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Abstract: Multispectral remote sensing data with abundant spectral information can be used to
compute vegetation indices to improve the accuracy of Ginkgo biloba yield prediction. The limited
spatial resolution of multispectral cameras restricts the detail capture over wide farmland, but super-
resolution (SR) reconstruction methods can enhance image quality. However, most existing SR models
have been trained on images processed from downsampled high-resolution (HR) images, making
them less effective in reconstructing real low-resolution (LR) images. This study proposes a GAN-
based super-resolution reconstruction method (RMSRGAN) for multispectral remote sensing images
of Ginkgo biloba trees in real scenes. A U-Net-based network is employed instead of the traditional
discriminator. Convolutional block attention modules (CBAMs) are incorporated into the Residual-
in-Residual Dense Blocks (RRDBs) of the generator and the U-Net of the discriminator to preserve
image details and texture features. An unmanned aerial vehicle (UAV) equipped with a multispectral
camera was employed to capture field multispectral remote sensing images of Ginkgo biloba trees at
different spatial resolutions. Four matching HR and LR datasets were created from these images to
train RMSRGAN. The proposed model outperforms the traditional models by achieving superior
results in both quantitative evaluation metrics (peak signal-to-noise ratio (PSNR) is 32.490, 31.085,
27.084, 26.819, and structural similarity index (SSIM) is 0.894, 0.881, 0.832, 0.818, respectively) and
qualitative evaluation visualization. Furthermore, the efficiency of our proposed method was tested
by generating individual vegetation indices (VIs) from images taken before and after reconstruction to
predict the yield of Ginkgo biloba. The results show that the SR images exhibit better R2 and RMSE
values than LR images. These findings show that RMSRGAN can improve the spatial resolution of
real multispectral images, increasing the accuracy of Ginkgo biloba yield prediction and providing
more effective and accurate data support for crop management.

Keywords: Ginkgo biloba; remote sensing; unmanned aerial vehicle; super-resolution reconstruction;
generative adversarial network; yield prediction

1. Introduction

High-resolution (HR) remote sensing images, which contain abundant feature and
texture information, are widely used in fields such as target detection [1,2], change de-
tection [3,4], semantic segmentation [5,6] and land cover classification [7,8]. However,
despite significant advancements in remote sensing technology over the past few decades,
challenges still need to be overcome in acquiring HR imagery. Therefore, developing
super-resolution (SR) reconstruction technology is crucial in this context. SR techniques
improve the resolution of low-resolution (LR) remote sensing images through algorithmic
processing, bringing them closer to or meeting HR standards. This technology relies on
advanced image processing algorithms, such as deep learning [9,10], and requires extensive
image analysis and pattern recognition research. SR technology can effectively enhance
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the value of LR remote sensing resources, making them more useful in practical appli-
cations and supporting decision-making in critical areas such as surface monitoring and
environmental assessment.

Recent HR remote sensing imagery advances have substantially transformed agricul-
tural and forestry practices. Key studies in this domain demonstrate diverse applications
and progressive capabilities. Wu et al. [11] explored wheat leaf area index (LAI) prediction
using high-resolution unmanned aerial vehicle (UAV) imagery combined with multi-sensor
data, underscoring the significance of soil background elimination and data fusion for
enhanced accuracy. In contrast, Marzougui et al.’s [12] comparative analysis of satellite
and unmanned aerial system (UAS) multispectral imagery for field pea yield estimation
revealed the limited impact of texture features on model performance despite the benefits
of multi-scale data fusion. Ramin et al. [13] highlighted the potential of century-old biochar
in boosting chicory growth, as evidenced through UAV imagery that showed increased
canopy cover and leaf length. Advancements in HR remote sensing imagery have greatly
enhanced agricultural and forestry monitoring, despite challenges from sensor limitations
and environmental factors. SR reconstruction technology offers a cost-effective solution to
improve image quality and spatial resolution.

Traditional super-resolution (SR) methods, crucial for image enhancement, face lim-
itations that have led to advanced developments. These methods include interpolation-
based algorithms like bicubic [14], known for speed but lacking in detail accuracy, and
reconstruction-based approaches like iterative back projection [15], providing better detail
but suffering from high computational demands. These challenges prompted the shift to-
wards AI-driven SR models for improved performance. Deep learning advancements have
profoundly influenced the evolution of super-resolution (SR) techniques. Traditional single-
image SR methods, dominant in remote sensing, have been surpassed by deep learning-
based models for their enhanced performance and broader applicability. Pioneering this
shift, Dong et al. [16] introduced the Super-Resolution Convolutional Neural Network
(SRCNN), utilizing Convolutional Neural Network (CNN) technology for SR image recon-
struction. Despite its superiority over traditional methods, SRCNN was constrained by lim-
ited image content adaptability and slow convergence speed. Addressing these limitations,
Shi et al. [17] proposed the Enhanced Super-Resolution Convolutional Neural Network
(ESPCN), implementing sub-pixel convolution layers to improve texture retention and
training efficiency. Further progression in SR models included Very Deep Super-Resolution
(VDSR) [18], which utilized a residual learning strategy to capture high-frequency details.
SRCNN and the Fast Super-Resolution Convolutional Neural Network (FSRCNN) [19]
emphasized the balance between processing speed and image quality. While CNN- and
transformer-based methods excel in recovery, they occasionally produce overly smooth
images. In contrast, generative adversarial network (GAN)-based SR methods, such as SR-
GAN [20], have proven adept at producing highly detailed textures, exploiting perceptual
loss, and advanced discriminators for realism. ESRGAN [21] enhances the discriminator
with the Relativistic Average GAN and incorporates the Residual-in-Residual Dense Block
(RDDB) for improved model performance. In addition, the SR field has made significant
progress in modeling real-world degradation. The Real-ESRGAN [22] is notable for its
approaches to mimicking complex degradations, thereby increasing the robustness and
versatility of SR models under different imaging conditions. These GAN-based models
refine image quality and address the texture fidelity and structural features of images,
overcoming limitations such as twisted lines and background distortions.

In recent years, the super-resolution reconstruction of remote sensing pictures in agri-
culture and forestry has emerged as a significant study field. Liang et al. [23] proposed
a system for early smoke identification in forest fire prevention. They combined a super-
resolution network with smoke segmentation, resulting in a similarity coefficient of 0.742
when compared to high-resolution satellite pictures. Huang et al. [24] investigated using
super-resolution reconstruction in UAV remote sensing photos for tree species classification
to address challenges in dense forests and varying photography angles. Zhang et al. [25] in-
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vestigated using multispectral drone photography and generative adversarial networks for
the super-resolution reconstruction of Chinese cabbage features, where SRGAN and U-Net
models achieved a segmentation accuracy of 94.43% and an R2 above 0.78. Klapp et al. [26]
suggest using low-cost thermal cameras and CNN-based super-resolution techniques to
enhance agricultural remote sensing by improving image clarity and measurement ac-
curacy. Zeng et al. [27] propose MALNet, a network enhancing agricultural pest image
resolution by integrating residual and dense connections, boosting feature exploitation and
computational efficiency for accurate pest identification. In general, advanced technologies
like CNNs and GANs have demonstrated the potential to enhance the accuracy and clarity
of remote sensing data in these specific areas.

Despite advancements in SR methods, challenges persist, particularly issues with
regard to the degradation of remote sensing images by atmospheric interference, noise,
and lens. Current SR models often struggle with real-world accuracy due to a lack of
high-quality reference data. While GANs can produce detailed textures, they face training
stability and visual accuracy issues. Most SR methods use pixel-level loss functions,
which can overlook the complex features specific to remote sensing, underscoring the
need for SR approaches that utilize comprehensive scene information and adapt well
to diverse conditions. To tackle these concerns, we propose an upgraded GAN-based
network for super-resolution reconstruction in real multispectral remote sensing images
of Ginkgo biloba trees (RMSRGAN). The improved resolution achieved by our approach
not only captures finer textural details, but also significantly improves the accuracy of
yield predictions. This method provides a cost-effective alternative to expensive HR
multispectral sensors, which are essential for accurate, large-scale remote sensing. The
primary modifications and contributions encompass the following:

1. A dataset comprising multispectral remote sensing images of Ginkgo biloba trees is
produced in real scenes. The dataset consists of HR and LR images captured in the
field by a UAV equipped with a multispectral camera at different flight heights and
matched individually.

2. The discriminator network is improved by using a U-Net structure. The discrimina-
tor’s U-Net and the generator’s Residual-in-Residual Dense Blocks (RRDBs) both use
convolutional block attention modules (CBAMs). These strategies enable GAN-based
networks to improve super-resolution reconstruction by focusing on image texture
and detail.

3. To further validate the effectiveness of the super-resolution reconstruction model pro-
posed in this study, this study conducted yield prediction using vegetation indices on
the reconstructed images. In the evaluation of the prediction results, the reconstructed
images surpass the original images.

The subsequent sections of this work are structured in the following manner: Section 2
outlines the experimental design, data sources, super-resolution reconstruction models,
yield forecast methodologies, and model evaluation criteria. Section 3 presents the ex-
perimental findings. Section 4 examines the effectiveness and constraints of RMSRGAN.
Section 5 summarizes the contributions of this study and proposes future research areas.

2. Materials and Methods
2.1. Field Experimental Design

The field experiment was conducted at the Ginkgo biloba planting base of Xuzhou
Changrong Agricultural Development Co. in Pizhou, Xuzhou City, Jiangsu Province,
China (34°8′42′′ N, 117°2′45′′ E), as shown in Figure 1. The investigation was carried out
on three-year-old Ginkgo biloba trees planted in February 2020. The trees were planted
with a row spacing of 1 m and a column spacing of 0.4 m (Figure 1). The experiment
consisted of 176 plots, each measuring 0.8 × 4 m², with eight trees in each plot. Four levels
of nitrogen (N) fertilizers (N0–N3: 0, 100, 200 and 300 kg/ha) were applied to the plots. N
fertilization was applied in mid-April, early-May and late-May at rates of 40%, 30% and
30%, respectively. Additionally, the same amount of phosphate (P, 120 kg/ha) and potash
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(K, 200 kg/ha) were treated in all plots. Field images were acquired between 10:00 and
14:00 local time on 2 August 2023. Field assessments, destructive sampling and UAV flight
missions were conducted in clear weather circumstances. Weed and insect pests in the field
were controlled manually, and no agricultural chemicals were used.

Figure 1. (a) Experimental location of Pizhou, Xuzhou City, Jiangsu Province. (b) Row and column
spacing for Ginkgo biloba trees. (c) Experimental plot layout. The white, yellow, blue and red boxes
represent the amount of nitrogen fertilizer applied as N0 (0), N1 (100 kg/ha), N2 (200 kg/ha) and N3
(300 kg/ha), respectively.

2.2. Data Acquisition and Processing
2.2.1. Multispectral Imagery Acquisition

The multispectral (MS) imagery data were acquired using a DJI M100 drone (SZ DJI
Technology Co., Shenzhen, China) equipped with a Red-Edge M MS camera (MicaSense Inc.,
Seattle, WA, USA). The camera features a quintet of spectral lenses—blue (B), green (G), red
(R), red-edge (E) and near-infrared (NIR)—and a sunlight sensor that dynamically adjusts
to ambient lighting to improve the accuracy of MS images. Each lens captures images at a
resolution of 1280 × 960 pixels. Detailed camera information is shown in Table 1. To ensure
accurate reflectance data from the digital number (DN) values, radiometric calibration was
performed with a standard board before and after each flight session.

Table 1. Spectral bands and resolutions of the multispectral camera.

Band Wavelength Bandwidth Image Resolution

Blue (B) 475 nm 20 nm 1280 × 960
Green (G) 560 nm 20 nm 1280 × 960

Red (R) 668 nm 10 nm 1280 × 960
Red-edge (E) 717 nm 10 nm 1280 × 960

Near-infrared (NIR) 842 nm 40 nm 1280 × 960

Utilizing the DJI GS Pro software 2.0.18, users were able to create custom missions and
select flight paths for automated flight control. Flight heights were set at 15 m (1×), 30 m
(2×) and 60 m (4×) to obtain MS remote sensing imagery at different resolutions. Flight
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height and speed were taken into account to obtain high-quality images, which resulted
in a forward overlap of 85% at 15 m and 90% at higher heights, while maintaining a side
overlap of 80%. Table 2 provides detailed flight information. In addition, the aircraft and
camera were equipped with a built-in global navigation satellite system (GNSS) module to
track the location of the imagery accurately.

Table 2. Flight settings at different heights.

Height Ground
Resolution Speed Shutter

Interval
Forward
Overlap Side Overlap

15 m (1×) 1.0 cm/pixel 1.5 m/s 0.1s 85% 80%
30 m (2×) 2.0 cm/pixel 3.0 m/s 0.1s 90% 80%
60 m (4×) 4.0 cm/pixel 6.0 m/s 0.1s 90% 80%

2.2.2. Image Processing

The image processing starts with pre-processing MS camera images in Pix4Dmapper
4.5.6 (Pix4D, Lausanne, Switzerland) to generate ortho-mosaic images and perform ra-
diometric calibration, as shown in Figure 2. The process involves geolocating photos,
importing ground control points (GCPs), aligning images, creating dense point clouds and
ortho-mosaic images, and calibrating radiometric images. The center points of black and
white checkered boards from Figure 1c were used as GCPs, which provide high contrast
for precise image alignment. These GCPs are captured with high-precision GPS equipment,
ensuring an accuracy of ±2 cm in both horizontal and vertical dimensions. The image align-
ment is performed using the registration tool in the ENVI 5.6 software. Dense point clouds
are created by the structure-from-motion (SfM) technique to enhance the photogrammetric
process in Pix4Dmapper. Radiometric calibration is used on the MS images to improve
the radiometric accuracy of the data and convert the digital number (DN) values to re-
flectance by comparing them to images with established reflectance values for calibration.
Spectral correction further refines this process by adjusting the wavelength calibration and
ensuring accurate spectral response. Furthermore, three widely used vegetation indices
(VIs) closely associated with crop features were employed in this study for predicting crop
production (Table 3).

Figure 2. Processing workflow of UAV-based multispectral images. MS represents the multispectral,
digital surface model and digital terrain model, respectively.
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Table 3. Details of selected vegetation indices. NIR, R and B represent the near-infrared, red and blue
bands, respectively.

Name Formula Reference

Normalized difference vegetation index NDVI =
NIR − R
NIR + R

[28]

Ratio vegetation index RVI = NIR/R [29]

Enhanced vegetation index EVI =
2.5 × (NIR − R)

NIR + 6 × R − 7.5 × B + 1
[30]

Plant height extraction involves utilizing ENVI 5.6 software to create a 3D point cloud
model from MS images captured on 2 August 2023, to generate the digital surface models
(DSMs) and digital terrain models (DTMs) of ground objects. The models are imported
into ENVI, and plant surface models are created by subtracting the DTM from the DSM.
The plant height obtained from UAV data is verified by comparing it with plant heights
measured in the field.

2.2.3. Real-MSG Dataset

This study refrained from using the conventional approach of generating LR images
through a bicubic interpolation of HR images. This process can result in inconsistencies
between artificially created and genuine LR images, which impede the effectiveness of SR
models. Our datasets utilized LR and HR aerial photography to train a model that can
learn detailed mapping relationships, enhancing the accuracy of SR reconstruction in the
real world compared to bicubic interpolation. Therefore, we took UAV-based MS remote
sensing images which were acquired at 3 different heights at the same location on 2 August
2023. Detailed information is shown in Table 2. We used 15 m (1×) high images as HR and
30 m (2×) and 60 m (4×) high images as LR, where “1×”, “2×” and “4×” denote the factor
by which the image resolution is increased, with 1× representing no change, 2× doubling
and 4× quadrupling the original dimensions. By utilizing the registration tool in the ENVI
software, the various resolution images were aligned by matching the preset GCPs to ensure
that the characteristics in the processed pairs of HR and LR images match as closely as
feasible. To simplify the training process, we integrated the single-channel grayscale images
of five bands into three-channel color images of RGB (consisting of R, G and B bands) and
NER (consisting of NIR, E and R bands). Then, the HR (1×) images were cropped to images
measuring 256 × 256 using OpenCV, and the corresponding LR (2×) and LR (4×) images
were cropped to dimensions of 128 × 128 and 64 × 64, respectively. Subsequently, we
obtained a total of 10,000 image pairs and four datasets, including 2500 pairs of HR (1×)-
LR (2×) RGB, 2500 pairs of HR (1×)-LR (4×) RGB, 2500 pairs of HR (1×)-LR (2×) NER and
2500 pairs of HR (1×)-LR (4×) NER. We named the datasets RGB (2×), RGB (4×), NER (2×)
and NER (4×) successively and together referred to them as real MS images of Ginkgo
biloba trees (Real-MSG). We partitioned the data into training, validation and testing sets
with a ratio of 8:1:1 and implemented 5-fold cross-validation.

2.2.4. Leaf Yield Measurement

The leaf yield (kg) of each Ginkgo biloba tree was harvested individually by manual
means at the maturity stage (3 August 2023) and counted in pre-determined plots. Har-
vested leaves were weighed for fresh weight using an electronic balance. The harvested
leaves were dried at 105 °C for 0.5 h and then at 70 °C until constant weight. Subsequently,
the dry weight was weighed and recorded. Finally, the dry-to-fresh weight ratio was found
to be 1:3 by comparison.

2.3. Super-Resolution Reconstruction Model

There are two primary components of RMSRGAN: a discriminator and a generator.
Using computations like convolution and upsampling in its network structure, the gen-
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erator uses the super-resolution reconstruction method to take the input LR image and
produce the SR image. The discriminator then establishes whether or not the SR image
is genuine by comparing it to the actual HR image. The discriminator aims to accurately
discriminate between created SR photos and real HR images, whereas the generator aims
to create SR images convincing enough to trick the discriminator. Through an adversarial
process of continual training, the discriminator and generator learn from each other and
enhance their performance repeatedly. This iterative training process makes the SR images
more realistic and detailed.

2.3.1. Generator Network

The generator network architecture is shown in Figure 3. First, a 3 × 3 convolutional
layer is used to extract the original features in the LR image to obtain the original feature
map. Subsequently, the 23 basic block is used to retain the existing image features and
discover new ones. The architecture of the basic block is composed of interconnected
Residual-in-Residual Dense Block (RRDB), augmented by a convolutional layer with resid-
ual connections in the last. The RRDB framework is adept at integrating the strengths
of residual and dense networks, as delineated in Figure 3. Residual networks excel at
identifying and learning the disparities, often minimal, between inputs and outputs, a
characteristic indicated by the potential of most residuals to approach zero. Dense connec-
tions efficiently concatenate the feature maps from preceding layers, enriching the input for
subsequent layers. While residual networks capitalize on feature reutilization, they are less
inclined to unearth new features; dense networks, in contrast, are more explorative but can
suffer from increased redundancy. The RRDB design unites these contrasting approaches,
enabling the model to navigate complex data landscapes and discern intricate patterns
more effectively. This fusion bolsters the model’s accuracy and enhances its performance, as
evidenced by [21], which demonstrates RRDB’s superior handling of diverse and intricate
data distributions. And then, the image size is enlarged by the upsampling module (2× or
4×). Finally, the enlarged image features are further learned after two 3 × 3 convolutional
layers. The SR image corresponding to the LR image is reconstructed using the above
generator network structure.

Figure 3. Generator network structure of RMSRGAN. Conv, LReLU and CBAM represent the
convolution layer, leaky rectified linear unit and convolutional block attention module, respectively.
The size of the convolutional layer is 3 × 3, the stride is 1, and the number of filters is 64.

In addition, a convolutional block attention module (CBAM), as shown in Figure 4, is
included following each basic block. Implementing CBAM following the RRDB module in
GANs significantly enhances the model’s performance. The capacity of CBAM is utilized in
this combination to concentrate on more informative features by simultaneously employing
spatial and channel attention [31]. This strategic integration enhances the efficiency of
the generative model in collecting delicate features and textures, resulting in the creation
of more realistic images. Furthermore, the combination of RRDB’s dense connectivity
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with CBAM’s attention mechanism enhances feature representation, resulting in high-
quality output with improved perceptual clarity and detail fidelity [32]. This approach not
only refines the visual quality of the generated images, but also contributes to the overall
robustness and adaptability of the model for various image synthesis tasks.

Figure 4. Convolutional block attention module. ReLU, Max-pooling and Avg-pooling represent the
leaky rectified linear unit, max-pooling layer and average-pooling layer, respectively. The size of the
convolutional layer is 3 × 3, the stride is 1, and the number of filters is 64.

2.3.2. Discriminator Network

Inspired by the authors of [22], instead of using a traditional discriminator structure,
in this study, we chose a discriminator network based on the U-Net structure, as shown
in Figure 5. This discriminator network structure consists of a downsampling process
(encoder) and an upsampling process (decoder). The encoder performs the extraction of
the image features. In contrast, the decoder operates inverse convolution by upsampling,
and the image features extracted during encoding are also added to the decoding process.

Figure 5. Discriminator network structure of RMSRGAN. Concat Block, Conv and LReLU represent
the concatenate block, convolutional layer and leaky rectified linear unit, respectively. The size of the
convolutional layer is 3 × 3, the stride is 1, and the number of filters is 64.

The modification of the U-Net structure for GAN discriminators has been a novel
method, especially in the field of image generation. The U-Net design incorporates skip
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connections to address gradient attenuation by combining early-stage and advanced fea-
tures, enhancing the discriminator’s ability to distinguish semantics at different scales.
The architecture’s focus on integrating information from various scales is essential for
accurately representing small or localized details, which is necessary for creating images
with high-quality structural and textural components. Throughout decoding, U-Net grad-
ually merges features by utilizing deconvolution layers to improve the discriminator’s
understanding of context. This integration of characteristics significantly enhances the
effectiveness of GANs in producing realistic images, highlighting the importance of U-Net
in modern image generation applications.

Furthermore, spectral normalization regularization is used for the encoder after it
moves from the initial convolution layer in this network design to improve the stability
of the discriminator network training. Spectral normalization is a method used to control
the Lipschitz constant of functions in deep learning models. It ensures stable training
by limiting the spectral norm (the most significant singular value) of weight matrices,
denoted as

σ(W) = max
∥Wv∥2

∥v∥2
(1)

where W is the weight matrix. Spectral normalization improves model generalization and
reduces overfitting by normalizing weights, which leads to a smoother gradient flow and an
increased model robustness. This technique adjusts weight matrix scales to reduce training
instabilities and enhance the effectiveness of the generative adversarial network. It ensures
more consistent training dynamics, resulting in an improved production of high-quality
images by strengthening the stability of the discriminator’s performance.

2.3.3. Loss Function

The generator network’s loss function includes perceptual loss and pixel loss. The
discriminator network utilizes the binary cross entropy loss function (BCELoss).

Perceptual loss (LPct) [21] in GANs improves the visual quality of generated images by
prioritizing perceptual similarity rather than pixel-wise precision. This method integrates
content loss with adversarial loss by leveraging deep features extracted from pretrained
networks such as VGG-19 to compare generated and target images comprehensively. The
total perceptual loss is a combination of the content and adversarial losses. Perceptual loss
merges content and style fidelity with human visual standards for realistic, high-quality
image generation.

Pixel loss (LPxl) measures the difference between created and target images at the pixel
level, typically utilizing the L1 or L2 norm. The formula is as follows:

LPxl =
1
N ∑ |y − ŷ| (2)

for L1, where y represents the target and ŷ represents the generated picture. This loss
highlights the direct resemblance, improving image clarity and detail precision. The final
objective function of the generator can be defined as

LG = LPct + LPxl (3)

BCELoss plays a crucial role in GAN training by effectively penalizing incorrect
predictions and transforming them into probabilities using the sigmoid function. This
enhances the numerical stability and effectiveness of the discriminator. This procedure
directs the generator to generate images that are more authentic, thus enhancing the quality
of image generation in the GAN. The effectiveness of a discriminator in GANs depends
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on its ability to reliably differentiate genuine images from generated ones. The formula is
expressed as

LBCE = − 1
n

n

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (4)

where n is the sample size, yi indicates the actual label of each image (1 for real and 0 for
fake), and ŷi reflects the discriminator’s predicted probability that the ith image is real.

2.3.4. Trainig Details

The study utilized experimental hardware consisting of a GeForce RTX 4090 GPU,
an Intel Core i9-13900KF @ 3.00 GHz CPU for computational efficiency, and 64 GB of
RAM. The code development utilized Python 3.9 as the programming language, PyCharm
as the compiler, Pytorch framework for algorithm modeling and implementation, and
Windows 10 as the operating system. CUDA11.2 and the related CuDNN were used to
speed up model training. In addition, Table 4 provides further information regarding
the training of the RMSRGAN model, where β1 and β2 represent the decay rates of the
learning rate.

Table 4. Experimental details.

Item RGB (2×) RGB (4×) NER (2×) NER (4×)

Input size 128 × 128 64 × 64 128 × 128 64 × 64
Scaling factor 2 4 2 4

Batch size 4 8 4 8
Epoch 300 300 300 300

Learning rate 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Optimizer Adam Adam Adam Adam
β1, β2 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999

2.4. Regression Method

In this study, the linear regression model was used to predict the yield of LR, SR
and HR remote sensing images. This statistical method establishes a relationship between
a single independent variable and a dependent variable by fitting a linear equation to
the data. The linear equation is expressed as Y = a + bX, where Y represents the yield,
X denotes the resolution of the VI, a is the y-intercept, and b is the slope. The slope
indicates the expected change in yield for each unit increase in resolution, offering insights
into the impact of image quality on agricultural output. This model’s simplicity makes
it effective for examining the direct influence of image resolution on yields, providing
valuable information for enhancing agricultural productivity through optimized remote
sensing applications.

2.5. Model Performance Estimation

In assessing SR models, two key measures are typically used: peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM). PSNR is a metric used to quantify the
quality of reconstruction, denoted as

PSNR = 10 · log10

(
MAX2

I
MSE

)
(5)

where MAXI is the highest achievable pixel value in the picture, and MSE is the average
squared difference between the original and reconstructed images. This statistic emphasizes
the negative correlation between image error and quality. SSIM evaluates the visual quality
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and similarity of two photos by assessing changes in structural information, brightness,
and contrast. The formula is expressed as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6)

where x and y denote segments of the original and the reconstructed image. The formula
computes similarity using the mean (µx, µy), variance (σ2

x , σ2
y ) and covariance (σxy) of

the photos’ brightness. Constants c1 and c2 are used to avoid division by zero when
the denominator is close to zero. SSIM values vary from −1 to 1, with 1 representing
complete similarity.

Two evaluation metrics commonly utilized for examining regression models are the
coefficient of determination (R²) and root-mean-squared error (RMSE). R² measures the
proportion of the variance in the dependent variable that can be explained by the indepen-
dent variables, where values nearing 1 suggest a more robust model fit. RMSE evaluates
the average size of the forecasting inaccuracies. They can be denoted as

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (8)

where yi are actual values, ŷi are predicted values, ȳ is the mean of actual values and n is
the number of data points. These measurements offer a thorough insight into a model’s
ability to predict accurately and the extent of its errors.

3. Results
3.1. Loss Curves

The losses of the generator and the dicriminator both tend to converge during the
training procedure, as shown in Figure 6.

Figure 6. Variation curves of generator loss (Loss_G) and discriminator loss (Loss_D).

3.2. Quantitative and Qualitative Metrics’ Analysis of SR Images

This study conducted trials on the Real-MSG dataset using various models, including
Bicubic, SRCNN [16], FSRCNN [19], VDSR [18], SRGAN [20], Real-ESRGAN [22] and
RMSRGAN, ensuring that they were trained under the same software and hardware
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environments and parameter settings. SRCNN, FSRCNN and VDSR are CNN-based SR
models, whereas SRGAN, Real-ESRGAN and RMSRGAN are GAN-based SR models.

This study utilizes the PSNR and SSIM measurements for quantitative evaluation.
The PSNR metrics for four datasets (Table 5) show that the double cubic interpolation had
the lowest values and the RMSRGAN model (ours) had the highest values. The PSNR
values of the three CNN-based models surpass those of the double-cubic interpolation
approach. SRGAN has a more excellent PSNR value than the double-cubic interpolation
approach, but a lower PSNR value than the CNN-based model among GAN-based models.
The PSNR value of Real-ESRGAN is the second highest, only surpassed by our proposed
approach. Similarly, as shown in Table 6, the same conclusion as Table 5 can be obtained
from comparing SSIM metrics. Table 6 provides a comparable result to Table 5 regard-
ing comparing SSIM measures. A higher SSIM value indicates a better preservation of
properties, including brightness, contrast and structural similarity, during super-resolution
reconstruction of the image. In addition, when comparing image datasets of the same type,
the metrics for RGB (2×) are consistently more significant than those for RGB (4×); the
metrics for NER (2×) and NER (4×) vary in either higher or lower, however. And when
comparing image datasets of the same scale, the metrics for RGB (2× and 4×) are superior
to those for NER (2× and 4×).

Table 5. Mean values of PSNR for different methods. Values in bold indicate the best performance.

Dataset Bicubic SRCNN FSRCNN VDSR SRGAN Real-ESRGAN RMSRGAN

RGB (2×) 17.823 24.681 24.075 24.339 22.572 29.536 32.490
RGB (4×) 16.711 24.250 23.482 23.248 21.287 28.375 31.085
NER (2×) 15.257 20.589 19.608 20.258 17.229 24.166 27.084
NER (4×) 16.491 20.886 19.636 20.139 17.827 23.575 26.819

Table 6. Mean values of SSIM for different methods. Values in bold indicate the best performance.

Dataset Bicubic SRCNN FSRCNN VDSR SRGAN Real-ESRGAN RMSRGAN

RGB (2×) 0.489 0.654 0.640 0.581 0.528 0.826 0.908
RGB (4×) 0.457 0.616 0.598 0.529 0.467 0.797 0.884
NER (2×) 0.362 0.533 0.510 0.524 0.360 0.740 0.836
NER (4×) 0.427 0.543 0.517 0.518 0.381 0.699 0.841

We conducted a qualitative assessment of the reconstructed images in addition to the
quantitative evaluation, as depicted in Figure 7. The first column displays the LR image,
the second column shows the HR image, and the subsequent columns exhibit the LR image
rebuilt by each of the seven models. We have captured the same locations in these photos
for zooming-in to aid in evaluating image details. These sites are marked by red boxes in
Figure 7. The three CNN-based reconstruction models can recover more image details than
the bicubic interpolation method on RGB images, but the contours are blurred; however,
they cannot produce better results than the bicubic interpolation method regarding the
reconstruction effect on NER images. The three GAN-based reconstruction models may
significantly enhance the visual texture and features of the image during reconstruction.
Real-ESRGAN and RMSRGAN (ours) can better recreate the texture aspects of images
and produce more impressive visual effects than SRGAN. However, a small amount of
unwanted artifacts appear in the reconstruction results of the former two models, especially
in the brighter regions of the NER image.

RMSRGAN (ours) is determined to be the top performer based on a combination of
quantitative and qualitative evaluation outcomes, excelling in super-resolution reconstruc-
tion metrics and image quality. This demonstrates our success in enhancing the model
network’s structure, which allows for improved super-resolution reconstruction with en-
hanced image texture and detail qualities. This also validates the authenticity and precision
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of the real-based multispectral image dataset (Real-RMS) we developed. The Real-ESRGAN
model achieved high metrics and image reconstruction quality, demonstrating the effec-
tiveness of GAN-based reconstruction in handling the task of reconstructing real images.
SRGAN’s quantitative evaluation criteria are inferior to CNN-based reconstruction ap-
proaches, yet it surpasses them significantly in terms of picture reconstruction effectiveness.
This indicates that the GAN-based reconstruction model may more effectively recover
picture details, resulting in outcomes that closely resemble high-resolution photos.

Figure 7. Visual effects of reconstructed images by different methods.

3.3. Ablation Study

Three sets of ablation experiments were designed to evaluate the effectiveness of the
enhancements made by each proposed component. The baseline model selected was from
ESRGAN [21], utilizing RRDB modules in its generator network, and its discriminator
network is structured based on a CNN. We incrementally incorporate CBAM and U-Net
architectures into the baseline model. All models were trained with identical settings and
assessed on a test dataset. Table 7 provides comparative data on quantitative indicators,
showing a clear improvement in model performance throughout the trial.
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Table 7. Ablation experiments results. Values in bold indicate the best performance. The symbol “+”
indicates the incremental addition of the module.

Metric Dataset Baseline + CBAM in Generator + U-Net + CBAM in U-Net

PSNR

RGB (2×) 27.932 28.467 31.049 32.490
RGB (4×) 27.103 27.976 30.164 31.085
NER (2×) 23.532 24.164 26.261 27.084
NER (4×) 22.850 23.093 26.011 26.819

SSIM

RGB (2×) 0.712 0.748 0.841 0.894
RGB (4×) 0.684 0.727 0.833 0.881
NER (2×) 0.673 0.701 0.801 0.832
NER (4×) 0.646 0.688 0.781 0.818

Firstly, by incorporating CBAM after the RRDB module of the generator, the model can
enhance important features and suppress unimportant ones, leading to improved image
feature representation. This enhancement allows the model to respond more accurately to
high-frequency details and texture information, ultimately enhancing quantitative evalua-
tion metrics. Subsequently, the discriminator structure is optimized from a CNN-based
structure to a U-Net-based one. The U-Net model efficiently captures an image’s intricate
details and surrounding context by utilizing its encoder–decoder architecture along with
skip connections. This allows the discriminator to better assess nuanced distinctions, such
as texture and edges, in the generated image, enhancing the quality of super-resolution
reconstruction. Furthermore, U-Net excels in preserving spatial information within images,
a crucial aspect for accurately retrieving detailed information in high-resolution photos.
Improvements were achieved in the PSNR and SSIM values. Finally, CBAM is incorporated
into the U-Net architecture to increase the discriminator’s sensitivity to high-frequency de-
tails, improving the generator’s ability to restore high-quality high-frequency information
more effectively. Moreover, the discriminator’s enhanced ability to detect anomalies in the
created image allows the generator to minimize artifacts while learning, creating a more
authentic and lifelike image. The final experiment produced the most favorable results
when using quantitative evaluation indicators. The ablation experiments demonstrated
that our suggested technique improved the key parameters, confirming the effectiveness of
each optimization decision.

3.4. Estimation of Yield

In this section, we used VIs from MS remote sensing images to predict yield. We
also researched their regression effects to make sure the super-resolution reconstruction
algorithm works. In our previous research, we trained on the Real-MSG dataset to obtain
the training weights for RMSRGAN. We still merged three single-channel images to create
four remote sensing images: RGB (2× and 4×) and NER (2× and 4×). We divided the 2×
and 4× images into 16 and 32 equally sized sub-images, respectively, and fed them into the
trained RMSRGAN model for super-resolution reconstruction. The input and output sizes
of the model were adjusted according to the input photographs. Finally, we obtained the
multispectral image data after super-resolution reconstruction. Then, we calculated the VIs
(Table 3) based on the MS images for flight heights of 15 m, 30 m and 60 m, respectively.
In addition, VIs were calculated using data obtained after super-resolution reconstruction
at 30 m and 60 m. To provide a comprehensive analysis, we performed linear regression
analysis on all the multispectral image data, including both original and reconstructed
images, to assess the effectiveness of our super-resolution model. For the yield estimation
from these VIs, we utilized the linear regression model to calculate the R2 and RMSE,
which are detailed in Table 8.
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Table 8. Linear regression models using vegetation indices.

Metric VI HR LR 2× SR 2× LR 4× SR 4×

R2
NDVI 0.653 0.598 0.638 ↑ 0.543 0.587 ↑
RVI 0.722 0.669 0.703 ↑ 0.643 0.649 ↑
EVI 0.565 0.534 0.543 ↑ 0.502 0.530 ↑

RMSE
NDVI 0.414 0.441 0.423 ↓ 0.470 0.451 ↓
RVI 0.370 0.702 0.405 ↓ 0.927 0.412 ↓
EVI 0.463 0.476 0.474 ↓ 0.490 0.481 ↓

HR, LR 2× and LR 4× represent the multispectral remote sensing images captured at flight heights of 15 m, 30 m
and 60 m, respectively. SR 2× and SR 4× represent the multispectral remote sensing images taken at 30 m and
60 m flight heights after super-resolution reconstruction, respectively. ↑ and ↓ represent the improved metrics of
SR compared to LR.

The R2 value indicates the goodness of fit of the model to the data. A high R2 value
indicates that the model effectively accounts for the variability in the dependent variable.
A lower RMSE value indicates reduced error and more accuracy in the model’s predictions.
For NDVI prediction results, the highest R2 value is HR (R2 = 0.653), the lowest is LR 4×
(R2 = 0.543), and LR 2× is in between the two above (R2 = 0.598); the lowest RMSE value is
HR (RMSE = 0.414 kg·m−2), and the lowest is LR 4× (RMSE = 0.470 kg·m−2), and LR 2× is in
between the above two (RMSE = 0.441 kg·m−2). The above results are closely related to the
flight height of the MS remote sensing imagery. The lower the flight height, the higher the
ground resolution of the remote sensing images and the more accurate the preservation of
image details. When comparing the super-resolution reconstruction results with the original
pictures, the performance of SR 2× (R2 = 0.638, RMSE = 0.423 kg·m−2) surpasses that of LR
2×. Similarly, the performance of SR 4× (R2 = 0.587, RMSE = 0.451 kg·m−2) is superior to
that of LR 4×. This result suggests that the MS image after RMSRGAN super-resolution
reconstruction may restore more image information, resulting in improved performance in
yield prediction. These conclusions are the same for both prediction outcomes based on
RVI and EVI.

The results shown in Table 8 indicate significant enhancements in yield prediction
from super-resolution (SR) reconstructed images compared to low-resolution (LR) images
across various vegetation indices (VIs). Notably, for NDVI, RVI and EVI, the SR 2× images
not only show improved R2 values but also exhibit reduced RMSE, highlighting a more
precise yield prediction. For example, the NDVI in SR 2× achieves an R2 value of 0.638,
compared to 0.598 in LR 2×, and reduces RMSE to 0.423 kg·m−2 from 0.441 kg·m−2. This
improvement suggests that SR techniques effectively restore critical image details, thus
enhancing the reliability of remote sensing data for agricultural yield estimation.

4. Discussion

Multispectral (MS) remote sensing imagery offers enhanced spectral resolution com-
pared to visible light-based (RGB) remote sensing imagery. These supplementary bands can
gather crucial data about the plant’s physiological condition that is not discernible in RGB
photos. Moreover, MS images enable the computation of many vegetation indices (NDVI,
RVI and EVI in this study), which are strongly linked to biophysical factors like vegetation
growth status, enhancing the precision of yield prediction. With the abundant and intricate
features in multispectral remote sensing photos, many current algorithms need help to
reconstruct these details reliably. Because high-resolution multispectral cameras are often
prohibitively expensive and not widely available, there is a need to enhance the resolu-
tion of multispectral cameras through super-resolution algorithms for widespread use in
precision agriculture research. To overcome this challenge, we propose a super-resolution
reconstruction based on the generative adversarial network for real multispectral remote
sensing images (RMSRGAN). RMSRGAN comprises a generator network and a discrimi-
nator network. The generator network utilizes the RRDB module with CBAM to recreate
texture features of remote sensing images while maintaining maximum global detail. The
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discriminator network is improved by using a U-Net-based network with skip connections
to directly merge shallow and deep features. Furthermore, CBAM is incorporated into
the U-Net model. These enhancements are crucial for creating high-resolution images,
particularly for building intricate features and textures.

Most current super-resolution reconstruction algorithms rely on low-resolution images
created by reducing the resolution of high-resolution images. The image pairings produced
using this method must include essential characteristics of the real image, leading to
unreliable model validity and robustness. We obtained MS remote sensing images from
three different flight heights (15 m, 30 m and 60 m) to evaluate the model on real MS remote
sensing data. The initial remote sensing images underwent processing techniques such
as stitching and radiometric correction to provide MS ortho-images with three distinct
resolutions (1×, 2× and 4×). Five single-band images were merged into two sets of three-
band images, RGB and NER, to simplify the training process. The images above are
split into sub-images of sizes 256 × 256 (1×), 128 × 128 (2×) and 64 × 64 (4×) based on
various resolutions. These sub-images are all directly correlated in geographical position.
Finally, we obtained the Ginkgo biloba tree dataset based on real MS remote sensing images
(Real-MSG).

This study initially evaluated the effect of super-resolution reconstruction by analyzing
the generated images through quantitative and qualitative analyses. The RMSRGAN model
performed exceptionally well in both quantitative and qualitative assessments. Then,
we computed the correlation values between the reconstructed and original images for
single-variable yield prediction. The findings indicate that images enhanced with super-
resolution using the RMSRGAN model yield superior regression outcomes compared to
the original images. Therefore, our proposed approach can effectively perform super-
resolution reconstruction of MS remote sensing images obtained in real situations. The
reconstructed images can exceed the original ones in yield prediction, demonstrating the
improved reconstruction capabilities of the model. Nevertheless, certain limitations in this
study should be acknowledged. The first is that images created by the GAN-based super-
resolution reconstruction model exhibit artifacts. More artifacts are present in the NER
images compared to the RGB images, with most appearing in regions of higher brightness.
This may be due to the increased complexity of the spectrum, which may be causing
artifacts to arise due to the model’s excessive attention to local features. Furthermore,
while this study focused on univariate yield prediction models, future research will aim to
develop more robust multivariate and multimodal yield prediction models that incorporate
a combination of vegetation indices and other relevant parameters. This will allow us
to address the observed limitations and increase the applicability of super-resolution
techniques in precision agriculture, potentially improving the accuracy and reliability of
crop yield predictions under varying environmental conditions.

5. Conclusions

Most current super-resolution reconstruction models rely on downsampling high-
resolution photos to create image pairs. However, they do not have practical uses in
reconstructing real HR and LR image pairs. This study developed an excellent GAN-based
super-resolution reconstruction model using MS UAV remote sensing images of Ginkgo
biloba trees from real scenes. The results show that integrating the CBAM in the RMSRGAN
model and improving the discriminator with a U-Net-based structure can significantly
improve the effectiveness in the super-resolution reconstruction of real MS images. The
images generated by RMSRGAN performed the best in both quantitative metrics and
qualitative evaluations across the four datasets (RGB 2×, RGB 4×, NER 2× and NER 4×).
The PSNR values are 32.490, 31.085, 27.084 and 26.819, respectively, and the SSIM values are
0.894, 0.881, 0.832 and 0.818, respectively. On the other hand, RMSRGAN produces images
with the best level of image detail recovery in visual perception. These findings indicate
that our proposed model improvement strategy is more suitable for the super-resolution
reconstruction of MS images in real scenes. Furthermore, the usefulness of RMSRGAN was
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assessed by using images of Ginkgo biloba before and after reconstruction to predict yield.
The results indicate that the images reconstructed by RMSRGAN have superior R2 and
RMSE values compared to the original low-resolution image in yield prediction. Overall,
RMSRGAN can enhance the precision of LR multispectral remote sensing imagery for yield
prediction of Ginkgo biloba trees. The proposed method can effectively reconstruct low-
resolution MS images of Ginkgo biloba trees, enhancing the accuracy of Ginkgo biloba tree
yield prediction and facilitating precise management of Ginkgo trees in the field. However,
the reconstructed multispectral images produced some visual artifacts, which is a problem
that needs to be studied and solved in the future.
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