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Abstract: People living with human immunodeficiency virus (PLWH) are a vulnerable population
with a higher risk of severe coronavirus disease 2019 (COVID-19); therefore, vaccination is recom-
mended as a priority. Data on viral reservoirs and immunologic outcomes for PLWH breakthrough
infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are currently limited.
In this study, we investigated the effects of SARS-CoV-2 breakthrough infection on hematological
parameters, human immunodeficiency virus (HIV) reservoir size, and T-cell recovery in PLWH
receiving antiretroviral therapy (ART) after SARS-CoV-2 booster vaccination. The results indicated
that during breakthrough infection, booster vaccination with homologous and heterologous vaccines
was safe in PLWH after receiving two doses of inactivated vaccination. The absolute CD4 counts
decreased in the heterologous group, whereas the CD8 counts decreased in the homologous booster
group after breakthrough infection in PLWH. Breakthrough infection increased HIV reservoirs and
was associated with increased T-cell activation in PLWH who received virally suppressed ART and
a 3-dose vaccination. According to our data, the breakthrough infection of SARS-CoV-2 may put
PLWH at a greater risk for increased HIV reservoirs, even if these individuals were virally suppressed
with ART after 3-dose SARS-CoV-2 vaccination.

Keywords: breakthrough infection; HIV; HIV reservoirs; immune recovery; SARS-CoV-2; vaccine

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has threatened a heavy burden on global health and
society’s economy. Despite controversies, people living with human immunodeficiency
virus (PLWH) are a highly vulnerable population with an increased risk of mortality despite
the beneficial effects of antiretroviral therapy (ART) [1,2]. Therefore, vaccination against
SARS-CoV-2 is recommended for PLWH. An earlier report demonstrated an increased risk
of COVID-19 morbidity and mortality in the immunodeficient population, accompanied
by poor neutralizing antibody responses, compared with human immunodeficiency virus
(HIV)-negative individuals [3]. The poor serological response to vaccines in PLWH is in
line with other vaccines, such as those for influenza or hepatitis B virus [4,5]. Inconsistently,
several studies have suggested that a comparable safety, humoral and T-cell immune
response against SARS-CoV-2 is elicited in PLWH with higher CD4 counts and HIV-negative
populations [6–8]. Recent observational studies have indicated a higher incidence of
breakthrough infection in PLWH than in HIV-negative populations, even after booster
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vaccination [9–11]. However, data on the safety and immunogenicity during breakthrough
infection in PLWH with inactivated SARS-CoV-2 vaccine are lacking.

Persistence of a stable latent HIV reservoir in resting CD4+ T cells is the main obstacle
to HIV eradication. Previous studies have shown that standard vaccination against common
pathogens can increase HIV reservoirs in the context of successful ART [12]. It has been re-
ported that COVID-19 vaccination positively affects CD4 counts and viral markers in PLWH,
as indicated by increased CD4 counts after vaccination and an increased percentage of pa-
tients with HIV-RNA < 50 copies/mL after the second and third vaccinations [13]. Another
report demonstrated no significant changes in the HIV reservoir size after SARS-CoV-2
booster vaccination [14]. Owing to the limited number of studies, it remains uncertain
whether COVID-19 vaccines can affect HIV reservoirs. Furthermore, given the widespread
and possible long-term existence of SARS-CoV-2, it is important to investigate whether
breakthrough infection modulates HIV reservoirs in PLWH receiving ART.

Here, we studied the effects of SARS-CoV-2 breakthrough infection on clinical charac-
teristics, CD4 counts, HIV reservoir size, and T-cell immune recovery in a cohort of PLWH
after booster vaccination, followed by a 2-dose inactivated vaccine.

2. Materials and Methods
2.1. Human Subjects and Study Design

As part of the vaccination program for special populations, a cohort of HIV-infected
patients was enrolled from the Fifth Medical Center of Chinese PLA General Hospital from
August 31, 2021, onwards. The inclusion criteria were as follows: age 18–60 years; receiving
ART with plasma HIV RNA < 20 copies/mL; and no history of SARS-CoV-2 infection. The
exclusion criteria were as follows: history of anaphylactic response to vaccine components;
current opportunistic infection; Hepatitis B virus, Hepatitis C virus, or influenza virus
infection; and tumor and autoimmune diseases.

As shown in Figure 1A, all participants received a 2-dose series of inactivated Sinopharm
COVID-19 vaccine (BBIBP-CorV) with a 28-day interval. These individuals received a third
dose of BBIBP-CorV or Zifivax COVID-19 recombinant protein subunit vaccine (ZF2001) at
a 6-month interval with the second dose. Peripheral blood samples were collected from all
participants at the follow-up. Detailed demographic, epidemiological, clinical, and labora-
tory characteristics were collected from the hospital’s electronic medical record system.

While the COVID-19 pandemic (with Delta and Omicron variants predominant) oc-
curred at the end of 2022, we tested the SARS-CoV-2 among the HIV population. The
SARS-CoV-2 breakthrough infection was confirmed by nucleic acid or antigen testing. We
chose the positive population to analyze the samples before (pre-, 10th or 13th month of
follow-up) and after (post-, 13th or 16th month of follow-up) breakthrough infection.

2.2. Sample Preparation

Whole blood was collected in ethylenediaminetetraacetic acid-containing tubes (BD
Biosciences, San Jose, CA, USA) and processed within 12 h from the blood draw. Peripheral
blood mononuclear cells (PBMCs) were isolated from the blood by Ficoll–Hypaque density
gradient centrifugation and stored in liquid nitrogen until use.

2.3. Flow Cytometry Analysis

The expression of markers of T-cell phenotype and activation was assessed using
cryopreserved PBMCs. Cells were thawed, washed, and stained in the dark with Fixable
Viability Stain 700 and the following fluorescent-conjugated cell surface marker antibod-
ies: CD3-BUV737 (clone SK7), CD4-BUV496 (clone SK3), CD8-PE-Cy7 (clone RPA-T8),
CD45RA-FITC (clone HI100), CD27-BV421 (clone M-T271), CCR7-PE (clone 3D12), CD38-
BV605 (clone HB7), and HLA-DR-BV711 (clone G46-6). Samples were acquired using
a BD FACSymphonyTM A5 flow cytometer, and the data were analyzed using FlowJo
version 10.7.1.
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Figure 1. Study design and dynamics of CD4 counts, CD8 counts, and CD4/CD8 ratio during SARS-
CoV-2 breakthrough infection. (A) The schematic diagram described the vaccination strategy in 
which the first two doses of BBIBP-CorV were injected intramuscularly with a 28-day interval and 
the homologous booster BBIBP-CorV or heterologous booster ZF2001 was administered 6 months 
after the second dose. The COVID-19 pandemic occurred 10 or 13 months after the first dose. Blood 
samples were collected in the 10th/13th and 13th/16th month. Comparisons of CD4 counts, CD8 
counts, and CD4/CD8 ratio within all participants (B) and within the BBIBP-CorV homologous 
booster and ZF2001 heterologous booster groups (C) were made between pre- and post-break-
through infection. Data were analyzed using the Mann–Whitney U test and paired t-test. * p < 0.05. 
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Figure 1. Study design and dynamics of CD4 counts, CD8 counts, and CD4/CD8 ratio during
SARS-CoV-2 breakthrough infection. (A) The schematic diagram described the vaccination strategy
in which the first two doses of BBIBP-CorV were injected intramuscularly with a 28-day interval and
the homologous booster BBIBP-CorV or heterologous booster ZF2001 was administered 6 months
after the second dose. The COVID-19 pandemic occurred 10 or 13 months after the first dose. Blood
samples were collected in the 10th/13th and 13th/16th month. Comparisons of CD4 counts, CD8
counts, and CD4/CD8 ratio within all participants (B) and within the BBIBP-CorV homologous
booster and ZF2001 heterologous booster groups (C) were made between pre- and post-breakthrough
infection. Data were analyzed using the Mann–Whitney U test and paired t-test. * p < 0.05.

2.4. Quantification of HIV-1 DNA and RNA

Total cellular DNA and RNA were extracted from PBMCs using the Qiagen QIAsym-
phony DNA Mini Kit (Qiagen, Valencia, CA, USA) and HiPure Total RNA Plus Mini
Kit (Magen, Guangzhou, China), respectively. A fluorescence-based real-time SUPBIO
HIV Quantitative Detection Kit (SUPBIO, Guangzhou, China) was used to amplify and
quantify the HIV DNA and RNA. The DNA and RNA copy numbers were normalized to
1 × 106 PBMCs.
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2.5. Statistical Analysis

GraphPad Prism version 8.0 software (GraphPad, Inc., San Diego, CA, USA) was used
to analyze the data. Continuous variables are expressed as the median interquartile range,
and categorical variables are expressed as counts (%). The Pearson chi-square test was
used to compare categorical data between groups. The Mann–Whitney U test was used to
compare two groups, and the paired t-test was used to compare the changes within the
group. Correlations between two continuous variables were identified using the Spearman
rank correlation test. p values < 0.05 were considered to indicate that the results were
statistically significant.

3. Results
3.1. Characteristics of Study Participants

To investigate the effect of SARS-CoV-2 breakthrough infection on HIV-infected indi-
viduals, 38 individuals were included in this study and classified according to the booster
vaccination: BBIBP-CorV = 25, ZF2001 = 13 (Figure 1A). The characteristics of the par-
ticipants are summarized in Table 1. Participants who received the BBIBP-CorV booster
consisted of 24 males (96.0%) and 1 female (4.0%), with a median age of 39 years (IQR
30–49). In the ZF2001-vaccinated cohort, the median age was 41 years (IQR 37–56), and
12 participants (92.3%) were males. The interval between the last vaccination and break-
through infection was either 3 months (BBIBP-CorV = 32.0%; ZF2001 = 23.1%) or 6 months
(BBIBP-CorV = 68.0%; ZF2001 = 76.9%).

Table 1. Baseline characteristics of enrolled participants in this study.

BBIBP-CorV (n = 25) ZF2001 (n = 13) p_Value

Sex (%) 0.629

Male 24 (96.0%) 12 (92.3%)

Female 1 (4%) 1 (7.6%)

Age (years) 39 (30–49) 41 (37–56) 0.185

SARS-CoV-2 vaccine

1st dose BBIBP-CorV BBIBP-CorV

2nd dose BBIBP-CorV BBIBP-CorV

3rd dose BBIBP-CorV ZF2001

Pre-breakthrough infection (%) 0.565

month 10 8 (32.0%) 3 (23.1%)

month 13 17 (68.0%) 10 (76.9%)

CD4 counts (cells/µL) 377 (278–588) 426 (305–580) 0.808

CD8 counts (cells/µL) 526 (474–723) 565 (436–703) 0.761

CD4/CD8 ratio 0.64 (0.35–1.04) 0.73 (0.58–0.89) 0.416

Viral load (copies/mL) <20 <20 -

ART time (years) 4 (3–5) 6 (4–7) 0.213

ART regimen (%) 0.395

3TC + TDF + LPV/r 2 (8%) 1 (8%)

3TC + TDF + EFV 21 (84%) 9 (69%)

3TC + AZT + NVP 2 (8%) 1 (8%)

3TC + AZT + EFV 0 1 (8%)

E/C/F/TAF 0 1 (8%)
All indicators except gender are shown as medians (interquartile range). BBIBP-CorV, Sinopharm COVID-19
vaccines (Covilo, inactivated vaccine); ZF2001, Zifivax COVID-19 vaccine (recombinant protein subunit vaccine);
ART, antiretroviral therapy; 3TC, lamivudine; TDF, tenofovirdisoproxil; LPV/r, ritonavir-boosted lopinavir; EFV,
efavirenz; AZT, azidothymidine; DTG, dolutegravir; E/C/F/TAF, elvitegravir, cobicistat, emtricitabine, and
tenofovir alafenamide.
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There were no significant differences in the baseline CD4 and CD8 counts, CD4/CD8
ratio, ART time, or ART regimen. All individuals had undetectable plasma viremia
(<20 copies/mL) at the time of enrollment.

3.2. Hematological Parameters after Breakthrough Infection in PLWH

No deaths occurred during the follow-up visit and no severe illness or serious adverse
events occurred among the participants. We also investigated the effects of breakthrough
infection on hematological variables in the two groups (Table 2). In the homologous BBIBP-
CorV group, there was a significant decrease in hemoglobin (153 vs. 155, p = 0.025) and
creatinine (85 vs. 87, p = 0.035) levels after breakthrough infection, although they did not
exceed the normal range. During the entire process of breakthrough infection, almost all
other hematological parameters fluctuated within the normal range without any significant
differences. Collectively, these results demonstrated that vaccination with homologous
BBIBP-CorV booster or heterologous ZF2001 booster appears safe in PLWH who had
previously received two doses of inactivated BBIBP-CorV.

Table 2. Hematology characteristics of study participants before and after breakthrough infection.

BBIBP-CorV (n = 25) ZF2001 (n = 13)

Pre Post p_Value Pre Post p_Value

WBC (109/L) 5.78 (5.36–6.61) 6.01 (4.92–7.45) 0.380 4.06 (3.95–5.58) 4.80 (3.85–5.77) 0.339
HGB (g/L) 155 (147–163) 153 (146–161) 0.025 * 155 (143–162) 151 (146–162) 0.537
PLT (109/L) 250 (206–300) 242 (217–287) 0.864 218 (197–255) 230 (202–253) 0.201

CRE (µmol/L) 87 (82–91) 85 (80–89) 0.035 * 78 (76–81) 81 (75–92) 0.275
ALT (U/L) 25 (19–34) 25 (19–48) 0.079 30 (26–35) 27 (23–34) 0.735
AST (U/L) 23 (22–28) 23 (21–33) 0.255 28 (25–30) 25 (22–28) 0.572
GGT (U/L) 39 (26–58) 48 (25–73) 0.231 31 (27–49) 36 (30–48) 0.420

GLU (mmol/L) 5.3 (5.1–5.6) 5.3 (4.9–5.8) 0.579 5.2 (5.1–6.6) 5.1 (5.0–6.8) 0.243
TG (mmol/L) 1.57 (0.84–2.38) 1.41 (1.14–2.09) 0.484 1.92 (1.23–2.56) 1.73 (1.11–2.54) 0.599
TC (mmol/L) 4.20 (3.89–4.58) 4.13 (3.67–4.70) 0.833 4.44 (4.30–4.80) 4.38 (4.19–4.67) 0.290

GLO (g/L) 26 (24–29) 26 (23–28) 0.931 25 (23–27) 26 (23–29) 0.948

Data are shown as median (interquartile range). The asterisk represents the presence of significance. WBC,
white blood cell count; HGB, hemoglobin; PLT, platelet count; CRE, creatinine; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; GGT, γ-glutamyl transpeptidase; GLU, blood glucose; TG, triglyceride; TC, total
cholesterol; GLO, globulin.

3.3. Decreased CD4 and CD8 Counts after Breakthrough Infection in PLWH

Next, we assessed whether the CD4 counts, CD8 counts, and CD4/CD8 ratio were
altered by breakthrough infection in the study participants. As shown in Figure 1B, both the
CD4 and CD8 counts after breakthrough infection were significantly lower than those before
infection, whereas the CD4/CD8 ratio remained similar between the groups. Moreover,
the heterologous ZF2001 group displayed significantly lower levels of CD4 counts but
similar CD8 counts after breakthrough infection (Figure 1B). Conversely, the homologous
BBIBP-CorV booster group showed the same levels of CD4 counts but substantially lower
CD8 counts after breakthrough infection. The CD4/CD8 ratio remained unchanged even
after breakthrough infection in both booster groups. Thus, breakthrough infection caused
an obvious decrease in CD4 counts in heterologous booster individuals and a decrease in
CD8 counts for the homologous booster group in PLWH.

3.4. Changes of HIV Reservoir Size after Breakthrough Infection in PLWH

Previous studies have suggested that influenza/hepatitis B vaccination is associated
with an increase in HIV reservoirs [12,15]. Few studies have focused on HIV reservoirs after
vaccination and breakthrough infection. Recently, a brief report demonstrated that there
were no significant differences in the levels of HIV reservoirs after SARS-CoV-2 booster
vaccination [14]. Therefore, we evaluated the effect of breakthrough infection on the HIV
reservoir parameters in PLWH who had received a booster vaccination after two doses of
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BBIBP-CorV. As shown in Figure 2A, no significant differences in the level of HIV DNA
but a significant increase in the level of HIV cell-associated RNA (CA-RNA) were found
after breakthrough infection. The heterologous group showed higher HIV CA-RNA levels
after breakthrough infection (Figure 2B).
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Figure 2. Dynamics of HIV reservoirs. The dynamics of HIV DNA and CA-RNA during breakthrough
infection are shown in (A), and changes in HIV DNA and CA-RNA levels in the BBIBP-CorV
homologous booster and ZF2001 heterologous booster groups are presented in (B). Correlation
between baseline CD4 counts and HIV DNA and CA-RNA levels are depicted in (C) all participants,
(D) BBIBP-CorV homologous booster group, and (E) ZF2001 heterologous booster group pre- and
post-breakthrough infection, respectively. (The black hollow points and gray solid points indicate
pre- and post-breakthrough infections, respectively). Data were analyzed using Mann–Whitney U
test and paired t-test. ** p < 0.005, *** p < 0.001.

Next, we analyzed whether the HIV reservoir parameters before and after break-
through infection were correlated with baseline CD4 counts. Higher baseline CD4 counts
were associated with lower HIV DNA levels before (r = −0.5049, p = 0.0012) and after
breakthrough infection (r = −0.4544, p = 0.0042; Figure 2C). However, there was no correla-
tion between CD4 counts and HIV CA-RNA levels before or after breakthrough infection
(Figure 2C). For the homologous boosters, higher HIV DNA levels pre-infection were
strongly negatively correlated with lower baseline CD4 counts (r = −0.6469, p = 0.0005)
rather than HIV CA-RNA (r = −0.3154, p = 0.1246; Figure 2D). After breakthrough infection,
baseline CD4 counts were negatively correlated with HIV DNA and CA-RNA levels, re-
spectively (r = −0.6077, p = 0.0013; r = −0.6408, p = 0.0006; Figure 2D). In the heterologous
group, there was no correlation between CD4 counts and HIV DNA levels before and
after breakthrough infection, whereas baseline CD4 counts were negatively associated with
HIV CA-RNA post-breakthrough infection (r = −0.4072, p = 0.1673). Overall, these data
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demonstrate a trend of increasing HIV reservoirs in PLWH after breakthrough infection,
especially in the heterologous booster individuals.

3.5. T-Cell Subset Alterations before and after Breakthrough Infection in PLWH

To determine the changes of CD4+ and CD8+ T-cell subset composition among PLWH
during breakthrough infection, we used flow cytometry to analyze T-cell subsets accord-
ing to the expression of CD45RA, CD27, and CCR7 (Figure S1). In CD4+ T cells, the
frequency of naïve (TN) cells increased, but the frequency of central memory (TCM) cells
decreased in PLWH post-breakthrough infection compared to pre-breakthrough infection
(Figure 3A). Similar changes in TN and TCM cell frequencies, without significant differences,
were observed in both homologous and heterologous booster groups. The frequency of
terminally differentiated (TTD) cells increased in the BBIBP-CorV group but decreased in
the ZF2001 group. In CD8+ T cells, the frequency of effector (TE) cells increased, whereas
the frequencies of TCM and transitional memory (TTM) cells decreased after breakthrough
infection (Figure 3B). Both homologous and heterologous booster individuals showed
similar alterations in CD8+ T-cell subset composition (Figure 3B).
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Figure 3. Changes of T-cell subsets during breakthrough infection. According to the expression of
canonical markers, T-cell subsets were defined as follows: naïve (TN, CD45RA+CD27+CCR7+), cen-
tral memory (TCM, CD45RA−CD27+CCR7+), transitional memory (TTM, CD45RA−CD27+CCR7−),
effector memory (TEM, CD45RA−CD27−CCR7−), and terminal differentiated/effector (TTD/TE,
CD45RA+CD27+CCR7−). The percentages of (A) CD4+ T-cell subsets and (B) CD8+ T-cell subsets
were compared during breakthrough infection. Data were analyzed using Mann–Whitney U test.
* p < 0.05, ** p < 0.005.

3.6. Cell Activation after Breakthrough Infection in PLWH

To further examine the impact of breakthrough infection on T cells, the expression
of activation markers (HLA-DR and CD38) on T cells was analyzed. We found that
the frequencies of HLA-DR+CD38+CD4+ and HLA-DR+CD38+CD8+ T cells were higher
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in PLWH post-breakthrough infection than in those who were pre-infected (Figure 4A).
The frequency of HLA-DR+CD38+CD4+ T cells significantly increased after breakthrough
infection compared to that before infection in heterologous booster individuals (Figure 4B).
Next, correlation analyses were performed between T-cell activation and CD4 counts in
PLWH before and after breakthrough infection. A moderate negative correlation between
CD4+ T-cell activation and CD4 counts was observed pre- and post-infection, respectively
(r = −0.4553, p = 0.0041; r = −0.3367, p = 0.0388; Figure 4C), which was confirmed as
significant in the BBIBP-CorV booster group (r = −0.6400, p = 0.0006; r = −0.3955, p = 0.0503;
Figure 4D) but only marginal in the heterologous ZF2001 group (r = −0.0441, p = 0.8880;
r = −0.2253, p = 0.4591; Figure 4E). On the contrary, no correlation was observed between
CD4 counts and CD8+ T-cell activation before and after breakthrough infection, respectively
(r = −0.0595, p = 0.7225; r = −0.0539, p = 0.7481; Figure 4C). There was no correlation
between CD4 counts and HLA-DR+CD38+CD8+ T-cell frequency in the BBIBP-CorV and
ZF2001 booster groups (Figure 4D,E).
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test and paired t-test. * p < 0.05, ** p < 0.005, *** p < 0.001.

We then examined the activation of the T-cell subset and their association with CD4
counts. Strikingly, PLWH had a significant increase in the activation of CD4+ TN, CD4+

TCM, and CD8+ TCM after the breakthrough infection (Figure 5A,B). Compared to the pre-
infection timepoint, a significant increase in the activation of CD4+ TN and CD8+ TCM was
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found in the BBIBP-CorV individuals, whereas higher CD4+ TN activation was observed
in the ZF2001 booster group. Figure 5C showed the association between the activation
of T-cell subsets and CD4 counts. The frequencies of HLA-DR+CD38+ T cells of CD4+

TN, CD4+.
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levels of T-cell subset activation in all participants, BBIBP-CorV homologous booster group, and
ZF2001 heterologous booster group are calculated (C) before and after breakthrough infection, re-
spectively. Data were analyzed using Mann–Whitney U test. * p < 0.05, ** p < 0.005, *** p < 0.001,
**** p < 0.0001.

TCM, CD4+ TTM, CD8+ TN, and CD8+ TCM were found to have a significant negative
correlation with the pre-infection CD4 counts in the BBIBP-CorV group. In addition, we
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found a significant negative association with CD4+ TEM, CD4+ TTM, and CD8+ TN activation
but a positive association with CD4+ TN and CD4+ TCM activation post-infection in the
BBIBP-CorV group.

Collectively, these data demonstrated that CD4+ T-cell activation was significantly
increased during breakthrough infection in the ZF2001 booster group, in line with the
obvious increase in HIV reservoir size and decreased CD4 counts.

4. Discussion

PLWH are more susceptible to the severe effects of COVID-19 than others, owing
to their immunosuppressed state and interruptions in HIV treatment and care [16,17].
As PLWH also have a compromised immune system, it is crucial to implement effective
immune strategies to ensure their protection. However, for this particular population,
the introduction of foreign antigens may result in unpredictable consequences. Reports
have suggested that COVID-19 vaccination may have negative effects on PLWH, including
HIV reservoir rebound and decreased CD4 counts [18,19]. Various studies have evaluated
the safety and effectiveness of different vaccination strategies on PLWH, mainly focusing
on COVID-19 mRNA vaccines given in single or multiple doses [20–23]. A recent study
showed that mRNA booster vaccination may lead to HIV reservoirs rebound in elderly
PLWH with unsuppressed viremia but is safe for ordinary elderly PLWH [24]. However,
our understanding of the impact of other heterologous sequential vaccination strategies
against COVID-19 in PLWH remains limited. In addition, studying the impact of break-
through infection on PLWH is particularly important during the intense ongoing Omicron
transmission period.

Here, we provided evidence of the safety of timely immunization with SARS-CoV-2
booster vaccines in PLWH. Moreover, there were also no deaths or severe cases in our
cohort during the COVID-19 pandemic at the end of 2022, to some extent indicating
the protective effectiveness of our vaccination strategy for populations with a risk of
immune status such as PLWH. Several studies have been conducted on vaccine hesitancy
in PLWH [25,26]. Higher COVID-19 vaccine hesitancy was associated with older age, lower
educational level, chronic diseases, lower CD4 counts, and psychological factors, such as
severe anxiety and depression. Research on the effectiveness and safety of COVID-19
vaccines for PLWH, including this study, will provide evidence to support vaccination
behavior among individuals willing to vaccinate in the future.

Currently, there are limited data available regarding the impact of infection and vacci-
nation on viral suppression in PLWH. The earliest study suggested that COVID-19 infection
does not affect HIV virological parameters [27]. In this study, we observed a significant
decline in CD4 counts and a partially increased HIV reservoir after breakthrough infection.
These results were consistent with those of a previous report showing a statistically in-
significant decline in CD4 counts and a trend of increasing HIV-1 viral load after COVID-19
recovery in PLWH co-infected with SARS-CoV-2 [28]. However, we also noticed that
both homologous and heterologous vaccination strategies could curb the expansion of
the HIV reservoir in PLWH, particularly the increase of HIV DNA. HIV DNA includes
replication-competent and defective proviruses, whereas CA-RNA, which consists of dis-
tinguishingly spliced transcripts produced by HIV, can be considered a perfect marker of
the active reservoir [29,30]. The existence of a latent reservoir is the reason why HIV cannot
be completely eliminated despite receiving long-term ART and successful suppression
of viral replication [31]. The increased HIV reservoir after breakthrough infection may
be accompanied by the activation of the viral reservoir, especially in patients with severe
or critical COVID-19. In addition, with the continuous occurrence of new SARS-CoV-2
sub-variants, PLWH are still at high risk of being re-infected in the future, which may have
a greater impact on the viral reservoir. We hope that the dangerous situation in PLWH can
be reversed by administering the COVID-19 vaccine to them.

As more SARS-CoV-2 variants emerge that increasingly escape neutralizing antibody
responses, CD4+ and CD8+ T-cell responses are likely to be important immunological
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mediators that contribute to viral control and clearance [32]. Previous studies have sug-
gested that a rapid and extensive recall of T cells occurs after breakthrough infection,
which benefits virological control [33]. Data regarding the differences in T-cell responses
after breakthrough infection between the homologous and heterologous booster groups
are still controversial [34,35]. Data from our study demonstrated that the heterologous
vaccine regime induced a significant increase in CD4+ T-cell activation compared to that in
homologous booster individuals. Broad T-cell immune activation was observed in patients
enrolled in our study. The notable increase in the frequency of TN may help maintain the
size and functionality of the patient’s CD4+ T-cell pool following breakthrough infection.
Importantly, this effect can even be achieved in patients with lower baseline CD4+ T-cell
levels using allogeneic immunity. In contrast, the enhancement of T-cell immunity through
the homologous strategy has limitations. It also resulted in the expansion of the naïve CD4+

Tcell pool in breakthrough-infected individuals; however, the frequency of activation did
not show a significant increase.

Under the impact of heterologous vaccination strategies, the tendency of CD8+ T cells
to differentiate into memory cell types is more noticeable. Although the heterologous
strategy cannot increase the overall frequency and level of activation of CD8+ T cells
in patients with breakthrough infection, it may still decrease the patient’s viral load by
expanding the memory and effector pool of CD8+ T cells. Furthermore, the activation of
CD4+ T cells was negatively correlated with CD4 counts before and after breakthrough
infection, particularly in heterologous booster individuals. The mechanisms underlying
the changes in T cells warrant further investigation.

Our study has several limitations. Firstly, there was a lack of PLWH without vaccina-
tion against SARS-CoV-2, which is also an important control to compare the immunological
response to SARS-CoV-2 breakthrough infection with or without complete vaccination.
At present, sporadic clinical case studies show that the systemic inflammation caused
by COVID-19 will reactivate the potential HIV reservoir and temporarily increase the
viral load. More comprehensive cohort studies are still needed to provide more evidence.
Secondly, the viral reservoir size was over-evaluated because this technology includes
not only intact provirus but also defective provirus. Thirdly, the cohorts included in this
study were relatively small, which limits the generalizability of the results. The results may
need to be confirmed in expanded cohort studies. Finally, some researchers have indicated
that both inactivated and recombinant protein vaccines can influence virus-specific T-cell
immunity [36,37]. However, we did not specifically investigate this aspect in our study. By
evaluating the virus-specific T-cell immunity, more specific and focused conclusions may
be drawn.

Despite these limitations, our study confirmed that the sequential COVID-19 vaccina-
tion strategy is safe and provided protection to PLWH during the pandemic. In addition,
this study investigated, for the first time, the alteration of HIV reservoirs and their asso-
ciation with T-cell recovery during SARS-CoV-2 breakthrough infection in HIV-infected
individuals. To avoid HIV reservoir reactivation, a heterologous booster immunization
approach may be more beneficial than the homologous strategy. Altogether, our results pro-
vide important evidence for vaccination strategies among the immunodeficient population,
which may benefit future global vaccination plans.
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