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Abstract: Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading
cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV)
cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular
DNA (cccDNA). The HBV community is investing large human and financial resources to develop
new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or
functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription
not only influences the levels of viral RNA produced, but also directly impacts their quality, generating
multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of
HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies
targeting these processes. This review focuses on the mechanisms controlling the different co-
transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication
and HBV-induced liver pathogenesis.

Keywords: HBV; cccDNA; transcription; epigenetics; RNA splicing; RNA methylation; RNA
polyadenylation

1. Introduction

About 300 million people worldwide are chronically infected with the hepatitis B virus
(HBV). Chronic hepatitis B (CHB) increases the risk of developing severe liver diseases
and is the main driver of hepatocellular carcinoma (HCC), responsible for around 800,000
deaths/year. Current treatments based on nucleoside analogues (NUCs) are effective at
keeping the infection under control and are well-tolerated by patients [1]. Nevertheless,
these treatments do not fully eradicate HBV owing to their inability to target the viral
minichromosome (known as covalently closed circular DNA (cccDNA)), and thus require
life-long administration. There is therefore an urgent need to develop new therapeutic
strategies that directly target cccDNA to cure HBV completely or functionally [2].

Several strategies targeting cccDNA are currently envisaged [3]. First, to impair cc-
cDNA formation, treatments could target host proteins belonging to the DNA repair system,
although targeting such proteins would have dramatic consequences on cell homeostasis.
Second, to target the established cccDNA molecule, ongoing pre-clinical studies using
gene-editing approaches (e.g., CRISPR/Cas9 and base editing) have shown promising
results at degrading and/or silencing cccDNA [4–7]. Nevertheless, these approaches raise
many concerns regarding off-target effects, which can be deleterious for cell homeostasis,
and delivery [8]. Cytokines such as interferon alpha (IFNα) can also be used to induce
cccDNA degradation or silencing [9], although these strategies need to be optimized to be
more efficient and better tolerated by patients.

Much effort, therefore, still has to be made before achieving complete loss of cccDNA.
Given the efficacy of FDA-approved drugs targeting epigenetic factors in the treatment
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of other cancers, targeting the transcriptional activity of cccDNA may constitute an at-
tractive strategy to cure HBV. Moreover, growing evidence supports a role for HBV RNA
co-transcriptional processing in CHB development, paving the way for novel therapeu-
tic targets. Generating knowledge on cccDNA transcriptional and post-transcriptional
regulation is thus critical to identify new therapeutic targets against CHB.

This review presents the current knowledge on molecular mechanisms controlling cc-
cDNA transcriptional activity and particularly focuses on the co-transcriptional regulation
of HBV RNAs.

2. cccDNA Transcription: A Key Step of HBV Replication

Several reviews have extensively highlighted the different mechanisms involved in
controlling HBV gene expression at the transcriptional level [10]. Hence, we provide only a
brief overview of the subject.

2.1. Generalities on cccDNA

cccDNA is considered to be the key molecule of HBV replication. It is formed through a
complex process dependent on the host DNA repair machinery using relaxed circular DNA
imported into the nucleus after HBV entry into the hepatocyte [11]. During its formation,
cccDNA is chromatinized and adopts a stable episomal structure, which is the unique
template for the transcription of the main six viral mRNAs by the host RNA polymerase II
(RNAP II) [12–14]. This includes pre-genomic RNA (pgRNA), which is retro-transcribed by
the host viral polymerase while being encapsidated to form new infectious particles or to
replenish the pool of nuclear cccDNA. The transcription of cccDNA is thus a critical step to
ensure optimal HBV replication.

2.2. cis-Element Controlling cccDNA Transcriptional Activity

Four RNAP II promoters located at different positions of the cccDNA genome initiate
the transcription of the six viral mRNAs [15]. The Core promoter generates the two longer-
than-genome mRNAs, namely the pgRNA and the precore mRNA (3.5 kb RNA). These two
mRNAs initiate their synthesis at different locations [15,16]. In vitro studies suggested that
the transcription of these two viral mRNAs is initiated at two overlapping and independent
promoters that are differentially regulated by host factors [17]. However, this observation
has not been confirmed in vivo and still requires further investigation. The SPI promoter
generates PreS1 (2.4 kb RNA) mRNA, while SPII produces PreS2 and S (both 2.1 kb)
mRNAs [18–21]. Recent studies indicate that, as the Core promoter, SPII promoter supports
the initiation of the preS2 and S mRNAs at different locations [13,14]. Finally, the X promoter
transcribes the different X mRNAs, which also have different initiation sites [22–24].

The activity of these promoters is strengthened by two transcriptional enhancers,
the EnhI and the EnhII regions located upstream of the X and Core promoters, respec-
tively [25–29]. In vitro studies suggested that these two enhancers ensure that the above
transcripts are expressed at the right time. While the EnhI region seems to be involved in
the transcription of early HBV transcripts (X), the EnhII region allows the transcription of
late HBV transcripts. This differential activity of the two enhancers seems to depend on
host factors that are recruited to these two regulatory regions [30].

Secondary structures have been identified in the abovementioned regulatory se-
quences. Biswas et al. identified a G-quadruplex (G4) motif in the SPII promoter of
the HBV genotype B [31]. This dynamic structure is recurrently observed in regulatory
sequences of mammalian and viral genomes and actively contributes to gene expression
regulation [32]. In vitro studies demonstrated that this G-quadruplex promotes the activity
of the SPII promoter. Whether this regulation is active in a replicative model, as well as
its underlying molecular mechanism, remain unknown [31]. Another G4 structure has
been identified in the Core promoter. Mutations of this structure were shown to result in an
increased level of HBe antigen (HBeAg), the secretion of HBsAg antigens, and a decreased
level of intracellular HBcAg, suggesting that this G4 regulates HBV replication [33]. How-
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ever, this study did not functionally link this effect to a potential contribution of this G4 to
the activity of the Core promoter. A recent study performed a cartography of G4 structures
present on the HBV genome and demonstrated the functional role of two of those, located in
the EnhI region, in cccDNA transcription by promoting its phase separation in the nucleus
of infected primary hepatocytes via the G4-dependent recruitment of the fused in sarcoma
(FUS) protein [34].

2.3. Trans-Factors Controlling cccDNA Transcriptional Activity

HBx is the most potent activator of cccDNA transcription, as well as the most exten-
sively described one. HBx-defective viruses are unable to synthesize HBV RNAs due to
their closed chromatin, promoted by host restriction factors [35,36]. HBx is thought to act
primarily by degrading the SMC5/6 complex in a DNA damage-binding protein 1 (DDB1)
ubiquitin ligase-dependent manner, and thus prevents its recruitment to cccDNA [37–39].
Other mechanisms have also been proposed and thoroughly described [40]. Mutations in
HBc were reported to result in a decreased level of HBV RNAs, suggesting that HBc is
also an activator of cccDNA transcription. The authors showed that HBc is recruited to
HBV cccDNA alongside acetyltransferases, such as the CREB-binding protein (CBP), thus
creating an opened chromatin environment adapted to an optimized transcription [41].
However, the precise role of HBc in cccDNA regulation remains elusive [42].

Aside from viral factors, several host transcription factors and cofactors were described
as regulators of cccDNA transcription. Among these, the hepatocyte transcription factors
hepatocyte nuclear factor 1 and 4a (HNF1a and HNF4a) are critical activators of HBV
transcription, partly explaining the hepato-tropism of HBV [43,44]. The identification of
such transcription factors as regulators of HBV transcription has paved the way for the
development of drugs targeting these proteins. This is, for example, the case of baicalin,
which was shown to inhibit viral RNA transcription by preventing the dimerization of
HNF4a, and to increase the effect of NUC treatment in HepG2.2.15 cells [45]. Interestingly,
HNF4a is a target of the metabolic sensor, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1a). Starvation activates HBV gene expression via the
PGC-1a/HNF4a axis, demonstrating that the metabolic status of the infected organism
also plays a critical role in HBV transcription [46]. Other transcription factors activated by
PGC-1a, such as forkhead box protein O1 (FOXO1), are also implicated in the activation of
HBV transcription [47].

The host genome organizer CCCTC-binding factor (CTCF) was recently shown to
repress HBV transcription by binding to two CTCF sites located in the EnhI region [48].
Moreover, CTCF binding within this region was reported to regulate the specific phasing
of nucleosomes to maintain an open chromatin conformation and regulate HBV transcrip-
tion [49]. The identification of CTCF as a regulator of cccDNA nucleosome positioning and
transcription suggests that cccDNA may adopt a tri-dimensional conformation depending
on its transcriptional activity. Nevertheless, addressing the tri-dimensional organization of
cccDNA is currently technically challenging due to the small size of this episome.

Non-coding RNAs (ncRNAs) represent an additional layer of HBV transcriptional
regulation by modulating the activity of cccDNA transcription factors. The ncRNA HOX
transcript antisense RNA (HOTAIR), highly induced by HBV infection, was shown to pro-
mote HBV transcription by increasing SP1 recruitment to cccDNA [50]. Whether HOTAIR
or other ncRNAs interact directly with cccDNA has never been shown.

A number of additional regulators of cccDNA transcription have been identified and
a non-exhaustive list is provided in Figure 1 [51–55].

2.4. Epigenetic Modulation of cccDNA Transcriptional Activity

As for the human genome, cccDNA-bound histones undergo post-translational mod-
ifications (PTMs) that are functionally linked to cccDNA transcriptional activity. The
acetylation status of histones is a major driver of cccDNA transcription and is regulated
by histone acetyltransferases and deacetylases; for example, the histone deacetylase 11
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(HDAC11) deacetylates histone H3 lysine 9 (H3K9) and 27 (H3K27) residues triggering
the epigenetic silencing of cccDNA transcription and the subsequent restriction of HBV
replication in Huh7 cells [56]. In contrast, the histone acetyltransferase 1 (HAT1) acetylates
several residues of histones H3 (K27) and H4 (K5, K12), promoting cccDNA transcrip-
tion and HBV replication in several in vitro and in vivo models [57]. Other PTMs of
cccDNA-bound histones have been identified and regulate cccDNA transcriptional activity.
Indeed, succinylation of H3K122 catalyzed by lysine acetyltransferase 2A (KAT2A) and re-
moved by sirtuin 7 (SIRT7) is associated with transcriptional activation [58,59]. Conversely,
trimethylation of H3K9 or H3K27 catalyzed by SET domain bifurcated histone lysine
methyltransferase 1 (SETDB1) and the polycomb repressive complex 2 (PRC2), respectively,
are associated with transcriptional silencing of cccDNA [54,60,61]. Similarly, methylation
of the arginine residue of histone H4 (H4R3me) catalyzed by PRMTs is associated with
the repression of cccDNA transcriptional activity [53,62]. These data thus highlight a tight
epigenetic regulation of cccDNA activity.

The viral protein HBx orchestrates different molecular mechanisms to reshape cccDNA
chromatin in favor of an active chromatin [35,63]. A number of chromatin-modifying
enzymes were shown to interact with HBx proteins in several models. For instance, acetyl-
transferase p300 is recruited to cccDNA via HBx to acetylate the histone H3 [64,65]. Recently,
the interaction between HBx and Spindlin1 was shown to promote cccDNA transcription
by allowing a chromatin switch from a repressive H3K9me3 to an active H3K4me3 con-
formation [66]. HBx also counteracts the recruitment of HBV restriction factors, such as
HMGB1 or SETDB1, to cccDNA, thus preventing its epigenetic silencing [60,67]. Finally,
HBx represses the expression of the suppressor of zeste 12 homolog (SUZ12) subunit of the
PRC2 complex, thus impeding the deposition of H3K27me3 repressive marks [54].

Interestingly, current treatments for CHB are associated with the rewiring of cccDNA
chromatin. Indeed, the interferon alpha treatment of HepG2-NTCP and HepaRG cells is as-
sociated with the desuccinylation of cccDNA and a lower deposition of H3K27 acetylation
(H3K27ac) contributing to epigenetic silencing [68]. Similarly, long-term telbivudine treat-
ment of CHB patients is associated with the increased deposition of repressive H3K9me3
and H3K27me3 histone marks and with the concomitant reduced deposition of active
H3K27ac and H3K56ac marks. These changes are associated with lower levels of 3.5 kb
RNAs while cccDNA levels remain stable, strongly suggesting that long-term telbivudine
treatment is associated with the silencing of cccDNA transcriptional activity through an
epigenetic mechanism [69].

2.5. Compartmentalization of cccDNA in the Nucleus of Infected Hepatocytes

Hi-C experiments in primary human hepatocytes (PHHs) demonstrated that cccDNA
mainly interacts with open chromatin regions containing CpG islands in a CXXC finger
protein 1 (CPF1)-dependent manner. Silencing of this factor decreased the transcriptional
activity of cccDNA and the interaction with these particular regions, indicating the im-
portance of these regions in the regulation of HBV transcription [70]. In contrast, the
transcriptionally inactive HBx-deficient cccDNA is more frequently located within a het-
erochromatin hub in the chromosome 19 in HepDE19 cells. The re-expression of HBx
induces a positional change towards opened chromatin regions in a structural maintenance
of chromosomes protein 5/6 (SMC5/6)-dependent manner [71]. These studies thus demon-
strate that cccDNA is not randomly localized in the nucleus of infected hepatocytes and
that it interacts with specific host genome regions depending on its transcriptional activity
(recently reviewed in [72]). Interestingly, cccDNA is able to undergo liquid-to-liquid phase
separation (LLPS) [34]. LLPS results from the local concentration of proteins and nucleic
acids dedicated to a specific biological process, thus creating membrane-less organelles that
improve the efficacy of all steps involved in gene expression [73]. cccDNA phase separation
occurs in FUS-containing nuclear speckles located in euchromatin regions in the nucleus
of infected hepatocytes and is dependent on G4-mediated FUS binding to cccDNA. It is
therefore tempting to speculate that HBV is able to hijack the physiological FUS capacity
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to bind G4s and promote LLPS, thus ensuring an optimal nuclear environment for the
transcription of its genome [34].

Viruses 2024, 16, x FOR PEER REVIEW 5 of 16 
 

 

maintenance of chromosomes protein 5/6 (SMC5/6)-dependent manner [71]. These stud-
ies thus demonstrate that cccDNA is not randomly localized in the nucleus of infected 
hepatocytes and that it interacts with specific host genome regions depending on its 
transcriptional activity (recently reviewed in [72]). Interestingly, cccDNA is able to un-
dergo liquid-to-liquid phase separation (LLPS) [34]. LLPS results from the local concen-
tration of proteins and nucleic acids dedicated to a specific biological process, thus cre-
ating membrane-less organelles that improve the efficacy of all steps involved in gene 
expression [73]. cccDNA phase separation occurs in FUS-containing nuclear speckles lo-
cated in euchromatin regions in the nucleus of infected hepatocytes and is dependent on 
G4-mediated FUS binding to cccDNA. It is therefore tempting to speculate that HBV is 
able to hijack the physiological FUS capacity to bind G4s and promote LLPS, thus en-
suring an optimal nuclear environment for the transcription of its genome [34]. 

 
Figure 1. Regulators of HBV cccDNA transcription. Examples of host or viral factors activating 
(green) or silencing (red) cccDNA transcriptional activity associated with an active (green nucleo-
somes) or a silent (red nucleosomes) chromatin [37–40,43,47–50,52–54,56–60,62,63,65–68,70,74–77]. 
The image was created using Biorender.com. 

3. Co-Transcriptional Regulation of HBV RNAs 
Transcription not only influences the level of synthesized RNA, but also impacts 

their quality. Thus, multiple RNA variants can be generated with different roles in HBV 
replication. This section provides an overview of the current knowledge on 
co-transcriptional HBV RNA processing and its importance in HBV replication and CHB. 

3.1. HBV RNA Splicing 
HBV RNA splicing is by far the most extensively described co-transcriptional pro-

cess regulating HBV RNA metabolism. This process has previously been reviewed in 
several journals reflecting its high importance for HBV biology [78–81]. HBV spliced 
transcripts were first observed three decades ago in the serum of CHB patients by 
Northern blot analysis. The authors used a probe against the Core region and identified a 
transcript of 2.2 kb [82]. Su et al. confirmed that this 2.2 kb transcript corresponds to a 
splice variant (SV), most likely derived from the pgRNA, by in vitro experiments in 
Huh-7 hepatoma cells [83]. Moreover, in vitro experiments performed in COS-7 and in 

Figure 1. Regulators of HBV cccDNA transcription. Examples of host or viral factors activating (green)
or silencing (red) cccDNA transcriptional activity associated with an active (green nucleosomes) or
a silent (red nucleosomes) chromatin [37–40,43,47–50,52–54,56–60,62,63,65–68,70,74–77]. The image
was created using Biorender.com.

3. Co-Transcriptional Regulation of HBV RNAs

Transcription not only influences the level of synthesized RNA, but also impacts their
quality. Thus, multiple RNA variants can be generated with different roles in HBV repli-
cation. This section provides an overview of the current knowledge on co-transcriptional
HBV RNA processing and its importance in HBV replication and CHB.

3.1. HBV RNA Splicing

HBV RNA splicing is by far the most extensively described co-transcriptional process
regulating HBV RNA metabolism. This process has previously been reviewed in several
journals reflecting its high importance for HBV biology [78–81]. HBV spliced transcripts
were first observed three decades ago in the serum of CHB patients by Northern blot
analysis. The authors used a probe against the Core region and identified a transcript of
2.2 kb [82]. Su et al. confirmed that this 2.2 kb transcript corresponds to a splice variant
(SV), most likely derived from the pgRNA, by in vitro experiments in Huh-7 hepatoma
cells [83]. Moreover, in vitro experiments performed in COS-7 and in Huh-7 cells identified
a spliced variant derived from PreS2/S mRNA [84,85]. To date, 22 HBV SVs have been
identified in the serum of patients and in cellular models, and can be generated from all
HBV genotypes. These SVs use a unique combination of splice donor and acceptor sites
but a single spliced junction can be common to several HBV SVs, making their specific
identification difficult [78].

HBV SVs are not able to generate fully functional polymerase or surface proteins.
Thus, optimal HBV replication requires a finely tuned regulation of HBV RNA splicing.
Several cis-elements and host trans-factors have been identified as key regulators of HBV
RNA splicing. These include the post-transcriptional regulatory element (PRE) region,
which was highlighted as being critical for the HBV RNAs’ nuclear export [86,87]. Indeed,
deletion of the PRE region completely abolished the generation of the SP1 HBV SVs in
Huh-7 cells, demonstrating the importance of this regulatory element in this process. Heise
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et al. showed, in vitro, that this effect is mediated by an exon splicing enhancer contained
within this region [86]. As expected, these regulatory elements recruit splicing factors
such as PSF or SRSF2 [86,88]. Interestingly, the overexpression of the HDAC5 histone
deacetylase in pCMV-HBV-transfected HEK293T cells was suggested to increase HBV RNA
splicing [89]. Although the authors did not correlate the splicing outcome with cccDNA
chromatin rewiring, these data indicate that cccDNA chromatin and HBV RNA splicing are
also connected. Further investigations are nonetheless required to validate this hypothesis.

Contrary to other viruses such as HIV-1, HBV RNA splicing is not essential for HBV
replication. HBV SVs can be retro-transcribed and generate genome-defective HBV parti-
cles, which are thought to be associated with liver diseases [90]. Moreover, several studies
showed a higher level of HBV SVs one to three years prior to the development of HCC and
a correlation with HBV viral load [91]. This observation strongly suggests that HBV SVs
contribute to the pathogenicity and/or the persistence of HBV. Several studies highlighted
the cross-talk between HBV SVs and the host immune system, which plays important roles
in the pathogenesis induced by HBV. In particular, Chen et al. reported a negative correla-
tion between HBV SVs and the interferon-alpha (IFN-α) response, suggesting that HBV
SVs could participate to the innate immune escape of HBV during CHB [79]. Strikingly,
the overexpression of the HB spliced protein (HBSP) or reverse transcriptase’-RNaseH
(RT’-RH) proteins in hepatoma cells, similarly to POL, prevented the nuclear translocation
of STAT1 and STAT2 and the activation of STAT1 in response to IFN-α treatment [79,92,93].
These two non-canonical HBV proteins are encoded by SP1, and are major HBV splice
variants and contain a truncated POL RT domain and a complete RNAse H domain of the
viral polymerase. In addition to the POL TP domain, the RNAse H domain was demon-
strated to impair the IFN-α signaling pathway [92]. Moreover, HBSP was also shown to
induce a HBSP-specific T-cell response in mice and in patients. This response is thought to
contribute to liver damage induced by HBV through cytokines, such as IFN-γ, produced
by T cells [94].

HBV SV-encoded proteins were also reported to regulate the level of HBV replication
acting as self-restriction factors. Indeed, the HpZ/P’ protein, encoded by the HBV SVs
bearing the major spliced junctions between the 5′ splice site at position 2450 and the
3′ splice site at 489, was shown to counteract the effect of suppressor of var1, 3-like 1
(SUPV3L1) on cccDNA transcription and to hamper the acetylation of histones H3 and H4
on HBV minichromosome [88].

3.2. HBV RNA Methylation

Methylation of the N6-Methyladenosine (m6A) is the most frequent RNA modification
and occurs co-transcriptionally. This modification plays a major role in RNA metabolism
and was shown to regulate the replication of several viruses such as HIV-1 [95,96]. Strikingly,
HBV RNAs are methylated in HepG2 cells, and MeRIP-Seq experiments precisely mapped
the adenine residue at position 1907 (genotype D) (Figure 2). This residue is located
at the basis of the ε stem-loop and is found twice in the pgRNA and preCore RNA,
but only once in the other sub-genomic RNAs [97]. This modification is deposited by a
methyltransferase complex composed of methyltransferase like 3 and 14 (METTL3 and
METTL14), the recruitment of which on HBV RNAs is dependent on HBx in HepG2-NTCP
cells and in PHHs [98]. Accordingly, RNAs generated from a HBx-null pHBV plasmid are
less methylated compared to those generated from the wild-type one. The recruitment
of METTL3 and METTL14 to HBV RNAs and the subsequent methylation of HBV RNAs
cannot be restored by a transcriptionally inactive HBx mutant, strongly indicating that, as
for host transcripts, the methylation of HBV RNA depends on transcription [98].
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Figure 2. Dual role of m6A methylation of HBV RNAs. HBV RNAs are co-transcriptionally methy-
lated at position 1907 corresponding to the basis of the ε-loop. The methylation is ensured by the
two methyltransferases METTL3 and METTL14, which are recruited during HBV transcription by
the HBx viral protein (top part). This important secondary structure is found twice in pgRNA but
only once in sub-genomic RNAs. Depending on the localization of the ε-loop, m6A methylation of
HBV RNAs has different effects. Indeed, modification of the residue of the 5′ structure allows its
recognition by the viral Core protein and its subsequent encapsidation and reverse transcription by
the viral polymerase, thus initiating a new cycle of viral replication. In contrast, m6A methylation
at the 3′ ε-loop allows its recognition by the methylation reader YTHDC2, which recruits the ISG20
exonuclease and impairs HBV RNA stability. DR, direct repeat; RNAPII, RNA polymerase II; ISG20,
interferon stimulated gene 20; YTHDC2, YTH domain containing 2; METTL, Methyltransferase-like.
The figure was created using Biorender.com.

Interestingly, this particular residue is located at a previously identified G4 in HBV
RNAs [99,100]. Recently, G4 structures were shown to be critical for the recruitment of
METTL14, which is essential for the methyl-transferase activity of METTL3 [101]. Whether
this is the case for the HBV G4 is not yet known.

Mutagenesis experiments showed a dual function of HBV RNA methylation depend-
ing on whether it impacts the 5′ (only found in the pgRNA and pC RNA) or the 3′ ε-loop
(found in all HBV RNAs). Indeed, the methylation of HBV RNAs at the 5′ loop positively
regulates the reverse transcription of the pgRNA while the methylation at the 3′ loop im-
pairs HBV RNA stability [97]. A possible explanation for the role of the m6A modification
of the 5′ ε-loop stems from the observation that it favors the interaction with the core
protein and the subsequent encapsidation of the pgRNA. In agreement with these data,
methylated pgRNAs are more present in Core particles compared to unmethylated ones in
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Huh-7 cells [102]. m6A-modified HBV RNAs recruit fragile X mental retardation protein
(FMRP) and YTH domain containing 1 (YTHDC1) m6A readers, which are important for
nuclear export of HBV transcripts. Accordingly, repression of these factors or mutation
of the m6A residue at both ε-loops lead to the nuclear accumulation of HBV transcripts,
highlighting an extra role for m6A modifications in the HBV life cycle [103].

Methylation of HBV RNA was also identified as a critical regulator of the innate
immune response. Indeed, mutagenesis experiments similar to those described above in
HepG2 cells demonstrated that the HBV RNA m6A methylation impairs their recognition
by the RIG-I protein and the subsequent phosphorylation of interferon regulatory factor
3 (IRF3) [104]. These data show that m6A methylation not only plays a major role in the
regulation of the HBV life cycle but also participates in the pathogenesis induced by HBV.

More recently, a novel m6A residue was identified by MeRIP at position 1616 of the
coding sequence of HBx. Mutagenesis experiments and depletion of YTHDF2 m6A readers
showed that this methylation represses HBx expression at both RNA and protein levels.
Interestingly, the expression of HBs is also affected by this modification located at the 3′

UTR of the S mRNA. Whether this is a consequence of HBx repression or a more direct
effect on the S transcript itself is unknown and requires further investigation [105].

Altogether, these data highlight the plethora of viral functions of the m6A modification
of HBV RNAs.

3.3. HBV RNA Polyadenylation

HBV RNAs, as in the case of most RNAP II-generated transcripts, are polyadenylated
at their 3′ end [106]. Polyadenylation is tightly linked to transcription termination and
is initiated by the recognition of a polyA signal (PAS), which is generally an AAUAAA
motif on RNA. In vitro studies identified a non-canonical PAS, TATAAA, deviating from
the AAUAAA motif by only one base [107]. Strikingly, this motif is not recognized during
the first passage of the RNAP II generating the precore and the pgRNA, which are thus
longer than the genome. A 3.9 kb long HBx RNA not terminating at this motif has also been
identified, though it is less frequent than the canonical 0.7 kb long HBx RNA [108]. This
raises the question of how this motif is recognized, knowing that the surface mRNAs mostly
use this motif as a termination signal. Some explanation came from studies of the ground
squirrel hepatitis B virus (GSHBV). Mutagenesis experiments of sequences upstream of
the TSS of the pgRNA allowed the identification of three regions termed PS1, 2, and 3,
which are important for the proper usage of the HBV PAS. Whether these elements act at
the DNA or RNA level was not determined by these studies, but their efficient recognition
relies on the passage of RNAP II [109,110]. So far, these sequences have not been identified
in the human HBV and the mechanisms underlying the recognition of this HBV PAS
remain unclear.

Fractionation experiments in Huh-7 and HepG2 cells transfected with HBV DNA
showed a nuclear accumulation of the long HBx transcript, which does not end at the
PAS motif in the first passage of the RNAP II, indicating a link between transcription
termination and HBx RNA export [108]. The mechanism underlying the poor shuttling
of the long HBx RNA remains obscure, considering that it contains twice the PRE region
responsible for HBV RNA export.

Recently, we proposed a model where the DEAD-box helicases DDX5 and DDX17
were responsible for inhibiting PAS recognition, resulting in longer HBV transcript 3′UTR
RNA destabilization and decreased HBx protein levels [111]. These data highlight the
importance of transcriptional fidelity in finely tuning HBV replication.

Interestingly, the sequence of this HBV PAS corresponds to a TATA box that is normally
located at the level of promoters [112]. In vitro studies demonstrated that this motif allowed
the recruitment of general transcription factors (GTFs) and the TATA-box binding protein
(TBP), and displays promoter activity in luciferase reporter assays. This element was
shown to be essential for HBV replication, as the restoration of the canonical PAS sequence
completely impaired the production of viral DNA intermediates [112]. These observations
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thus highlighted a dual function for HBV PAS. At the DNA level, it acts as a TATA box
element, while at the RNA level, it acts as a termination signal for RNAP II. In eukaryotes,
chromatin looping events between promoters and terminators have been identified. These
chromatin loops create a roadblock for RNAP II, causing a pause in the activity of the
polymerase and allowing the efficient recognition of the PAS. In addition to this role, this
particular genome topology facilitates the recycling of RNAP II and accelerates reinitiation
of the transcription cycle [113–115]. If cccDNA were to adopt such a topology, it would
place this HBV PAS/TATA in close proximity with the HBV promoters that do not contain
canonical TATA boxes, thus contributing to their transcriptional activity. Due to the small
size of cccDNA, testing this hypothesis remains challenging.

The nucleotidic composition of the poly (A) tail is a combination of A and G residues.
This mixed tailing is ensured by a complex composed of zinc finger CCHC-type containing
14 (ZCCHC14), PAP associated domain containing 5 and 7 (PAPD5 and PAPD7) proteins,
which are responsible for the incorporation of G residues. These G residues prevent the
recognition of the poly-A tail by poly-A ribonucleases, thus stabilizing RNA. In line with
this, the repression of ZCCHC14 or dual repression of PAPD5 and PAPD7 in several
hepatic cellular models resulted in the destabilization of HBV RNAs. Further studies
identified the recruitment of this complex to the PRE SLα region, indicating a direct effect
of these proteins [116,117]. Strikingly, this complex is targeted by therapeutic compounds
such as AB452 or RG7834, which repress HBV replication and are considered as potential
therapeutic targets against CHB [117].

3.4. Capping of HBV RNAs

Transcripts generated by RNAP II are capped at their 5′ end. This cap mainly consists
in a 7-methyl-guanosine that is linked through a 5′ to 5′ triphosphate bridge to the first
transcribed nucleotide, which is methylated on the ribose O-2 position. The deposition
of this cap, which is dependent on three enzymatic activities, occurs during transcription
in a process dependent on RNAP II, highlighting its co-transcriptional nature. This cap
structure has multiple roles in mRNA metabolism by recruiting protein complexes such as
eukaryotic translation initiation factor 4E (EIF4E) [118,119]. Although it was not formerly
demonstrated, indirect evidence based on the use of techniques specific to capped RNA
showed that HBV RNAs are capped [13,14].

As mentioned above, the pgRNA contains two ε stem loop structures, among which
only the 5′ ε is required for encapsidation [120]. Transfection of Huh-7 cells with plasmids
that synthesize pgRNA with the 5′ ε motif at different distances of the 5′ end highlighted a
position effect of this particular motif on encapsidation. Further in vitro studies indicated
that the 5′ cap is essential for pgRNA encapsidation and suggested that POL requires both
the 5′ ε motif and the 5′ cap to be recruited on pgRNA [121]. Co-immunoprecipitation
experiments in HEK 293T cells revealed the interaction between HBV POL and the cap-
binding factor eif4E, which is dependent on the 5′ ε motif but independent of the 5′

cap. Interestingly, eif4E is encapsidated together with POL and pgRNA, and the authors
proposed that it could be important for the synthesis of the positive strand, but further
investigations are required to corroborate this hypothesis [122]. Whether the interaction
between POL and eif4E is required for the position effect of the 5′ ε has not been addressed
in this study but could explain the cap-dependence of the encapsidation process.

4. Conclusions

The HBV community is investing heavily in finding a way to either degrade or silence
cccDNA in order to obtain a functional, or ideally complete, cure for this disease. Due
mainly to safety reasons, there are still quite a few hurdles to clear before reaching this
crucial goal. Transcription not only influences the level of RNAs but also directly impacts
their metabolism. This review highlighted the different co-transcriptional processes that
regulate the metabolism of HBV RNAs and presented their importance in both HBV
replication and HBV-induced liver disease. Identifying the molecular mechanisms that
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control such processes could thus offer an alternative approach to design new therapeutic
drugs that impair viral replication and slow down disease progression.

5. Future Directions

Drugs targeting co-transcriptional processes already exist and have shown promising
results in pre-clinical studies. This is, for instance, the case for METTL3 inhibitors in acute
myeloid leukemia [123]. Interestingly, RG7834 targets PAPD5 and PAPD7, which maintain
the integrity of the poly-A tail and was demonstrated to destabilize HBV RNAs in cellular
models [117]. This drug was tested alone and in combination with entecavir or IFNα in
woodchuck and mice that were chronically infected with HBV, and displayed promising
effects on decreasing viral load, suggesting that it could be used as a cure for CHB [124,125].
Altogether, these observations offer interesting perspectives for the identification of host
targets to improve current CHB treatment strategies.
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