China -

50 Bursaphelenchus
xylophilus Js-1 Pinus thunbergii JS, China -

51 B. mucronatus Bmucro Pinus sp. JS, China -

52 Endothia parasitica Epal Castanea mollissima JS, China -

53 Bremia lactucae Blal Lactuca sativa JS, China -

54 Gibberella avenacea BMZ105417 oatmeal JS, China -

55 Gibberella tricincta BMZ102862 rotten wood JS, China -

2.2. Designing RPA Primers, CRISPR RNA, and ssDNA Reporter Genes

To select the candidate target genes for the P. cinnamomi-specific RPA–CRISPR reaction,
the annotated genomic sequence of P. cinnamomi at https://genome.jgi.doe.gov/Phyci1
/Phyci1.home.html (accessed on 7 March 2024) was retrieved. To identify the target genes
unique to P. cinnamomi, we initially retrieved all the publicly available genome sequences of
the Phytophthoa species. Then, all the 26,131 gene sequences of P. cinnamomi were used as the
queries to blast against the above genomes (e-value cutoff: 1 × 10−5), and the genes without
any hit were treated as unique to P. cinnamomi [30]. The Pcinn204169 gene (scaffold_174:
124989-125344) was selected as the target for the design of gene-specific RPA primers. The
RPA primer was constructed according to the recommendation of the DNA sequencing
kits manuals (Figure 1) using Primer Premier 6.0 (Premier Biosoft, Palm Alto, CA, USA).
For the construction of the CRISPR RNA (crRNA) and ssDNA reporter, the CHOPCHOP
web tool (http://chopchop.cbu.uib.no/, accessed on 26 May 2023) was employed. The
crRNA was designed not to duplicate the sequence of the RPA primers and targeted the
conservative region in the RPA amplification (crRNA: UAAUUUCUACUAAGUGUA-
GAUAGGCCAAUGCCGCCAAUGAC) (Figure 1). The 5′ terminus of the ssDNA reporter
was labeled using 6-FAM, whereas the 3′ terminus was labeled using the BHQ-1 transcrip-
tion factor quencher (5′-6-FAM-TTATT-BHQ-1-3′). The crRNA and ssDNA reporters were
prepared by GenScript (Nanjing, China). They were maintained at −80 ◦C until the assay
was carried out.

https://genome.jgi.doe.gov/Phyci1/Phyci1.home.html
https://genome.jgi.doe.gov/Phyci1/Phyci1.home.html
http://chopchop.cbu.uib.no/
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2.3. RPA–CRISPR/Cas12a Assays

The 20 min test consisted of two steps: 10 min for the RPA reaction and 10 min for the
detection of CRISPR/Cas12a. Firstly, P. cinnamomi DNA was amplified in 10 min using a
pair of RPA primers (Pcinn204169 RPA-F/-R). Then, the amplified product was detected
and visualized within 10 min using the CRISPR/Cas12a system. The flow of the assay for
the analysis of RPA-CRISPR/Cas12a is illustrated in Figure 2. The assays were conducted
according to the manufacturer’s recommendations using the Test Strip Kit (LeShang Ltd.,
WuXi, China) in a 50 µL reaction mixture. Initially, the reactions consisted of 2 µL of each
forward or backward primer (Pcinn204169 RPA-F/-R, 10 µM), 25 µL of the supplied buffer,
2 µL of gDNA (100 ng/µL), and 16 µL of doubly distilled water (ddH2O) (47 µL total).
Each sample was centrifuged at 4000× g for 5 s, and then 3 µL of initiator was added
to the cap of the reaction tube. The tube was covered and centrifuged at 4000 rpm for
5 s after multiple rounds of mixing, and the reaction was performed at 37 ◦C for 20 min.
We spent 20 min on the detection test. To eliminate false positives, each set of reactions
included a no-template control (NTC) and a positive control (PTC). The CRISPR/Cas12a
system was used to analyze RPA products. RPA amplification products were used as
templates and various concentrations of crRNA (40, 300, and 500 nM and 1, 2, 5, as well
as 10 µM) and ssDNA (40 and 300 nM and 2, 1, 5, as well as 10 µM) were tested for
optimum combinations of concentrations. The optimization of the reaction time of the
RPA treatment and cleavage of Cas12a was tested at eight different times (5, 10, 15, 20,
25, 30, 35 and 40 min). The CRISPR/Cas12a expression was carried out using a 50 µL
volume containing 38 µL ddH2O, 5 µL reaction buffers, 3 µL crRNA, 1 µL of Cas12a, 1 µL
of ssDNA, and 2 µL of RPA products. The tube was then vortexed for 5 s at 4000 rpm and
the reaction was performed at 37 ◦C. There are two methods for detecting the outcome
of the RPA-CRISPR/Cas12a test. The multifunctional microplate reader detects a strong
fluorescent signal or a visibly emitted green, fluorescent light under a transmitted blue LED
light at about 470 nm, while no fluorescent signals or visibly emitted green, fluorescent
light are observed for the negative controls. At least three replicates were performed for all
RPA-CRISPR/Cas12a reactions. The STDEV function was used to calculate the standard
deviation for the three CRISPR/Cas12a analysis results (1, 2, and 3). Statistical analysis
was performed using GraphPad Prism 8 software (GraphPad software Inc., San Diego,
CA, USA). For the analysis of variance, the experimental group was analyzed against the
control group and a p-value was calculated. The difference of p < 0.05 (*) was considered
statistically significant.
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2.4. RPA–CRISPR/Cas12a Assay Specificity and Sensitivity

To evaluate the specificity of the RPA-CRISPR/Cas12a assay for P. cinnamomi, closely
related Phytophthora species, such as P. parvispora, P. hibernalis, P. sojae, P. pini, P. cactorum,
and P. nicotianae, were tested to evaluate the specificity. Intergeneric species such as
P. ittorale, P. helicoides, P. aphanidermatum, P. dissotocum, F. oxysporium, and F. solani were also
tested to further validate the accuracy of the specificity. Each set of reactions consisted
of purified gDNA samples (100 ng) as the template, positive control (100 ng P. cinnamomi
isolate), and ddH2O as NTC. We employed seven serial dilutions of P. cinnamomi genomic
DNA (e.g., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, and 10 fg) as templates for both the
conventional PCR and RPA-CRISPR/Cas12a assays to evaluate the sensitivity of this assay.
In both techniques, we incorporated an NTC into each reaction set and executed three
replicates for all template concentrations. The STDEV function was used to analyze and
calculate standard deviation. GraphPad Prism 8 software was used for statistical analyses.
An analysis of variance was performed by comparing the experimental group with the
control group and calculating the p-values. The difference of p < 0.05 (*) was considered
statistically significant.

2.5. RPA-CRISPR/Cas12a to Detect P. cinnamomi from Artificially Inoculated Pine Needles

On the campus of Nanjing Forestry University, healthy pine needle plants were cut,
rinsed with water for approximately 20 min, and placed on a piece of sterilized filter paper
for the surface sterilization of pine needle blades. Pine needle stalks were inoculated with
P. cinnamomi, incubated wet, and observed daily. On day 1, there was no significant change
in pine needle stems. On day 2, pine needle stems were slightly blackened, and on days
3 and 4, the discoloration of the plant stems was more pronounced. The diseased pine
needle stalks were cut into small pieces of approximately one cubic centimeter. Specimens
were ground for 1 min using a grinder. To extract DNA, 1 mL of sodium hydroxide lysate
and 100 mg of inoculated sample were mixed vigorously in liquid nitrogen powder for
10 min at room temperature (25 ◦C). During incubation, the samples were tapped three
times. RPA (100 ng·µL−1) and ddH2O were used as PTC and NTC, respectively, and 2 µL of
lysate was used as a template for the RPA assay. At least three repetitions of the experiment
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were performed. The STDEV function was used for the analysis and calculation of the
standard deviation. GraphPad Prism 8 software was used for statistical analyses. The
experimental group was analyzed against the control group and a p-value was calculated
for the analysis of variance. The difference was p < 0.05 (*), which is statistically significant.

3. Results
3.1. Optimization of the RPA-CRISPR/Cas12a-Based Test for the Detection of P. cinnamomi

Overall, 10 µM crRNA and 10 µM ssDNA reporters were optimized for the expression
of RPA-CRISPR/Cas12a, as shown by the intensity of green fluorescence and fluorescence
(Figure 3A,B). The optimal concentrations were tested to determine the optimal RPA re-
action time (assessed at 5, 10, 15, 20, 25, 30, 35, and 40 min). After 10 min, a considerable
amount of green fluorescent emission could be detected under the blue light LED illumina-
tor (Figure 4A,B). The optimal response time for RPA was 10 min. The optimal cleavage
time (5, 10, 15, 20, 25, 30, 35, and 40 min) of Cas12a was evaluated using the 10 min RPA
reaction product, and the results showed that the optimum clearing time was at 10 min
(Figure 4C,D). In summary, the green fluorescent protein is visible after only 20 min (10 min
for the RPA and 10 min for the Cas12a cleavage) (Figure 4).
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Figure 3. Optimization of the RPA-CRISPR/Cas12a assay for the detection of Phytophthora cinnamomi.
The crRNA and ssDNA reporter concentrations were set to the following values: 1: 40 nM crRNA,
40 nM ssDNA reporter; 2: 300 nM crRNA, 40 nM ssDNA reporter; 3: 500 nM crRNA, 300 nM ssDNA
reporter; 4: 1 µM crRNA, 1 µM ssDNA reporter; 5: 1 µM crRNA, 2 µM ssDNA reporter; 6: 2 µM
crRNA, 1 µM ssDNA reporter; 7: 5 µM crRNA, 1 µM ssDNA reporter; 8: 1 µM crRNA, 5 µM ssDNA
reporter; 9: 10 µM crRNA, 5 µM ssDNA reporter; and 10: 10 µM crRNA, 10 µM ssDNA reporter.
NC, negative control (double-distilled H2O). (A) Fluorescence detection using a multifunctional
microplate reader (λex: 485 nm, λem: 520 nm). (B) Visible green fluorescence detection under a blue
LED transilluminator at 470 nm. The one-way ANOVA of the fluorescence readings with those of
the negative control showed that p < 0.0001 (****). “****” shows a significant difference between
fluorescent and non-fluorescent signals.

3.2. The Specificity of P. cinnamomi Was Rapidly Detected with RPA-CRISPR/Cas12a

P. cinnamomi was used as the template DNA, with primers Pcinn204169 RPA-F/-R.
Interspecific DNAs are shown from left to right: P. parvispora, P. hibernalis, P. sojae, P. pini,
P. cactorum, and P. nicotianae (Figure 5A,C). Intergeneric DNAs are shown from left to right:
P. litorale, P. helicoides, P. aphanidermatum, P. dissotocum, F. oxysporium, F. solani, and the blank
control NC (Figure 5B,D). When testing the specificity of the RPA–CRISPR/Cas12a test, the
multi-functional microtiter plate readers demonstrated a high fluorescent response to the
P. cinnamomi gDNA, while the gDNA from the other oomycetes and fungi did not fluoresce.
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3.3. The Sensitivity of P. cinnamomi Was Rapidly Detected with the RPA-CRISPR/Cas12a Assay

To determine the sensitivity of the RPA-CRISPR/Cas12a rapid assay for detecting
P. cinnamomi, different concentrations of P. cinnamomi gDNA were sequentially diluted, and
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different concentrations of P. cinnamomi gDNA (10, and 1 ng; 100, 10, and 1 pg; and 100 fg)
were extracted for the experiments. Concentrations of gDNA ranging between 10 ng, 1
ng, 100 pg, and 10 pg showed a visible green, fluorescent emission, while other levels of
gDNA and the NC showed no visual evidence of fluorescence (Figure 6). Consistent values
were obtained in three replications. This indicates that 10 pg is the minimum detectable
concentration of gDNA.
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Figure 6. The sensitivity of Phytophthora cinnamomi was rapidly detected with the RPA-
CRISPR/Cas12a assay. The pathogen was detected at a minimum genomic DNA concentration
of 10 pg using (A) a multifunctional microplate reader (λex: 485 nm, λem: 520 nm) or (B) a blue LED
transilluminator at 470 nm. 1–8: 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg, and NC (negative
control, double-distilled H2O). The one-way ANOVA of the fluorescence readings with those of
the negative control showed that p < 0.0001 (****); 0.001 < p < 0.01 (***); p < 0.05 (*), “****”; “***”;
“*” shows a significant difference between fluorescent and non-fluorescent signals.

3.4. Experimental Detection of P. cinnamomi-Infested Pine Needle Plants Using the
RPA-CRISPR/Cas12a Approach

The crude DNA from inoculated pine needle stems of 1, 2, and 3 d and non-inoculated
pine needle stems was extracted by NaOH lyes. For the RPA-CRISPR/Cas12a assay,
the extracted DNA was used as a template. Purified gDNA (100 ng/µL) was used as
the positive control and dd H2O was used as the negative control. P. cinnamomi was
detected, as confirmed by the green fluorescence of the RPA-CRISPR/Cas12a rapid assay,
in crude DNA samples from the positive controls and plants inoculated with P. cinnamomi
(Figure 7A–C). Thus, RPA–CRISPR/Cas12a can effectively detect artificially inoculated
P. cinnamomi.
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by a multifunctional microplate reader (λex: 485 nm, λem: 520 nm). 1: Positive control (P. cinnamomi
gDNA), PTC; 2–4: samples of naturally infected pine needle stems; 5: healthy pine needle stems;
NC: negative control. (C) Visible green fluorescence was detected under a blue LED transilluminator
at 470 nm. 1: Positive control (P. cinnamomi gDNA); 2–4: samples of naturally infected pine needle
stems; 5: healthy pine needle stems; NC: negative control. The one-way ANOVA of the fluorescence
readings with those of the negative control showed that p < 0.0001 (****). “****” shows a significant
difference between fluorescent and non-fluorescent signals.

4. Discussion

The RPA-CRISPR/Cas12a rapid diagnostic test for P. cinnamomi is reported here for
the first time. The overall reaction times were 20 min (10 min for the RPA reactions and
10 min for the CRISPR/Cas12a assay), and the assay results could be visualized using UV
lighting and fluorescence reading. The RPA-CRISPR/Cas12a assay was strongly influenced
by the concentration of crRNA and ssDNA. Therefore, we screened various combinations
of crRNA and ssDNA reporter gene concentrations, with both at a concentration of 10 µM.
Our specificity evaluation confirms that the novel RPA-CRISPR/Cas12a system accurately
detected P. cinnamomi gDNA and was negative for gDNA from other species. The method
specifically detects P. cinnamomi at a minimum gDNA content of 10 pg using an RPA-
CRISPR/Cas12a assay. The pine needle samples collected from P. cinnamomi-infected
needles were used to evaluate the feasibility of the assay.

To date, for the detection of P. cinnamomi by nucleic acids, the characteristics of
these methods are summarized as follows: qPCR is highly sensitive for the detection of
P. cinnamomi but requires thermal cycling conditions and temperatures above 95 ◦C [9]. The
detection of P. cinnamomi by qPCR can be performed in the field by using a portable qPCR
instrument, which can be used in the field. Although portable qPCR instruments can be
used in the field, the high temperatures and thermal cycling temperatures provided by high-
power batteries or automobile batteries affect their feasibility in field testing [29,30]. LAMP
is an efficient isothermal nucleic acid technique, but the need for high-power batteries
affects its application in field testing due to the need for reaction temperatures in the 55 to
60 ◦C range [31].

The RPA-CRISPR/Cas12a method has many advantages over traditional techniques.
On the one hand, the reaction is able to be completed in a stable temperature range at
a fairly constant level of 37 ◦C. Such conditions can be easily achieved using human
body temperature, a USB-powered incubator, or a thermostatic heater, this eliminates the
need to use specialized and expensive instruments like temperature cycling devices. On
the other hand, it is possible to perform the diagnostic procedure in ~20 min, whereas
PCR-based tests require at least 2.5 h, with the PCR procedure taking 90 min and the
gel electrophoresis 30 min [32–35]. And third, some RPA reaction components interfere
with the antibodies on the test paper, which can lead to an inappropriate dilution, non-
specific bindings, and incorrectly diluted false-positive reactions. The RPA binding with
CRISPR-Cas12a allows for the dual detection of the target: once for identifying the RPA
primer and then for identifying the RPA amplification product by CRISPR/Cas12a during
the RPA reaction. This effectively circumvents the problem of false positives during RPA
amplification [36,37]. RPA-CRISPR/Cas12a detection systems have many advantageous
features, such as multiplexing capabilities, low requirement for complicated instrumen-
tation and specialized personnel, and superior detection accuracy [38–42]. In contrast to
the RPA-LFD approach, RPA-CRISPR/Cas12a allows for the isothermal, label-free target
gene detection through the design of RPA primer sets and amplification of the products
as amplified reporter genes [43–45]. The resulting CRISPR/Cas12a cleavage products
provide a precise, cost-effective, and easy-to-use platform for the development of instant
CRISPR-based diagnostic applications [46,47].

The specific primers were designed to amplify the Pcinn204169 putative gene, a new
target identified from genomic sequence data. This Pcinn204169 RPA-CRISPR/Cas12a assay
has been demonstrated to have specificity for Pcin. It also has several other advantages
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compared to PCR-based detection assays. The assay is convenient and transportable,
without the need for costly equipment. However, this study did not examine continuous
base changes or deletions, leaving considerable opportunity to investigate the ability of
RPA-CRISPR/Cas12a to distinguish individual differences in bases. The CRISPR/Cas12a
assay developed here can be used in the laboratory to detect and characterize P. cinnamomi,
and the accuracy of this assay was verified using pine needle samples collected at Nanjing
Forestry University. In addition, RPA-CRISPR/Cas12a rapidly detected P. cinnamomi in
<30 min at 37 ◦C, greatly reducing the detection time.

5. Conclusions

In this study, a CRISPR/Cas12a-mediated isothermal amplification technique was
established to detect P. cinnamomi that did not cross-react with other interspecies and
intergeneric DNAs during specificity experiments and had good specificity. The method
established in this study is highly sensitive and capable of detecting 10 pg of the P. cinnamomi
genome DNA in 20 min of incubation to 37 ◦C. The method is sensitive, efficient, and
convenient, and the results are clearly visible under UV light, which is favorable for the
early detection of P. cinnamomi.
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