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1 Department of Forest Resource Planning and Informatics, Faculty of Forestry, Technical University in Zvolen,
T. G. Masaryka 24, 960 01 Zvolen, Slovakia; kardos@is.tuzvo.sk (M.K.); tomastik@is.tuzvo.sk (J.T.)

2 Department of Forest Management, National Forest Centre, T. G. Masaryka 2175/22, 960 01 Zvolen, Slovakia
3 Department of Integrated Geodesy and Cartography, AGH University of Krakow, 30 Mickiewicza Av.,

30-059 Krakow, Poland; basista@agh.edu.pl
4 Department of Ecological Engineering and Forest Hydrology, Faculty of Forestry, University of Agriculture in

Krakow, 29 Listopada Av. 46, 31-425 Krakow, Poland; lukasz.borowski@urk.edu.pl
5 Department of Forest Harvesting, Logistics and Ameliorations, Faculty of Forestry, Technical University in

Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovakia; ferencik@is.tuzvo.sk
* Correspondence: sackov@nlcsk.org; Tel.: +421-949381250

Abstract: Forest road maps are a fundamental source of information for the sustainable management,
protection, and public utilization of forests. However, the precision of these maps is crucial to their
use. In this context, we assessed and compared the elevation accuracy of terrain on three forest
road surfaces (i.e., asphalt, concrete, and stone), which were derived based on data from three
remote sensing technologies (i.e., aerial imaging, airborne laser scanning, and mobile laser scanning)
using five geospatial techniques (i.e., inverse distance; natural neighbor; and conversion by average,
maximal, and minimal elevation value). Specifically, the elevation accuracy was assessed based on
700 points at which elevation was measured in the field, and these elevations were extracted from
fifteen derived forest road maps with a resolution of 0.5 m. The highest precision was found on
asphalt roads derived from mobile laser scanning data (RMSE from ±0.01 m to ±0.04 m) and airborne
laser scanning data (RMSE from ±0.03 m to ±0.04 m). On the other hand, the lowest precision was
found on all roads derived from aerial imaging data (RMSE from ±0.11 m to ±0.23 m). Furthermore,
we found significant differences in elevation between the measured and derived terrains. However,
the differences in elevation between specific techniques, such as inverse distance, natural neighbor,
and conversion by average, were mostly random. Moreover, we found that airborne and mobile
laser scanning technologies provided terrain on concrete and stone roads with random elevation
differences. In these cases, it is possible to replace a specific technique or technology with one that is
similar without significantly decreasing the elevation accuracy (α = 0.05).

Keywords: forest road network; remote sensing; terrain model; vertical accuracy

1. Introduction

Forest roads create a logistical network that enables the management, protection, and
public utilization of forests [1–5]. For these purposes, relevant stakeholders (e.g., forest
owners and managers, policymakers, and the public) need and therefore strictly require
forest road maps containing precise information about the related network of forest roads
(e.g., location, density, category, and quality) [6,7]. Here, the accuracy of terrain elevation
primarily determines the overall precision and, thus, the usability of forest road maps.

Field surveys represent a conventional approach to obtaining information about the
terrain on forest roads. Related methods can be considered simple and cheap, but they
are sometimes not precise and provide a low rate of points recorded per time unit. For
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example, steel tape and global navigation satellite systems (GNSSs) are often used to obtain
relevant terrain features related to forest roads [8,9].

Remote sensing has recently attracted considerable attention as an alternative approach
to improving the efficiency of forest road surveys. Above all, aerial imaging (AI), airborne
laser scanning (ALS), and mobile laser scanning (MLS) represent the most innovative remote
sensing technologies for acquiring information about the terrain on forest roads [10–15].

The application of AI offers several specific photogrammetry methods suitable for
creating forest road maps, such as image matching (IM) and structure from motion (SfM).
While IM provides data mostly representing the outer canopy [16], SfM offers a more
automated workflow, which is more accessible for users and more usable in forest areas [17].
Moreover, SfM enables the generation of two-dimensional as well as three-dimensional
terrains using overlapping images acquired from different perspectives with standard
compact cameras, including smartphones. It can achieve high performance, especially
when used at close range and with dimension stability control (e.g., invar rods) [18]. Thus,
SfM represents the most effective AI method applicable to the creation of relatively precise
terrains within both non-forest and forest areas [19,20].

ALS is widely used for forest resources and topography mapping since it can provide
high-resolution spatial information about forest environments [12,21]. Unlike traditional
optical sensors, ALS enables the acquisition of multiple returns, so it is possible to obtain
information about forest stands and individual trees, including the understory. Even in
areas with dense vegetation, ALS enables the recording of the true ground based on the
last returns that penetrate through the gaps of the forest canopy [19,22–24]. Thus, the
terrain derived from classified ALS point clouds can also reveal road structures in densely
forested areas. Various characteristics of forest roads can be derived from ALS data, such
as their completeness, road length, positional accuracy, and road grade [12]. Research
studies on forest roads have dealt with a wide range of tasks related to these. Some of
them are focused on mapping and updating forest road networks [7,25], and others are
focused on evaluations of the quality of road surfaces and ditching systems [26]. An
approach for forest road extraction and classification using a support vector machine can be
applied to classify data into road and non-road classes [27]. Further research has reported
applications of ALS data for road detection [13,28–31], road surface classification [11],
forest road damage detection and extraction using deep learning algorithms [32,33], and
large-scale road detection in mountainous areas [34].

The application of MLS became popular once it became possible to obtain georefer-
enced data via real-time GNSS observations. Traditionally, this was performed with total
stations and levels, which was a time-consuming technique. Although the dependence of
MLS on GNSSs can be considered a drawback because the repeatable accuracy of MLS will
be in the same range as a GNSS [35], its advantages surpass the disadvantages. Specifically,
MLS systems are multi-discipline combination, multi-sensor integration, and multi-data
fusion systems [36] capable of providing accurate and dense point clouds. MLS systems are
widely used in urban areas, using various carrying vehicles [37]. Furthermore, they provide
fast scanning, can produce very dense point clouds due to the proximity of terrain [10],
and can be used as an efficient technology to obtain spatial information about forest roads.
They also enable the use of elevation and intensity values for road surface roughness detec-
tion [14]. Research on MLS technology applications that focus on forest roads primarily
deals with the determination of surface roughness using depth imaging [38], the detection
of damage using mobile laser profilometry [37], and the monitoring of wearing courses
using cross section analysis [10].

All the remote sensing technologies presented here provide geospatial datasets (co-
ordinates X, Y, and Z of terrain points) that can be used to create terrain on forest roads.
However, there is a significant difference in the related elevation accuracy of their final
forest road maps. This determines their application, both in practice and in the further
processing of associated data as an input for geospatial analyses [39], such as for hydrol-
ogy [40], forest management [41], and forest transportation [42–44]. Here, the quality of
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the point clouds (e.g., density, horizontal, and vertical accuracy of points) represents a key
factor determining the precision of terrain on forest roads [45]. Thus, it is necessary to
subordinate the choice of technology to this and know what can be expected from specific
sensors with specific settings.

Despite existing research activities being focused on forest transportation, there is a
relevant demand for a comprehensive study aimed at comparing the elevation accuracy
of forest road maps derived using different geospatial data and techniques (i.e., aerial vs.
terrestrial platforms, active vs. passive sensors, and interpolation vs. conversion algorithms).

In this context, the main goal of our study is to assess and compare the elevation
accuracy of terrain within forest road maps derived based on data from three remote
sensing technologies (i.e., AI, ALS, and MLS) using five geospatial techniques (i.e., inverse
distance (IDW); natural neighbor (NN); and conversion by average (PtR-Avg), maximal
(PtR-Max), and minimal (PtR-Min) elevation value). Moreover, we conduct this study on
three different forest road surfaces (i.e., asphalt, concrete, and stone).

2. Materials and Methods
2.1. Study Area

The forest road representing the study area is located in Central Slovakia (Figure 1).
The total length of this road is 6238 m, defined by the WGS 84 coordinates of starting point
48.33◦ N, 19.20◦ E and ending point 48.34◦ N, 19.23◦ E. The elevation range in the Baltic
height system is from 359 m to 411 m above sea level.
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two concrete sections (total length of 100 m), and two stone sections (total length of 100 m).

For the purposes of this study, we selected seven 50 m sections of related forest roads
with different surfaces and positions. Specifically, there are three asphalt sections (i.e., 150 m
of road with a compact asphalt surface), two concrete sections (i.e., 100 m of road with a
partly non-compact surface caused by concrete slabs), and two stone sections (i.e., 100 m of
road with an extremely non-compact surface caused by paving stones). The descriptive
characteristics of these road surfaces, such as macrostructure derived from intensity val-
ues of ALS data and ruggedness calculated from elevation values of terrain, are shown
in Figure 2.
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Figure 2. Descriptive characteristics of road surfaces: (a) macrostructure of asphalt roads;
(b) macrostructure of concrete roads; (c) macrostructure of stone roads; (d) ruggedness of road
surfaces (i.e., mean ±three times the standard deviation).

2.2. Ground Data

The ground data representing reference dataset were obtained in 2018. We used
a geodetic terrestrial measurement approach, combining the GNSS receiver and total
station in clear sky conditions to achieve the highest vertical and horizontal accuracy of
the reference points. Specifically, a Topcon Hiper GGD and Topcon GPT9003M (Topcon
Positioning Systems, Inc., Livermore, CA, USA) were used for these purposes. At least
three geodetic points close to each section were measured using GNSS technology to serve
as a basis for further detailed measurement with a total station. One of these points served
as the position of the total station, and the second and third points served as the orientation
and control orientation. We used the single-station method, based on measuring distances
and angles to a rod with a prism, for individual reference points. Furthermore, since each
section was measured at different times and satellite constellations, we used the GNSS
RTK method based on SKPOS corrections (Slovak real-time positioning service). The
combination of these methods ensured horizontal and vertical accuracy up to ±0.05 m.

Overall, we measured 700 reference points on the 7 selected sections. Each section
included 20 profiles and each profile included 5 reference points. The distance between
profiles was ca. 2.5 m and the distance between points was ca. 1.0 m. From this, there
were 300 points on the three asphalt surfaces, 200 points on the two concrete surfaces, and
200 points on the two stone surfaces (Figure 3).

2.3. Aerial Imaging Data

The AI data were acquired in 2018 using a Leica RCD 30 camera (Leica Geosystems
AG, Heerbrugg, Switzerland) and Cessna 206 aircraft (Cessna AC, Wichita, KS, USA). The
survey was conducted in clear sky conditions at an average imaging altitude of 1526 m
above ground, with an overlap of 60%/30% and a frame rate of 60 MP/s. The processing
of image-based point clouds was performed based on the SfM method using the Agisoft
Metashape Professional 2.0.3 software (Agisoft LLC, St. Petersburg, Russia). Here, the
orientation was refined using the control points (i.e., individual points on the ground
with known coordinates). The classification of ground points was performed based on the
Match-T DSM strategy using the INPHO 13 software (Trimble Inc., Westminster, CO, USA).
The average density of point clouds within the ground class was 11 points/m2.
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2.4. Airborne Laser Scanning Data

The ALS data were acquired in 2018 using a Leica ALS 70 CM scanner (Leica Geosys-
tems AG) and Cessna 206 aircraft (Cessna AC). The survey was conducted in clear sky
conditions at an average scanning altitude of 1526 m above ground, with a field of view of
43◦ and a scan rate of 282 kHz. The processing of ALS-based point clouds was performed
using the Leica HxMap software (Hexagon, Stockholm, Sweden). Here, the orientation was
refined using control surfaces (i.e., group of points on the surfaces oriented in one height
level or slope). The classification of ground points was performed based on the Strong
strategy using the INPHO 13 software (Trimble Inc.). The average density of point clouds
within the ground class was 9 points/m2.

2.5. Mobile Laser Scanning Data

The MLS data were acquired in 2017 using a Leica Pegasus Two scanner (Leica Geosys-
tems AG) and Ford Ranger 150 truck (Ford MC, Cologne, Germany). The survey was
conducted in clear sky conditions at an average scanning altitude of 2 m above ground,
with a field of view of 360◦ × 270◦ and a scan rate of 1016 kHz. The processing of MLS-
based point clouds was performed using the Leica Pegasus Manager software (Hexagon).
Here, the orientation was refined using calibrated data from the inertial navigation system
(i.e., geospatial dataset from motion and rotation sensors). The classification of ground
points was performed based on the Strong strategy using the INPHO 13 software (Trimble
Inc.). The average density of point clouds within the ground class was 840 points/m2.

2.6. Generation of Forest Road Maps

The terrain of the forest road maps was generated based on the ground class from the
AI, ALS, and MLS point clouds using the ArcGIS Desktop 10.2 software (ESRI, Redlands,
CA, USA). Five alternative geospatial terrain generation techniques were used separately
for each road surface (i.e., asphalt, concrete, and stone) and data source (i.e., AI, ALS,
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and MLS). Specifically, terrains were generated using two interpolation techniques and
three conversion techniques. The IDW and NN techniques were used for interpolation,
and the PtR-Avg, PtR-Max, and PtR-Min techniques were used for conversion. A unified
coordinate system (i.e., WGS84/UTM34N) and resolution (i.e., 0.5 m) were used for all
data sources and techniques. These data sources were obtained in similar weather and
vegetation conditions. In this way, fifteen comparable forest road maps were generated for
the purposes of this study.

2.7. Assessment of Elevation Accuracy of Forest Road Maps

The elevation accuracy of the forest road maps was assessed by comparing the mea-
sured terrain (i.e., reference dataset) and generated terrain (i.e., derived dataset). Specif-
ically, we used seven hundred points (n) where elevations were measured using a com-
bination of a GNSS and total station (zMT) and where elevations were extracted from
all fifteen types of generated terrains (zGT). A comparison of paired elevations was per-
formed based on an error matrix consisting of key accuracy attributes, such as individual
difference, ei (Equation (1)); mean difference, ē (Equation (2)); standard deviation of mean
difference, se (Equation (3)); and total difference in terms of root mean square error, RMSE
(Equation (4)) (i.e., 68% confidence interval). Additionally, the p-value of the normality
test (i.e., Shapiro–Wilk W test) and paired test (i.e., Student’s or Wilcoxon’s pair test) was
calculated to evaluate the related significance of differences at the α = 0.05 significance
level and at f = n − 1 degrees of freedom (i.e., 95% confidence interval).

ei = zGTi − zMTi (1)

e =

n
∑

i=1
ei

n
(2)

se =

√√√√√ n
∑

i=1
(ei − e)2

n − 1
(3)

RMSE =

√
se2 + e2 (4)

3. Results

The three-dimensional visualization of the final forest road map with a resolution
of 0.5 m is displayed in Figure 4. While MLS provided relatively high detail for all road
surfaces, ALS only offered this level of detail for the roads with a stone surface. The
visibility and level of detail of the forest roads derived from AI data were relatively low or
non-existent (Figure 5).
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Figure 5. Example visualizations of terrains from forest road maps: (a) asphalt roads derived based
on AI data; (b) asphalt roads derived based on ALS data; (c) asphalt roads derived based on MLS data;
(d) longitudinal profiles of asphalt roads; (e) concrete roads derived based on AI data; (f) concrete
roads derived based on ALS data; (g) concrete roads derived based on MLS data; (h) longitudinal
profiles of concrete roads; (i) stone roads derived based on AI data; (j) stone roads derived based on
ALS data; (k) stone roads derived based on MLS data; (l) longitudinal profiles of stone roads. Note:
AI: aerial imaging; ALS: airborne laser scanning; MLS: mobile laser scanning.

The elevation accuracy values of the forest road maps (i.e., asphalt, concrete, and stone
roads) derived from AI, ALS, and MLS data using five geospatial techniques (i.e., IDW, NN,
PtR-Avg, PtR-Max, and PtR-Min) are reported in Table 1.

The mean elevation difference was in the range of −0.02 m to 0.20 m (asphalt roads),
−0.04 m to 0.10 m (concrete roads), and −0.05 m to 0.05 m (stone roads), depending on the
technique. Negative values (i.e., underestimations) were found primarily on concrete roads
derived from ALS and MLS data. Here, the PtR-Min technique also provided negative
values on other forest roads. However, none of these elevation differences exceeded the
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value of −0.05 m. Positive elevation differences (i.e., overestimations) were found with all
other forest roads and techniques. In particular, the application of AI data resulted in the
highest positive elevation differences with the largest variability on all forest road surfaces
(0.01 m to 0.20 m).

Table 1. Elevation accuracy of forest road maps derived from aerial imaging data, airborne laser
scanning data, and mobile laser scanning data.

Surface
Technology Aerial Imaging Airborne Laser Scanning Mobile Laser Scanning

Technique ē se RMSE ē se RMSE ē se RMSE

AsphaltConcreteStone

IDW 0.12 0.14 0.18 0.02 0.04 0.05 −0.01 0.02 0.02
NN 0.12 0.14 0.19 0.02 0.04 0.05 −0.01 0.02 0.02

PtR-Avg 0.12 0.14 0.18 0.02 0.04 0.05 −0.01 0.02 0.02
PtR-Max 0.14 0.14 0.20 0.02 0.04 0.05 0.03 0.05 0.05
PtR-Min 0.09 0.14 0.17 −0.02 0.05 0.05 −0.03 0.02 0.03

Asphalt

IDW 0.18 0.12 0.22 0.03 0.02 0.04 0.00 0.01 0.01
NN 0.18 0.12 0.22 0.04 0.03 0.04 0.00 0.01 0.01

PtR-Avg 0.18 0.12 0.22 0.03 0.02 0.04 0.00 0.01 0.01
PtR-Max 0.20 0.12 0.23 0.03 0.02 0.04 0.02 0.03 0.04
PtR-Min 0.16 0.13 0.20 0.00 0.03 0.03 −0.02 0.01 0.02

Concrete

IDW 0.06 0.14 0.15 −0.01 0.05 0.05 −0.01 0.02 0.02
NN 0.06 0.15 0.16 −0.01 0.05 0.05 −0.01 0.02 0.02

PtR-Avg 0.06 0.13 0.15 −0.01 0.05 0.05 −0.01 0.02 0.02
PtR-Max 0.10 0.16 0.19 −0.01 0.05 0.05 0.04 0.05 0.07
PtR-Min 0.02 0.12 0.12 −0.04 0.05 0.06 −0.03 0.02 0.04

Stone

IDW 0.03 0.11 0.12 0.01 0.05 0.05 −0.02 0.02 0.03
NN 0.03 0.11 0.11 0.02 0.05 0.05 −0.02 0.02 0.03

PtR-Avg 0.03 0.11 0.12 0.01 0.05 0.05 −0.02 0.02 0.03
PtR-Max 0.05 0.12 0.13 0.01 0.05 0.05 0.03 0.06 0.06
PtR-Min 0.01 0.11 0.11 −0.03 0.05 0.05 −0.05 0.01 0.05

Note: ē: mean difference; se: standard deviation of mean difference; RMSE: root mean square error; IDW: inverse
distance; NN: natural neighbor; PtR-Avg/Max/Min: conversion by average/maximal/minimal value.

The total elevation difference was in the range of ±0.01 m to ±0.23 m (asphalt roads),
±0.02 m to ±0.19 m (concrete roads), and ±0.03 m to ±0.13 m (stone roads), depending on
the technique. The lowest values (i.e., highest elevation accuracy) were found on asphalt
roads derived from MLS data (±0.01 m to ±0.04 m). Other forest roads derived from
ALS and MLS data achieved a range of ±0.02 m to ±0.07 m. The highest values (i.e., the
lowest elevation accuracy) were found on all forest roads derived from AI data (±0.11 m to
±0.23 m). In particular, the application of AI data on asphalt roads provided the highest
elevation differences, in the range of ±0.20 m to ±0.23 m.

The significance of the elevation differences in the forest road maps (i.e., asphalt,
concrete, and stone roads) derived from AI, ALS, and MLS data using five geospatial
techniques (i.e., IDW, NN, PtR-Avg, PtR-Max, and PtR-Min) is reported in Tables 2–5
(α = 0.05).

Table 2. Aerial imaging technology: significance of elevation differences between derived and
reference terrain and between geospatial techniques.

Surface Asphalt

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW p < 0.05
NN p < 0.05 0.76

PtR-Avg p < 0.05 0.59 0.89
PtR-Max p < 0.05 p < 0.05 p < 0.05 p < 0.05
PtR-Min p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05
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Table 2. Cont.

Surface Concrete

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW p < 0.05
NN p < 0.05 0.42

PtR-Avg p < 0.05 0.23 0.21
PtR-Max p < 0.05 p < 0.05 p < 0.05 p < 0.05
PtR-Min 0.10 p < 0.05 p < 0.05 p < 0.05 p < 0.05
Surface Stone

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW 0.19
NN 0.23 0.29

PtR-Avg 0.18 0.14 0.25
PtR-Max p < 0.05 p < 0.05 p < 0.05 p < 0.05
PtR-Min 0.94 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Note: IDW: inverse distance; NN: natural neighbor; PtR-Avg/Max/Min: conversion by aver-age/maximal/
minimal value.

Table 3. Airborne laser scanning technology: significances of elevation difference between derived
and reference terrain and between geospatial techniques.

Surface Asphalt

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW p < 0.05
NN p < 0.05 0.19

PtR-Avg p < 0.05 0.80 0.18
PtR-Max p < 0.05 0.80 0.18 p < 0.05
PtR-Min 0.06 p < 0.05 p < 0.05 p < 0.05 p < 0.05
Surface Concrete

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW p < 0.05
NN p < 0.05 0.23

PtR-Avg p < 0.05 0.08 0.14
PtR-Max p < 0.05 0.08 0.14 p < 0.05
PtR-Min p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05
Surface Stone

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW p < 0.05
NN p < 0.05 0.07

PtR-Avg p < 0.05 0.43 0.09
PtR-Max p < 0.05 0.43 0.09 p < 0.05
PtR-Min p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Note: IDW: inverse distance; NN: natural neighbor; PtR-Avg/Max/Min: conversion by aver-age/maximal/
minimal value.

The elevations of the concrete and stone roads derived from AI data and the asphalt
roads derived from ALS data using the PtR-Min technique were not statistically significant
relative to the elevations in the ground data. Here, the stone roads derived from AI data
using the IDW, NN, and PtR-Avg techniques and the concrete roads derived from MLS data
using the PtR-Max technique were not statistically significant either. Other road surfaces,
data sources, and techniques significantly affected the elevation accuracy of the forest road
maps (i.e., differences between the derived and real terrain).
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Table 4. Mobile laser scanning technology: significance of elevation differences between derived and
reference terrain and between geospatial techniques.

Surface Asphalt

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW p < 0.05
NN p < 0.05 p < 0.05

PtR-Avg p < 0.05 0.64 0.06
PtR-Max p < 0.05 p < 0.05 p < 0.05 p < 0.05
PtR-Min p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05
Surface Concrete

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW p < 0.05
NN p < 0.05 0.36

PtR-Avg p < 0.05 0.67 0.43
PtR-Max 0.13 p < 0.05 p < 0.05 p < 0.05
PtR-Min p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05
Surface Stone

Technique Ground IDW NN PtR-Avg PtR-Max PtR-Min
Ground

IDW p < 0.05
NN p < 0.05 0.79

PtR-Avg p < 0.05 0.38 0.77
PtR-Max p < 0.05 p < 0.05 p < 0.05 p < 0.05
PtR-Min p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Note: IDW: inverse distance; NN: natural neighbor; PtR-Avg/Max/Min: conversion by aver-age/maximal/
minimal value.

Table 5. Airborne and mobile laser scanning technologies: significance of elevation differences
between technologies.

Technique
Surface

Asphalt Concrete Stone

IDW p < 0.05 0.33 p < 0.05
NN p < 0.05 0.57 p < 0.05

PtR-Avg p < 0.05 0.26 p < 0.05
PtR-Max p < 0.05 p < 0.05 p < 0.05
PtR-Min p < 0.05 p < 0.05 0.21

Note: IDW: inverse distance; NN: natural neighbor; PtR-Avg/Max/Min: conversion by aver-age/maximal/
minimal value.

The elevation differences between the forest road maps derived using the IDW, NN,
and PtR-Avg techniques were mostly not significant regardless of the road surface (i.e.,
difference between techniques).

The elevation differences between ALS-based and MLS-based concrete roads de-
rived using the IDW, NN, and PtR-Avg techniques and stone roads derived using the
PtR-Min technique were not statistically significant. In other cases, different data sources
provided forest road maps with significantly different elevations (i.e., differences be-
tween technologies).

4. Discussion

Our study assessed and compared the elevation accuracy of terrain within forest
road maps derived from data obtained with three remote sensing technologies (i.e., AI,
ALS, and MLS) using five geospatial techniques (i.e., IDW, NN, PtR-Avg, PtR-Max, and
PtR-Min). Moreover, we conducted this comparison on three different forest road surfaces
(i.e., asphalt, concrete, and stone).
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The application of MLS data and the IDW, NN, and PtR-Avg techniques provided the
best results in our study when considering the elevation accuracy, point cloud density, and
quality of the final forest road maps. In these cases, the RMSE did not exceed the interval of
±0.03 m. Thus, the precision of the MLS-based forest map was within the theoretical limit
of accuracy for this remote sensing technology (i.e., ±0.03 m [35]). Moreover, the terrain
of forest roads included the finest details that enabled further geospatial analysis, such as
damage detection and the assessment of related costs for reconstruction. Most of the other
associated studies confirm our results. For example, Hoffmann and Brenner (2016) [46]
analyzed the elevation accuracy of MLS point clouds obtained with a RIEGL VMX-250
system. They achieved a difference of 0.08 m before the adjustments and up to 0.01 m with
adjusted data. The elevation accuracy of the MLS point clouds obtained with a LARA 3D
system was evaluated within the study of Poreba and Goulette (2012) [47]. Similar to our
study, accuracy was assessed using a reference dataset measured by a total station and
a difference of up to 0.30 m was achieved. On the other hand, Hruza et al. (2018) [10]
provided opposite results to those of our study. They also used AI, ALS, and MLS data to
compare the elevation accuracy of forest roads. However, MLS data obtained with a RIEGL
VMX-450 achieved the highest elevation difference (i.e., the lowest precision). The lower
accuracy here, reflected in a total difference of ±0.32 m and a mean difference of −0.66 m,
was probably caused by the lack of an absolute orientation of the MLS system under the
forest canopy.

The ALS data provided forest road maps with a slightly worse elevation accuracy
than the MLS data in our study. However, their accuracy was still much higher than
that obtained with the application of AI data. Specifically, the RMSE of ALS-based forest
maps did not exceed the interval of ±0.06 m. Thus, ALS data also met the theoretical
limit of accuracy for this remote sensing technology (i.e., ±0.20 m; e.g., [48]). On the other
hand, there was clearly less detail for the road surfaces than in the case of MLS-based
forest roads. Other studies have provided similar results. Sačkov and Kardoš (2014) [49]
analyzed the elevation accuracy of ALS-based terrain derived from point clouds with a
density ranging from 1.7 points/m2 to 2.5 points/m2. The RMSE ranged from ±0.13 m to
±0.18 m, depending on the density of the forest canopy (i.e., leaf-off or leaf-on conditions).
Hyyppä et al. (2004) [50] reported random elevation differences of less than 0.20 m in non-
steep terrain. They used ALS point clouds with densities of 8–10, 4–5, and 2–3 points/m2.
Balenović et al. (2018) [51] analyzed the elevation accuracy of ALS-based terrain in a
lowland oak forest. The RMSE values ranged from ±0.14 m to ±0.15 m while the elevation
differences decreased with decreasing spatial resolution of the terrain.

In our study, the elevation accuracy of the forest road maps obtained using AI data
was the lowest, compared to the application of ALS or MLS data, despite the fact that AI
data provided relatively dense point clouds (i.e., 11 points/m2). Specifically, the RMSE of
AI-based forest maps achieved an interval from ±0.11 m to ±0.23 m. Here, the theoretical
limit of accuracy was 0.23 m, based on the equations of Kraus (2004) [52] and Karel
et al. (2006) [53]. Although this theoretical limit was not exceeded, AI remains the most
challenging among the tested remote sensing technologies (i.e., ALS and MLS). Some
factors that affect the related precision are the flying height, focal length, spatial resolution,
and the environment of the area, where the surrounding forest stands and their shadows
have the most significant effect on the degradation of elevation accuracy. Here, the objects
(e.g., trees and their shadows) can cover the surface of the forest road to different degrees
depending on the camera’s position at the time of exposure. Due to these obstacles, this
data source should be reduced to contain only points on the forest road surface in order
to perform the analysis correctly. Moreover, relief displacements occur radially as the
distance from the principal point of the image increases [54], meaning that the objects on
the terrain tend to tilt as the distance increases. From this point of view, AI seems to be
the least suitable data source for generating precise forest road terrain under or near forest
stands. Furthermore, the elevation accuracies achieved in this study correspond with the
capabilities of image correlation, which, by identifying pairs of points and the horizontal
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parallaxes between them, calculates heights for points with a point density depending
on the pixel size. Traditionally, image correlation provides better results on surfaces with
a heterogeneous texture, which, in our case, was the stone surface. Considering this
fact, we assume that the homogenous surface texture was the leading cause of the lower
elevation accuracy on asphalt roads. Our practical experience with image matching for
terrain generation based on AI data is also supported by the conclusions of Rahmayudi and
Rizaldy (2016) [55]. They concluded that many factors influence terrain generation using a
semiautomatic image-matching method. Here, homogeneous areas were the leading cause
of error points in mountainous and flat terrain. AI-based terrain in such areas tends to
be lower than the real values and depression points emerge. Finally, several other factors
influenced the precision of AI-based terrains, such as the type of lens used, in this case one
with a 53 mm focal length; the flying height; the GSD resolution; and the overlap of the
images. Based on these facts, it can be concluded that AI data obtained at a lower flight
height and during the leaf-off season should be used in order to provide precise forest road
maps. The optimum solution appears to be remotely piloted aircraft systems, which enable
images to be obtained at a height of a few meters from the road surface. These facts are also
confirmed by studies that have utilized AI data from different environmental conditions
and technology platforms. For example, Balenović et al. (2018) [51] provided AI-based
terrains under a forest canopy with an RMSE of ±0.35 m, regardless of terrain resolution.
Botes [35] conducted research outside of a forest environment and achieved similar results
to our study. They achieved an RMSE value of ±0.14 m. Finally, Hobi et al. (2012) [56]
derived terrain from satellite multi-spectral images (i.e., WorldView-2) and achieved an
RMSE of ±0.32 m.

In view of the above outcomes, the precision of the ALS-based, MLS-based, and
even AI-based forest road maps was within the theoretical limit of elevation accuracy for
the related remote sensing technology. However, associated differences between derived
and real elevations were mostly significant. This was detected using the Student’s or
Wilcoxon’s paired statistical tests at the α = 0.05 significance level. The only exceptions
(i.e., random differences between derived and real terrain) to this were asphalt roads
derived from ALS data using the PtR-Min technique, concrete roads derived from AI
data using the PtR-Min technique and from MLS data using the PtR-Max technique, and
stone roads derived from AI data using the IDW, NN, PtR-Avg, and PtR-Min techniques.
Similarly, the IDW, NN, and PtR-Avg techniques mostly provided forest road maps with
random elevation differences (i.e., random difference between techniques). Finally, these
random elevation differences were also found between specific data sources. The elevation
differences between ALS-based and MLS-based concrete roads derived using the IDW, NN,
and PtR-Avg techniques, and stone roads derived using the PtR-Min technique were not
significant (i.e., random differences between technologies). In all these cases, an alternative
remote sensing technology or geospatial technique could be used within a 95% confidence
interval without significant changes in the elevation accuracy. Since these findings are in
line with other studies, e.g., [23,57–60], it can be stated that in specific cases it is possible to
replace MLS technology with the less economically demanding ALS technology. This is
particularly feasible if there is no need for forest road maps with a high level of detail.

5. Conclusions

Remote sensing technologies have proven to be a reliable source of geospatial data
for forest road mapping. Here, the elevation accuracy of terrain primarily determines the
overall precision and, thus, the usability of the related maps. In this context, we assessed
and compared the elevation accuracy of terrain on asphalt, concrete, and stone roads
derived from data obtained with three remote sensing technologies (i.e., AI, ALS, and MLS)
using five geospatial techniques (i.e., IDW, NN, PtR-Avg, PtR-Max, and PtR-Min).

The AI-based forest road maps achieved elevation accuracies from ±0.17 m to ±0.20 m
in terms of RMSE. The best results were provided by the PtR-Min technique. The visibility
and level of detail of terrain on forest roads were relatively low or non-existent. Moreover,
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this terrain contained large errors at the edges of roads that were close to the forest stands.
For these reasons, we recommend only using this technology in open areas or when taking
images during the off-growing (i.e., leaf-off) season. For this purpose, it would be advisable
to use a higher image overlap (e.g., 80 × 60%) and lenses with a longer focal length to avoid
significant radial distortion in the images.

The ALS-based forest road maps achieved an elevation accuracy of ±0.05 m in terms
of RMSE. There were minimal differences between techniques. A high visibility and level of
detail of the terrain on forest roads were only obtained for roads with a stone surface. The
elevation differences between the ALS-based and MLS-based concrete and stone roads were
not significant. Thus, it is possible to replace MLS with the less economically demanding
ALS technology in these cases if there is no need for a high level of detail.

The MLS-based forest road maps achieved elevation accuracies from ±0.02 m to
±0.05 m in terms of RMSE. The IDW, NN, and PtR-Avg techniques provided the best
results. This technology provided forest road maps with the highest elevation accuracy,
visibility, and level of detail for all road surfaces. However, from a practical point of view
and in terms of this study, MLS technology provides only limited auxiliary information
and is mainly limited to single-purpose applications (e.g., forest road mapping). Therefore,
stakeholders must choose to either receive complex information about the environment
with lower accuracy (e.g., aerial or satellite data sources) or obtain highly accurate data
with limited broader context (e.g., terrestrial data sources).

These results provide a useful source of information for relevant stakeholders related
to the management, protection, and utilization of forests. However, related research
was focused only on the highest category of forest roads located outside the forest (i.e.,
fully paved haul forest roads with a uniform surface and a longitudinal slope of up to
10%). Future studies should, therefore, include samples of geospatial data from different
environments to assess the impact of varying weather conditions, terrain roughness, and
vegetation cover on the elevation accuracy of forest road maps.
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