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Abstract: Tree cover is a crucial vegetation structural parameter for simulating ecological, hydrologi-
cal, and soil erosion processes on the Chinese Loess Plateau, especially after the implementation of
the Grain for Green project in 1999. However, current tree cover products performed poorly across
most of the Loess Plateau, which is characterized by grasslands with sparse trees. In this study, we
first acquired high-accuracy samples of 0.5 m tree canopy and 30 m tree cover using a combination
of unmanned aerial vehicle imagery and WorldView-2 (WV-2) imagery. The spectral and textural
features derived from Landsat 8 and WV-2 were then used to estimate tree cover with a random
forest model. Finally, the tree cover estimated using WV-2, Landsat 8, and their combination were
compared, and the optimal tree cover estimates were also compared with current products and
tree cover derived from canopy classification. The results show that (1) the normalized difference
moisture index using Landsat 8 shortwave infrared and the standard deviation of correlation metric
calculated by means of gray-level co-occurrence matrix using the WV-2 near-infrared band are the
optimal spectral feature and textural feature for estimating tree cover, respectively. (2) The accuracy
of tree cover estimated using only WV-2 is highest (RMSE = 7.44%), indicating that high-resolution
textural features are more sensitive to tree cover than the Landsat spectral features (RMSE = 11.53%)
on grasslands with sparse trees. (3) Textural features with a resolution higher than 8 m perform
better than the combination of Landsat 8 and textural features, and the optimal resolution is 2 m
(RMSE = 7.21%) for estimating tree cover, whereas the opposite is observed when the resolution of
textural features is lower than 8 m. (4) The current global product seriously underestimates tree cover
on the Loess Plateau, and the tree cover calculation using the canopy classification of high-resolution
imagery performs worse than the method of directly using remote sensing features.

Keywords: tree cover; high-resolution imagery; Landsat 8; random forest; Loess Plateau

1. Introduction

Due to the high intensity of human activities such as cultivation and grazing that
have occurred over the long term, the Chinese Loess Plateau is one of the most eroded
regions and one of the most vulnerable areas to desertification in China [1,2]. In order
to alleviate the deteriorating ecological environment and soil erosion, the government
began to implement ecological restoration projects such as returning farmland to forest and
grassland and closing mountains to grazing in 1999 to accelerate the restoration of forest
and grass vegetation on the Loess Plateau [3,4]. Due to vegetation restoration in recent
years [5], it has been possible to study the vegetation coverage in the Loess Plateau region.
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Fractional vegetation cover (FVC) is defined as the proportion of the vertically pro-
jected area of vegetation (including leaves, stems, and branches) within a total ground
area [6–8]. This concept is highly important in ecological, hydrological, and soil erosion dy-
namics research, as it serves as a key parameter in ecological–hydrological models and soil
erosion models [9–11]. Therefore, the accuracy and quality of vegetation coverage data have
gradually garnered attention and importance from numerous experts and scholars [12]. The
Loess Plateau consists of arid/semi-arid areas [13,14], characterized by sparse mixed forests
composed of artificially planted trees and green herbaceous vegetation, which represent
typical landscapes in the region [15]. Vegetation coverage serves as an overall ecological
indicator for the region [16,17], and it can be further divided into tree cover [18–20] and
herbaceous vegetation cover, with tree coverage serving as a direct reflection of vegetation
restoration. However, the similarity in spectral characteristics between woody vegetation
and herbaceous vegetation cover is a key factor affecting the high-precision inversion of
tree coverage in tree–grasslands in this region. Currently, the most mature and widely used
tree coverage products include the global MODIS VCF tree coverage product [21] and a
global 30 m spatial resolution tree cover product produced by Sexton et al. [22] using scale
conversion methods. These published products have a medium-to-coarse spatial resolution,
making them suitable for analyzing changes in tree cover over large areas. However, the
reliability of these products in small-scale areas with mixed trees and green herbaceous
vegetation remains controversial [23,24].

Inverting tree cover in sparse tree–grassland areas using remote sensing is a challeng-
ing task due to the coexistence of trees and herbaceous vegetation. To address the challenge
of inverting tree cover in mixed-tree and herbaceous vegetation areas, remote sensing-
based methods can generally be used in three ways: (1) Tree canopy coverage can be
estimated using seasonal indicators [25,26]. This is challenging due to the limited seasonal
variations in herbaceous vegetation and trees in arid/semi-arid regions of the Northern
Hemisphere. Therefore, accurately estimating tree canopy coverage in this region using
phenology-driven models is extremely difficult. (2) Tree cover can be directly acquired
using high-resolution imagery or unmanned aerial vehicle (UAV) imagery [27–29]. (3) The
reference tree cover can be obtained based on high-resolution imagery and using machine
learning models to explore the statistical relationship between tree cover and remote sens-
ing features to invert tree cover [24,30–32]. These studies have significantly advanced the
mapping of regional-scale tree canopy coverage and enhanced our understanding of the
ecological systems in sparse tree–grassland areas.

Based on previous research, it is known that the presence of grassland backgrounds
significantly affects the estimation of tree cover based on remote sensing [28,30,31,33]. If
only spectral information is used, the accuracy is not high enough. To this end, this study
proposes a method for estimating tree cover based on texture features extracted from high-
resolution satellite imagery, aiming to overcome the influence of grassland background
on the accuracy of tree cover estimation in remote sensing. The specific objectives were
to (1) validate whether high-resolution texture information improves tree cover inversion;
(2) investigate the effect of high-resolution texture feature scales on tree cover inversion
accuracy; and (3) compare the differences between the tree cover products generated in
this study and the global tree cover products. The outcomes of these objectives should
demonstrate how our approach provides a new and valuable tool to accurately invert
tree canopy coverage in sparse tree–grassland areas using remote sensing data with high
precision and its transferability to other arid regions.

2. Study Area and Data
2.1. Study Area

The Peijiamao watershed is a first-class branch ditch on the left bank of the middle
reaches of the Wuding River in Suide County, Shaanxi Province. It is about 1 km away
from Suide County. Located in the hilly and gully areas of the Loess Plateau in northern
Shaanxi, the area is dominated by sparse grasslands composed of plantation forests and
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green herbaceous vegetation. The geographical location is between 110◦17′7′′–110◦23′44′′

east longitude and 37◦28′54′′–37◦33′30′′ north latitude. The basin area is 39.3 km2, the basin
shape is leaf-shaped, the basin’s length is 11.0 km, and the average width is 3.59 km. Since
Suide County began to implement the policy of returning farmland to forest in 1999, the
cultivation of land that is highly prone to soil erosion and desertification is being stopped
in a planned and step-by-step manner, and trees and grass are being planted according
to local conditions, gradually restoring vegetation [34]. Currently, the naturally growing
vegetation mainly consists of shrubs, wild grass, and wildflowers. Shrubs mainly include
Caragana korshinskii, Ziziphus jujuba var, Salix cheilophila, and Wikstroemia chamaedaphne
Meisn. Economic forests or economically and ecologically versatile tree species such as
apples, red dates, and Chinese pine are artificially cultivated, and tree species with a certain
level of height information, such as Ziziphus jujuba var, black willow, apple, red date, and
Chinese pine, are utilized for the inversion of vegetation coverage in woody plants. The
location of the study area is shown in Figure 1.
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Figure 1. The geographical location and on-site observation UAV imagery of the study area. The
yellow polygon represents the boundary of the study area.

2.2. Multiscale Remote Sensing Observation
2.2.1. Landsat 8 Imagery

The Google Earth Engine (GEE) platform provides surface reflectance products for
Landsat series satellite data (https://www.usgs.gov/landsat-missions/landsat-collection-
2-level-2-science-products, accessed on 12 March 2024). The spatial resolution is 30 m, and
the temporal resolution is 16 days. This data product underwent atmospheric correction,
eliminating the errors caused by atmospheric scattering, absorption, and reflection. Addi-
tionally, the F-mask algorithm was employed to identify clouds and cloud shadows in the
images, effectively improving the efficiency of user data utilization. Due to terrain undula-
tion, remote sensing images are subject to radiometric distortion, which has a significant

https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
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impact on the subsequent study of tree coverage. Therefore, terrain correction was also
performed on this image. Landsat 8 multispectral remote sensing imagery was acquired on
12 May 2017.

2.2.2. WorldView-2 High-Resolution Imagery

The WV-2 multispectral remote sensing image was acquired on 11 May 2017. First, the
remote sensing image was preprocessed using ENVI 5.3 software for geometric correction,
radiometric calibration, and atmospheric correction. Then, the panchromatic image and
the multispectral image were fused using the Gram–Schmidt fusion method to obtain a
multispectral image with a spatial resolution of 0.5 m. Finally, the DEM data for the area
were used as the elevation image for orthorectification.

2.2.3. Unmanned Aerial Vehicle (UAV) Imagery

From 11 May to 13 May 2017, a three-day field data collection procedure for woody
vegetation was conducted in Suide. The following describes the specific data collection
process: First, referencing high-resolution satellite imagery from Google Earth 7.3 and
the results of on-site field surveys, prior knowledge about the distribution of vegetation
in the study area was obtained. According to the on-site survey, the main tree species
in this area include Caragana korshinskii, Ziziphus jujuba var, Salix cheilophila, Wikstroemia
chamaedaphne Meisn, apple, red date, and Chinese pine, with Caragana korshinskii accounting
for a significant proportion. In this experimental area, 45 sample plots were randomly
selected based on the distribution range of vegetation. Each sample plot was set as a
30 m × 30 m square area. A DJI Phantom 4 drone (DJI, New York, NY, USA) was used
for data collection, with a flight altitude set at 100 m, a lateral overlap rate of 70%, a
longitudinal overlap rate of 70%, a flight speed of 6 m per second, and a photo capture
frequency of one photo every 2 s. The flight was conducted using flight route planning, with
each flight lasting approximately 10 min. The acquisition of UAV imagery data primarily
involved establishing a 30 m × 30 m square area with base stations set up at the four
corners. This allowed for the use of the UAV to measure images in the designated region.
Using Pix4Dmapper 4.5.6 software, the original aerial images were corrected and stitched
together. In the end, 45 digital orthophoto images of the sample plots were obtained.

2.2.4. Tree Cover Products

We compared two global tree cover products. These two global products are the Terra
MODIS Vegetation Continuous Field (VCF) product, provided by NASA LP DAAC at the
USGS EROS Center, shortened to MODIS VCF product [21]; and the global forest cover and
change product developed by Sexton et al. [22], referred to as the GFCC product.

The MODIS Vegetation Continuous Field (VCF) product (MOD44B), derived from
MODIS 16-day surface reflectance composites that include MODIS bands 1–7 and brightness
temperature bands 20, 31, and 32, contains fractional tree cover at a spatial resolution of
250 m and is widely used to estimate patterns and dynamics of forests (https://lpdaac.
usgs.gov/products/mod44bv061/, accessed on 12 March 2024).

The Landsat Vegetation Continuous Field (VCF) tree cover layers contain estimates
of the percentage of horizontal ground in each 30 m pixel covered by woody vegetation
greater than 5 m in height (https://lpdaac.usgs.gov/products/gfcc30tcv003/, accessed
on 12 March 2024). The dataset is available for four epochs centered on the years 2000,
2005, 2010, and 2015. The dataset is derived from the GFCC Surface Reflectance product
(GFCC30SR), which is based on enhanced Global Land Survey (GLS) datasets. The GLS
datasets are composed of high-resolution Landsat 5 Thematic Mapper (TM) (Vandenberg
Air Force Base, California, CA, USA) and Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) (Vandenberg Air Force Base, California, CA, USA) images at 30 m resolution.

https://lpdaac.usgs.gov/products/mod44bv061/
https://lpdaac.usgs.gov/products/mod44bv061/
https://lpdaac.usgs.gov/products/gfcc30tcv003/
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2.3. Sample Dataset
2.3.1. Creating a Sample Dataset of Tree Types

As shown in Figure 2, in the high-resolution WV-2 image, a 180 m× 180 m grid was
set up to classify features into tree and non-tree. Through visual interpretation, samples of
tree and non-tree were selected within each grid, resulting in a dataset of 643,725 classified
sample points within the 180 m × 180 m grid. The dataset was divided into training and
validation sets using a 7:3 ratio.
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2.3.2. Creation of Tree Coverage Sample Dataset

A 30 m × 30 m grid was established on UAV imagery to fully match the 30 m × 30 m
pixel range of Landsat 8. The tree canopy within the grid was interpreted using visual
interpretation methods, and the tree cover within the grid was calculated. Based on the
visual interpretation of UAV imagery, 45 tree canopy coverage sample points were obtained,
which were evenly distributed within the study area. At the same time, the canopy of the
WV-2 image corresponding to the UAV sample point was visually interpreted, and tree
cover was calculated. Then, the tree cover obtained from the UAV image was used as a
reference to establish a regression correction model with the tree cover visually interpreted
from the WV-2 image. The calibration model had an R2 of 0.97 and an RMSE of 3.02%.
The model accuracy was very high. This shows that the tree cover obtained from visual
interpretation based on WV-2 imagery is very close to the tree cover obtained through UAV
imagery interpretation.

A 30 m × 30 m grid was set up on WV-2 high-resolution imagery to fully match the
30 m × 30 m pixel range of Landsat 8. A grid was randomly selected, and visual interpre-
tation methods were used to interpret the tree canopy within the grid and calculate the tree
canopy coverage, obtaining a total of 1132 tree canopy coverage sample points. Although
the tree canopy coverage obtained from the visual interpretation of high-resolution imagery
was already very close to that obtained from UAV image interpretation, to reduce error,
we used a calibration model to correct the tree canopy coverage of the 1132 sample points.
The corrected canopy coverage was used as a reference for subsequent machine learning
models. These corrected tree coverage sample points were divided into training and testing
samples using a 7:3 ratio. The specific process is shown in Figure 3.
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Figure 3. The establishment and validation of tree cover samples. The top −left image displays the
tree sample points within the corresponding grid of visually interpreted UAV images and WV-2
images. The bottom −left image compares the tree canopy coverage between UAV images and
WV-2 images. The image on the right depicts the random distribution of tree sample points on
Landsat imagery.

3. Methods
3.1. Overall Methodology

The methodological framework is shown in Figure 4. At 30 m resolution, to explore
the optimal method for tree cover inversion, sample data were first established through
visual interpretation based on UAV images and WV-2 images. Following that, object-
based classification based on WV-2 imagery was used to directly obtain tree cover, and
the random forest algorithm was utilized to build multiscale inversion models for the
indirect estimation of tree cover using Landsat 8 data and WV-2 data. Finally, the accuracy
of obtaining tree cover at different scales using different methods was compared, and their
respective advantages and disadvantages were explored.
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3.2. Tree Cover Derived from WV-2 Classification Map

High-resolution remote sensing images possess rich texture information, distinct
spatial relationships, and clear geometric features. Therefore, object-oriented analysis
methods are more suitable for high-resolution remote sensing images compared to pixel-
based analysis methods [35]. Object-oriented classification technology treats adjacent
pixels as objects, identifies interesting spectral elements, and fully utilizes the spatial,
textural, and spectral information of high-resolution panchromatic and multispectral data
for segmentation and classification. This approach outputs high-precision classification
results or vectors [36]. This technology is divided into two main parts: image object
segmentation and target classification. The study area of remote sensing data is divided
into multiple scales, and the optimal segmentation scale for planting plots in the study
area is selected based on the results at multiple scales. In the next step, classification is
performed based on the training samples or threshold definition based on fuzzy logic [37].

This study utilized eCognition 9.5 software for object-oriented classification based on
WV-2 high-resolution imagery, categorizing features in the image into tree and non-tree.
Initially, a multiscale segmentation algorithm was applied to the study area. To ensure
the accuracy of image classification, eCognition Segment Parameter (ESP) was used to
determine the optimal segmentation parameters. The optimal segmentation scale was
determined to be 43, with a shape factor of 0.1, a compactness factor of 0.8, and band
weights of 1:1:1:2. Then, threshold classification was performed using remote sensing
features such as Normalized Difference Vegetation Index (NDVI), the standard deviation
of the near-infrared band, brightness, and the ratio of the red band. This process extracts
various land cover types within the study area, including buildings, shadows, bare soil, and
roads, and merges them into non-tree categories. The unclassified areas include tree, green
herbaceous vegetation, terraced fields, and unextracted bare soil, among other land cover
types. To distinguish between tree areas and green herbaceous vegetation, we constructed
a dataset of tree-type samples. We designated green herbaceous vegetation, terraced fields,
and unextracted non-tree areas as non-tree type samples, and visually interpreted trees as
tree-type samples. Using the built-in feature selection function of eCognition 9.5 software
for feature optimization, we ultimately selected spectral features such as the contribution
ratio of the red band, the mean of the near-infrared band, the standard deviation of the
near-infrared band, and brightness. Additionally, we chose texture features, including the
standard deviation and mean of the near-infrared band, as well as the mean of the red
band. The vegetation indices selected were the Normalized Difference Vegetation Index
(NDVI), Visible-Band Difference Vegetation Index (VDVI), and Modified Soil Adjusted
Vegetation Index (MSAVI). Finally, using the decision tree algorithm in the eCognition 9.5
software, we classified the unclassified areas into tree and non-tree types and then merged
all non-tree types.

We used ENVI 5.3 to perform mask processing on the classified image, where pixel
values representing tree types are considered 1, and pixel values representing non-tree
types are considered 0. Using the IDL resampling algorithm, we aggregated the pixels
within a 30 m × 30 m spatial range in the 0.5 m resolution classified image into one pixel
of 30 m resolution and calculated the proportion of pixels representing tree types within
the 30 m spatial range to the total number of pixels. This proportion was used as the tree
coverage value for each pixel at a 30 m resolution. Thus, the tree cover for the study area
was obtained.

3.3. Tree Cover Estimation Using Different Remote Sensing Features
3.3.1. Random Forest Model

In this study, we used random forest as a machine learning algorithm to understand
the relationship between tree coverage and spectral information, vegetation index, and
texture features, and then build a tree coverage inversion model. The random forest
algorithm, proposed by Breiman in 2001 [38], is currently one of the most popular machine
learning algorithms. The algorithm is based on the bagging ensemble learning method,
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which integrates multiple decision trees into a forest and combines them to predict the
final result [38]. The random forest algorithm has excellent noise resistance; is simple,
fast, and easy to parallelize; and also mitigates overfitting to some extent [39]. All models
were individually tuned using 10 repeats of 10-fold cross-validation to identify the ideal
parameter specification (Table 1). This covered the number of variables considered at each
tree node and the number of trees constructed [25]. The model training and construction
were both completed using Python (v3.11) language.

Table 1. Parameter settings for determining optimal hyperparameters for random forest models.

Landsat 8 WV-2 Landsat 8 + WV-2

RF

n_estimators = 501,
max_depth = None,

min_samples_leaf = 9,
min_samples_split = 1,

random_state = 70

n_estimators = 455,
max_depth = 42,

min_samples_leaf = 4,
min_samples_split = 11,

random_state = 70

n_estimators = 550,
max_depth = 15,

min_samples_leaf = 3,
min_samples_split = 2,

random_state = 85

3.3.2. Image-Derived Predictor Variables

Vegetation indices are sensitive to the biophysical characteristics of vegetation. For
complex surface imagery, extracting texture features from images can provide various
pieces of useful information and improve the accuracy of inversion. In this study, three cat-
egories of remote sensing features were selected as experimental features: band reflectance,
vegetation indices, and texture features. The vegetation indices used in this study include
the following: Normalized Difference Vegetation Index (NDVI), Visible-Band Difference
Vegetation Index (VDVI), Normalized Difference Moisture Index (NDMI), Ratio Vegetation
Index (RVI), Enhanced Vegetation Index (EVI), Modified Soil Adjusted Vegetation Index
(MSAVI), Difference Vegetation Index (DVI), Green Normalized Difference Vegetation
Index (GNDVI), Green Red Vegetation Index (GRVI), and Near-Infrared Reflectance of
Vegetation (NIRv).

Gray-level co-occurrence matrix (GLCM) is a statistical tool used to describe image
texture features, which describes the spatial relationship between different pixel gray levels
in an image [40]. From the 14 statistical texture measures defined by Haralick et al. [40] and
to simplify the analysis by having a representative number of non-correlated variables [41],
we calculated 8 GLCM textural features, namely mean, variance, homogeneity, contrast,
dissimilarity, entropy, angular second moment (ASM), and correlation. The GLCM texture
features were computed from the first principal component (PC1) of the satellite image
bands in all directions (0◦, 45◦, 90◦, and 135◦) using a window of 3 m×3 m size, with
a gray level quantization of 64 levels. The use of a 3 m × 3 m window showed better
results in identifying subtle variations in the gray levels of pixels in semi-arid woodlands,
characterized by low tree densities and isolated canopies [42,43]. Landsat imagery was used
to extract 48 texture features. In order to make the scales synchronized, it was necessary
to resample the 0.5 m resolution WV-2 image to a 30 m resolution. By means of the IDL
resampling algorithm, based on the Landsat 8 image as a baseline, the mean and standard
deviation of each image element in the range of 30 m × 30 m were calculated, and these
statistical values were applied to the blank image after masking to obtain the image merged
based on the mean and the image merged based on the standard deviation. We extracted
64 texture features based on WV-2 images. The extraction of band reflectance, vegetation
indices, and texture features was performed using ENVI (version 5.3). The predictor
variables are described in Table 2.
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Table 2. Feature factors and descriptions of the tree cover estimation model.

Feature Descriptions Feature Descriptions

Landsat 8 reflectance Blue, Green, Red, NIR,
SWIR1, SWIR2

NDVI
[44]

MNIR − MRed
MNIR + MRed

WorldView-2 reflectance Blue, Green, Red, NIR VDVI
[45]

2 × MGreen − MRed − MBlue
2 × MGreen + MRed + MBlue

GLCM Mean
Ng
∑

i=0

Ng
∑

j=0
p(i, j)× i

NDMI
[46]

MNIR − MSWIR1
MNIR + MSWIR1

GLCM Variance
Ng
∑

i=0

Ng
∑

j=0
p(i, j)× (i − u)2

RVI
[47]

MNIR
MRed

GLCM Homogeneity
Ng
∑

i=0

Ng
∑

j=0

p(i, j)

1 + (i − j)2

EVI
[48]

2.5 × (MNIR − MRed)

MNIR + 6 × MRed − 7.5 × MBlue + 1

GLCM Contrast
Ng
∑

i=0

Ng
∑

j=0
p(i, j)× (i − j)2

GRVI
[49]

MGreen − MRed
MGreen + MRed

GLCM Dissimilarity
Ng
∑

i=0

Ng
∑

j=0
p(i, j)× |i − j|

NIRv
[50]

(MNIR − MRed)× MNIR
MNIR + MRed

GLCM Entropy
Ng
∑

i=0

Ng
∑

j=0
p(i, j)× ln p(i, j)

DVI
[51] MNIR − MRed

GLCM ASM
Ng
∑

i=0

Ng
∑

j=0
p(i, j)2

GNDVI
[52]

MNIR − MGreen
MNIR + MGreen

GLCM Correlation
Ng
∑

i=0

Ng
∑

i=0

(i − u)× (j − u)× p(i, j)
σ2

MSAVI
[53]

2 × MNIR + 1 −
√
(2 × MNIR + 1)2 − 8 × (MNIR − MRed)

2
Blue, Green, Red, NIR, SWIR1, and SWIR2 represent the blue, green, red, near-infrared, shortwave infrared 1, and
shortwave infrared 2 bands of Landsat 8 imagery. Blue, Green, Red, and NIR represent the blue, green, red, and
near-infrared bands of WorldView-2 imagery. M represents band reflectance and Ng is the image grayscale; i and
j represent row and column numbers, and P(i,j) is the joint conditional probability density between grayscale
levels; µ and σ are the mean and variance of P(i,j).

3.3.3. Optimum Remote Sensing Features Selection

Landsat 8 image feature factors were selected for 6 bands of reflectance, 2 thermal
infrared spectra, 9 vegetation indices, and 48 texture features. The WV-2 image features
included 64 texture features, 4 band reflectance factors, and 2 vegetation indices, totaling
135 feature variables (specific predictor variables can be found in Appendix A, Table A1).
In order to investigate the optimal tree cover inversion method, we constructed three
feature variable combination models based on Landsat 8 data and WV-2 data, respectively.
Those based on Landsat 8 data comprised a total of 65 predictor variables (17 spectral
information and 48 texture features); those based on WV-2 data comprised a total of
70 predictor variables (64 texture features and 6 spectra); and those based on both Landsat
8 data and WV-2 data comprised a total of 135 predictor variables (65 Landsat indices and
70 WV-2 indices).

To determine the best predictive models, it is necessary to perform variable selection
on all predictor variables. According to statistical learning theory, a model with fewer but
relatively accurate predictor variables is superior to a more complex model [54,55]. The
backward elimination method can be used to determine the optimal number of predictor
variables, leading to a concise model with reasonable accuracy [54–56]. To determine the
most important predictor variables, we implemented recursive feature elimination (RFE) in
the backward elimination method. RFE is a parameter selection process that incorporates
the estimation of test (validation) errors and variable importance [57,58]. Firstly, a model is
established using all available predictors (MPs), and the testing error is evaluated through
10-fold cross-validation (e.g., adjusted R2 and RMSE). Meanwhile, variable importance
scores are computed. Next, a second model is constructed by removing the variable with
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the least contribution from MPs, and the testing error and variable importance are recalcu-
lated. This process is repeated until a one-variable model is reached. A full iteration of this
procedure is repeated 10 times to account for variations in cross-validation sampling, pro-
viding a robust estimate of test errors. Recursive feature elimination iteratively refines the
model by repeatedly eliminating features with minimal impact on performance, ultimately
resulting in a more optimized and reliable model.

3.4. Accuracy Validation

To prevent spatial overfitting caused by spatial autocorrelation, 30% of independent
sample data was randomly and uniformly selected within the study area as accuracy
validation data before modeling. This was carried out to evaluate the model’s accuracy
in estimating tree coverage. Comparing the tree coverage obtained through the visual
interpretation of WV-2 imagery with the tree coverage values estimated using the model
allows model accuracy to be assessed. The selected accuracy validation metrics include the
coefficient of determination (R2) and root mean square error (RMSE) for model samples.
The values of R2 and RMSE can be calculated as follows:

R2 = 1 − ∑N
i=1(yi − ŷi)

2/∑N
i=1(yi − yi)

2 (1)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2 (2)

where yi is the coverage obtained through visual interpretation, ŷi is the estimated coverage
by the model, yi is the average coverage obtained through visual interpretation, and N is
the number of validation samples.

R2 is used to measure the goodness of fit between the inversion results and ground
observations. The closer the value is to 1, the better the fit. RMSE measures the deviation
between the predicted values of the model and the observed values, and a smaller value
indicates more accurate results. In summary, higher R2 and lower RMSE values indicate
that the model has better accuracy and reliability.

If the R2 and RMSE of two models are very close, the introduction of model evaluation
metrics such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) can be helpful in assessing model performance and selecting the best model at this
point. These information criteria can provide additional guidance and information during
the model selection process, especially when comparing models with closer fits.

Both the AIC and BIC are information criteria designed to balance the model’s good-
ness of fit and model complexity. In general, lower AIC and BIC values indicate better
model fit and lower complexity and are therefore better choices. They are calculated
as follows:

AIC = n × ln
(

RSS
n

)
+ 2 × k (3)

BIC = n × ln
(

RSS
n

)
+ k × ln n (4)

where n is the number of samples, RSS is the residual sum of squares, and k is the number
of model parameters. In the random forest regression model, k can be approximately
considered as the sum of the number of parameters in each decision tree.

4. Results
4.1. Recursive Feature Elimination (RFE)

The accuracy results of the recursive feature elimination (RFE) automatic variable
selection method are shown in Figure 5. Across all methods, model accuracy is higher
when the number of variables in the model exceeds 10, and performance rapidly declines
when considering fewer than 10 variables. The medium-resolution tree cover estimation
model based on Landsat 8 imagery achieves stability and high predictive accuracy when
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the number of feature factors is 13. This can be considered the optimal number of feature
factors that balances prediction accuracy and simplifies the model, establishing the best-
performing coverage estimation model. The optimal number of feature factors for the
high-resolution tree cover model based on WV-2 imagery is 11. The optimal number of
feature factors for the medium-to-high-resolution tree cover model based on Landsat 8
imagery and WV-2 imagery is 12.
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The unit of RMSE is in percentage points of tree coverage (0%–100%).

The top five variables for each model are shown in Table 3. For the tree cover estimation
model based on Landsat 8 medium-resolution imagery, the top five variables include NDMI,
EVI, NDVI, RVI, and MSAVI, all of which are vegetation indices. The feature factors for the
tree cover estimation model based on high-resolution WV-2 imagery include five texture
information types: the correlation texture of the near-infrared-band standard deviation,
the mean texture of the red-band mean, the mean texture of the near-infrared-band mean,
the mean texture of the blue-band mean, and the angular second-moment texture of the
near-infrared standard deviation. The feature factors for the medium-to-high-resolution
tree cover estimation model based on Landsat 8 imagery and WV-2 imagery include the
correlation texture of the near-infrared-band standard deviation, NDVI, EVI, the mean
texture of red-band mean, and RVI.

Table 3. The top five variables in the recursive feature elimination (RFE) models for different methods.
SD: standard deviation; M: mean.

Number Landsat 8 WV-2 Landsat 8 + WV-2

1 NDMI NIR SD GLCM Correlation NIR SD GLCM Correlation
2 EVI Red M GLCM Mean NDMI
3 NDVI NIR M GLCM Mean EVI
4 RVI Blue M GLCM Mean Red M GLCM Mean
5 MSAVI NIR SD GLCM ASM RVI
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Through the analysis of Figure 5 and Table 3, it can be observed that NDMI, as a
vegetation index, plays a crucial role in the estimation model of tree cover. Through the
comparison of the three different models, it is evident that the correlation texture of the near-
infrared-band standard deviation significantly improves the model accuracy. This suggests
that both medium-resolution spectral features and high-resolution texture features are more
sensitive to tree cover. Among them, near-infrared and shortwave-infrared bands are used
to construct vegetation indices, with near-infrared texture playing the most significant role.

4.2. Validation Comparison between Model Accuracy Based on Different Methods

The accuracy results for the four methods are shown in Figure 6. The performance
of the medium-resolution feature model based on Landsat 8 data is shown in Figure 6a.
Models that only use remote sensing features such as spectral features, texture features,
and vegetation indexes from Landsat data have poor performance. The R2 of tree coverage
is 0.45, and the RMSE is 11.53%. Figure 6b depicts the high-resolution feature model, with
a predicted R2 of 0.77, an RMSE of 7.44, an AIC of 4900.55, and a BIC of 28,964.27. Figure 6c
represents the medium–high-resolution feature model, predicting an R2 of 0.73, an RMSE of
8.18, an AIC of 7850.95, and a BIC of 39,583.32. The tree cover validation sample points were
compared with the tree cover obtained through classification, and the accuracy assessment
is shown in Figure 6d. The R2 for tree cover is 0.67, and the RMSE is 16.78%. Although the
R2 is relatively high, the RMSE is also high, which does not meet the evaluation standard of
high R2 and low RMSE. Therefore, the overall accuracy is relatively low. Validation points
are mostly above the 1:1 line, indicating an overestimation of tree cover.
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Figure 6. The accuracy validation results of different methods: (a) comparison between the 30% testing
sample tree cover predicted using the medium-resolution feature model; (b) comparison between
the 30% testing sample tree cover predicted using the high-resolution feature model; (c) comparison
between the 30% testing sample tree cover predicted using the medium–high-resolution feature
model; and (d) accuracy validation of tree cover based on object-oriented classification.

The validation results indicate that the inversion accuracy based on high-resolution
image classification results is the lowest, with a large number of overestimated values.
The values of the spectral characteristics of medium-resolution remote sensing are mostly
concentrated between 0% and 20%. The values of tree canopy coverage are excessively
concentrated, and there is also a large number of overestimated sample points, resulting
in lower inversion accuracy. By comparing the accuracy metrics of the high-resolution
model and the medium–high-resolution model, we can see that although the values of R2

and RMSE are close between the two models, the high-resolution model has smaller AIC
and BIC values. Based on the principle that smaller AIC and BIC values indicate better
models, the high-resolution feature model performs the best, followed by the medium–
high-resolution feature model.

4.3. Comparison of Model Accuracy Verification Based on Texture Features at Different Resolutions

Research indicates that high-resolution image texture features make significant contri-
butions to estimating tree coverage. Given this premise, we wanted to understand whether
the effect of texture features on tree coverage changes with decreasing resolution, and
if so, how it changes. Therefore, based on 0.5 m resolution WV-2 imagery, we obtained
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texture features at different resolutions through scale conversion and texture extraction,
constructed high-resolution feature models at different scales, and compared them with
models constructed using Landsat data and different resolution texture features (coopera-
tive models). The performance of high-resolution feature models and cooperative models
at different resolutions is shown in Figure 7. From a resolution of 0.5 m to 20 m, the overall
trend of the model’s R2 gradually increases, the RMSE gradually decreases, and the overall
performance of the model decreases. The model performance at a resolution of 2 m is the
best. For the high-resolution texture feature model, the R2 is 0.78, and the RMSE is 7.21%.
For the collaborative model, the R2 is 0.75, and the RMSE is 7.84%.
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Figure 7. Comparison between the model-predicted tree coverage based on 11 resolution texture
features and 30% of the test samples. The image on the left shows the use of only WV-2 image texture
features. The image on the right shows the use of WV-2 image texture features and Landsat 8 image
spectral features.

4.4. Tree Cover Mapping

Figure 8 shows the tree coverage maps of the study area generated using different
methods. Through the analysis of the tree coverage map, it becomes clear that areas with
coverage exceeding 40% are mostly located on both sides of roads and in the southwest
region. The coverage in the majority of areas outside both sides of the road is below 10%.
The coverage in the remaining fragmented areas ranges from 10% to 30%. This is consistent
with the actual on-site growth conditions of trees. As shown in Figure 8, the tree cover
based on the classification results of the high-resolution images shows a large number of
high-value areas in the southwest, which is mainly due to the misclassification of grasses
as trees. The results of the tree cover inversion based on the medium-resolution feature
model show a large number of high-value areas in the southwest, which is mainly due to
the difficulty of spectral information to extract the tree cover in the grassland context. The
coverage image of the high-resolution model and the coverage map of the medium-to-high-
resolution model are more consistent with reality. The overall tree coverage in the study
area is around 30%.
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Figure 8. Inversion research of tree coverage mapping in the study area using different methods
at 30 m resolution: (a) A tree cover map was inverted using a medium-resolution feature model;
(b) A tree cover map was inverted using 2 m resolution texture feature model; (c) A tree cover map
was inverted using a combined model of 2 m resolution texture features and Landsat 8 features; and
(d) Based on the classification map of WV-2 imagery, a tree cover map was inverted.

5. Discussion
5.1. Implication of High-Resolution Imagery on Estimating Tree Cover

Tree cover is defined as the proportion of land covered by the vertical projection of
tree and shrub canopies relative to the entire area [18,19,29]. Most studies utilizing remote
sensing to estimate tree canopy cover use high-resolution images, which allow for the direct
mapping of trees at a certain scale, identifying trees of a certain size as objects [22,59–61]. In
order to explore the potential of high-resolution imagery for estimating tree canopy cover
in sparse tree grasslands, we conducted a series of studies. First, we used WV-2 imagery
to conduct object-oriented classification for the inversion of tree cover. Previous studies
have successfully identified individual trees using high-resolution imagery [26,61,62], but
unlike this study, there are differences in tree background. In sparse-tree grasslands, there
are areas where trees and green vegetation mix together. Trees and green herbaceous plants
have similar colors and texture features, and their spatial distribution and arrangement
are quite complex and diverse. These factors greatly influence the accuracy of tree cover
inversion (RMSE = 16.78%). Next, we employed the random forest modeling approach
to explore the relationship between texture features in high-resolution imagery and tree
cover. In this study, we found a relatively strong relationship between image texture (in
particular, the near-infrared band’s gray-level co-occurrence matrix (GLCM) correlation
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and mean) and tree cover, which is consistent with previous research. This indicates that
image texture is particularly useful in areas with open tree canopies [42,63]. The estimated
accuracy of the best prediction model reached an R2 of 0.78 and an RMSE of 7.21 (Figure 7).
Our modeling results also show that the joint use of Landsat 8 and WV-2 data improves
tree cover inversion accuracy. This confirms previous work [32,64,65], but the joint use
of Landsat 8 and WV-2 data did not have as good a model performance as using only
WV-2 data. There are several factors that can explain this. Firstly, the resolution of the
WV-2 images used in this study is 0.5 m, already reaching sub-meter resolution. The
texture features of WV-2 images are better at capturing the characteristics of trees than
the spectral features of Landsat images because WV-2 provides more observations for
each pixel than Landsat. Many observations are crucial for accurately describing land
cover [66,67]. Secondly, the texture features of sub-meter-resolution images can clearly
identify the contours of trees, and adding Landsat data may eliminate some of the texture
features, leading to a decrease in the inversion accuracy of the model.

We also conducted modeling studies on texture features at different resolutions. To
more intuitively observe how the model performance varies with resolution, we generated
bar charts for the RMSE values of the high-resolution model and the collaborative model
and used two curves to represent the changes in values (Figure 9). Research indicates
that at a resolution of 2 m, the RMSE curve shows an extremely low value, indicating that
the model performance reaches its maximum at this resolution. There are several factors
that can explain this: Firstly, high-resolution data at 0.5 m may contain too many details,
leading the model to overfit noise or unnecessary differences during the training process,
thereby reducing its generalization performance on new data. In this situation, by reducing
resolution, the model may be more likely to capture more generalized features, improving
its generalization performance and thus enhancing the model’s performance. Field surveys
in the study area revealed that the average canopy diameter of trees is approximately 2 m.
This corresponds precisely to the texture information at a resolution of 2 m, enabling the
texture information at this resolution to accurately reflect the actual contours of trees in
the study area. At this point, the model better matches the actual situation, resulting in the
maximum performance of the model at a resolution of 2 m.
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The high-resolution model outperforms the collaborative model up to 8 m resolu-
tion. This suggests that, at this stage, the texture information highlights tree cover more
effectively than the spectral information from the medium-resolution Landsat data. After
an 8 m resolution, the performance of the collaborative model is superior to that of the
high-resolution model, which is consistent with the research findings of Baumann et al. [32].
This indicates that as the texture resolution decreases, some important features and minor
texture information become blurred or merged, resulting in the model losing some key
information in understanding object shape and structure. Texture features no longer play
a decisive role, and the spectral features of medium-resolution Landsat images begin to
take effect.

5.2. Comparison with Existing Tree Cover Products

Some global products aimed at mapping trees, forests, and woody cover are derived
from optical remote sensing data with spatial resolutions ranging from 30 m to 250 m, using
various satellite data sources, including MODIS and Landsat. To validate the superiority or
inferiority of the Landsat tree cover product in this study, we compared it with two global
products in the study area (Figure 10). Similarly, for Landsat products with a resolution of
30 m, the Landsat TC product is finer than the GLCC product. For continuous areas, trees
can be fully represented, and individual trees can also be well inferred. Compared to the
250 m resolution MODIS VCF product, the fine-resolution Landsat product reveals many
spatial details of tree cover distribution, and for trees in sparse grassland areas of the Loess
Plateau, the MODIS VCF product is unable to show them at all.
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Figure 10. The estimation of tree canopy coverage (%) is derived from multiple products, including
the 30 m resolution Landsat tree cover, 30 m GFCC, and 250 m MODIS VCF. Each image window
covers a spatial range of 8 km × 8 km, presenting sparse tree conditions.

The accuracy validation results of the Landsat TC, GFCC, and MODIS VCF products
are shown in Figure 11. The estimation accuracy of the Landsat TC product is relatively
good, with an R2 of 0.78 and an RMSE of 7.21. The accuracy of the GFCC product and
MODIS product is very low, with the accuracy of the Landsat TC product being approxi-
mately 10 times higher than these two global products. The values of the GFCC product and
MODIS product are both below the 1:1 line, significantly underestimating the tree coverage
in the study area. The low values of MODIS VCF and GFCC are not surprising. The Loess
Plateau area is a sparse tree–grassland region, but the algorithms behind these products are
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designed for forested areas rather than sparse tree–grassland regions [21,22]. Compared to
the two global products, the Landsat TC product has higher accuracy. However, due to
the expensive and scarce nature of high-resolution imagery, it is not feasible to conduct a
large-scale estimation of tree coverage in sparse grasslands. For small-scale fine-grained
monitoring, the Landsat TC product is undoubtedly very suitable.
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Figure 11. Accuracy validation of different products (%). The image on the left shows the Landsat
tree cover product generated based on 2 m resolution texture features modeled from WV-2 imagery,
the image in the middle shows the results of the GFCC product, and the image on the right shows the
results of the MODIS VCF product.

5.3. Uncertainty

Our analysis produced high-performance, reliable maps that show a highly reasonable
pattern of tree cover in the study area. Despite this, there are still some sources of uncer-
tainty and limitations that need to be mentioned, specifically the following: (1) Uncertainty
in reference tree cover samples is one of these limitations. The reference tree cover sample
points were obtained through visual interpretation, and although 1132 sample points were
randomly selected, they may not cover the entire study area. Further validation is needed
to determine if they are representative of the entire region. Additionally, despite the high
accuracy of manual visual interpretation, there may still be some errors. (2) Uncertainty
in feature variable selection should also be noted. In sparse-tree grasslands, vegetation
other than trees may exist beneath the tree canopy, and the feature variable extraction did
not consider the spectral information needed to differentiate this understory vegetation
from the tree canopy. (3) Uncertainty in classification and omission/commission errors
(13%/9% producer/user accuracy, Table 2) may be attributed to factors such as illumination,
shadow effects, sample selection, and complex backgrounds (trees and green herbaceous
vegetation). (4) The tendency of the RF model to consistently overestimate low values
and underestimate high values may be related to the properties of the algorithm and
the characteristics of the reference data. The final predictions of the RF model are based
on the average of the individual trees generated from bootstrap samples [38]; hence, RF
predictions may tend to be biased toward the mean. (5) The image spatial scales do not
entirely match. The mismatch in spatial scales between the resampled image pixels and the
Landsat 8 remote sensing image pixels introduces errors in extracting different resolution
texture features.

5.4. Applicability and Limitations to Other Geographical Regions

In this study, in order to overcome the negative effect of the image of grass background
on the accuracy of tree cover estimation, a tree cover estimation method based on extracting
texture features from high-resolution images is proposed. Our results indicate that based
on random forest modeling, it is possible to estimate tree cover on sparse-tree grasslands
with acceptable accuracy if high-resolution data subsets of the area of interest are available.
Using this modeling approach can provide relatively accurate tree cover reference maps
in areas with rugged terrain and strong spatial heterogeneity. In this study, apart from
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the on-site drone imagery, we also used WorldView-2 images to generate the reference
dataset. Due to the high cost, the availability of such images may be limited, especially
for large areas. However, this study found through modeling and the analysis of different
resolution texture features that using images with a resolution of 2 m yields the best
results for establishing random forest models in the Loess Plateau region. Nowadays,
with the increasing availability of high-resolution imagery, this discovery undoubtedly
greatly promotes the development of tree cover products in the region. Different regions
have varying scales of tree canopies, so there is uncertainty in the resolution of high-
resolution satellite images, and the optimal resolution needs to be determined based on the
characteristics of the tree canopy in the study area. Additionally, in southern forest areas
with higher tree cover, the effectiveness may be lower.

6. Conclusions

This study aimed to assess the impact of high-resolution imagery on tree cover in tree-
sparse grasslands and to generate accurate 30 m tree cover products. The research found
that tree cover inversion based on WV-2 image classification had low accuracy, influenced
by factors such as illumination, shadow effects, sample selection, and complex backgrounds.
In contrast, high-resolution imagery texture features performed best in tree cover modeling,
especially with sub-meter-level texture features outperforming spectral features in satellite
imagery. The effects of texture features on tree cover varied across different resolutions,
with texture features performing better than spectral features at resolutions lower than 8
m, reaching optimal performance at a 2 m resolution. The random forest model exhibited
biases in estimating high and low values, possibly related to algorithmic and reference
data characteristics. Furthermore, spatial scale mismatch in imagery could lead to errors in
texture feature extraction.

In summary, this study provides important insights into the use of high-resolution
imagery in assessing tree cover. Future research should focus on addressing model biases
and image scale matching issues to further optimize methods and results for tree cover
assessment, enhancing the accuracy and reliability of evaluations.
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Appendix A

Table A1. All predictor variables for the tree canopy coverage estimation model. SD: standard
deviation; M: mean.

Landsat 8 WV-2

Blue, Green, Red, NIR, SWIR1, SWIR2 Blue, Green, Red, NIR
TIRS1, TIRS2 NDVI VDVI

NDMI NDVI Blue M GLCM Mean Blue M GLCM Variance
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Table A1. Cont.

Landsat 8 WV-2

RVI EVI Blue M GLCM
Homogeneity Blue M GLCM Contrast

GRVI NIRv Blue M GLCM
Dissimilarity Blue M GLCM Entropy

DVI GNDVI Blue M GLCM ASM Blue M GLCM
Correlation

MSAVI Green M GLCM Mean Green M GLCM
Variance

Blue GLCM Mean Blue GLCM Variance Green M GLCM
Homogeneity

Green M GLCM
Contrast

Blue GLCM
Homogeneity Blue GLCM Contrast Green M GLCM

Dissimilarity
Green M GLCM

Entropy
Blue GLCM
Dissimilarity Blue GLCM Entropy Green M GLCM ASM Green M GLCM

Correlation
Blue GLCM ASM Blue GLCM Correlation Red M GLCM Mean Red M GLCM Variance

Green GLCM Mean Green GLCM Variance Red M GLCM
Homogeneity Red M GLCM Contrast

Green GLCM
Homogeneity Green GLCM Contrast Red M GLCM

Dissimilarity Red M GLCM Entropy
Green GLCM
Dissimilarity Green GLCM Entropy Red M GLCM ASM Red M GLCM

Correlation
Green GLCM ASM Green GLCM Correlation NIR M GLCM Mean NIR M GLCM Variance
Red GLCM Mean Red GLCM Variance NIR M GLCM

Homogeneity NIR M GLCM Contrast
Red GLCM

Homogeneity Red GLCM Contrast NIR M GLCM
Dissimilarity NIR M GLCM Entropy

Red GLCM
Dissimilarity Red GLCM Entropy NIR M GLCM ASM NIR M GLCM

Correlation

Red GLCM ASM Red GLCM Correlation Blue SD GLCM Mean Blue SD GLCM
Variance

NIR GLCM Mean NIR GLCM Variance Blue SD GLCM
Homogeneity

Blue SD GLCM
Contrast

NIR GLCM
Homogeneity NIR GLCM Contrast Blue SD GLCM

Dissimilarity Blue SD GLCM Entropy
NIR GLCM

Dissimilarity NIR GLCM Entropy Blue SD GLCM ASM Blue SD GLCM
Correlation

NIR GLCM ASM NIR GLCM Correlation Green SD GLCM Mean Green SD GLCM
Variance

SWIR1 GLCM Mean SWIR1 GLCM Variance Green SD GLCM
Homogeneity

Green SD GLCM
Contrast

SWIR1 GLCM
Homogeneity SWIR1 GLCM Contrast Green SD GLCM

Dissimilarity
Green SD GLCM

Entropy
SWIR1 GLCM
Dissimilarity SWIR1 GLCM Entropy Green SD GLCM ASM Green SD GLCM

Correlation
SWIR1 GLCM ASM SWIR1 GLCM Correlation Red SD GLCM Mean Red SD GLCM

Variance
SWIR2 GLCM Mean SWIR2 GLCM Variance Red SD GLCM

Homogeneity Red SD GLCM Contrast
SWIR2 GLCM
Homogeneity SWIR2 GLCM Contrast Red SD GLCM

Dissimilarity Red SD GLCM Entropy
SWIR2 GLCM
Dissimilarity SWIR2 GLCM Entropy Red SD GLCM ASM Red SD GLCM

Correlation
SWIR2 GLCM ASM SWIR2 GLCM Correlation NIR SD GLCM Mean NIR SD GLCM

Variance
NIR SD GLCM
Homogeneity

NIR SD GLCM
Contrast

NIR SD GLCM
Dissimilarity NIR SD GLCM Entropy

NIR SD GLCM ASM NIR SD GLCM
Correlation
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