
 
Table S1. Multivariate logistic regression to obtain the risk of AD from SBP and DBP and 
controlled by age, sex and antihypertensive intake. 

Variables Estimate 
Standard 
Error OR 

Lower 
95% 

Upper 
95% P-value 

(Intercept) -11.167 2.739 0 0 0.003 <0.001 

Age 0.161 0.032 1.174 1.105 1.255 <0.001 

Sex (male) -0.667 0.368 0.513 0.246 1.051 0.07 

SBP 0.035 0.016 1.036 1.004 1.071 0.033 

DBP -0.033 0.024 0.967 0.921 1.013 0.166 

Antihypertensive 
treatment -0.07 0.373 0.933 0.446 1.941 0.852 

DBP= Diastolic blood pressure; OR= Odds ratio; SBP= Systolic blood pressure. 
 
Table S2. Association between t-tau/Aß42 ratio and sex, age, ARBs and ACEi drugs. 

Variables Estimate 
Standard 
error Lower- 95 Upper- 95 P-value 

(Intercept) -3.989 0.593 -5.157 -2.821 <0.001 

Age 0.055 0.009 0.038 0.072 <0.001 

Sex (male) -0.226 0.1 -0.423 -0.029 0.025 

ARBs, combinations -0.334 0.142 -0.613 -0.055 0.019 

ACEi, plain 0.19 0.162 -0.128 0.509 0.24 

R Squared 0.1662     

Adj. R Squared 0.1541     

ACEi: Angiotensin converting enzyme inhibitors; ARBs: Angiotensin receptor blockers. 
 
Table S3. Relationship between renin-angiotensin-system- acting agents and Alzheimer’s 
Disease biomarkers. 

Step 
(Figure 4) 

Relationship between renin-angiotensin-system (RAS)-acting 
agents and Alzheimer’s Disease biomarkers 

References 

1. ACEi 

Reduces Ang-II synthesis, enhancing acetylcholine and Ang-IV 
release [1] 

Its chronic exposure may produce increased Aß42 levels in the brain [2] 

2- BK 
Bradykinin receptors produce phospholipase C activation, which 

increases intracellular calcium mobilization, releases NO and 
prostaglandins and activate PKC, MAPK and NF-kB 

[3-5] 

3. B1R 
Its expression is induced by MAPK, NF-kB and proinflammatory 

cytokines. Up-regulated in chronic inflammation [4-11] 



Its expression and activation are linked to Aβ deposition and 
neuroinflammation in a mouse model of Alzheimer’s disease  

4. B2R 

B2R produces PKA as well, with which phospholipase C, 
phospholipase A2 and MAPK, can activate glutamate, NMDA and 

AMPA receptors, improving spatial memory. Up-regulated in acute 
inflammation. 

[4,6,7,10] 

5. XIIa factor 
FXIIa activation of plasma prekallikrein leads to the release of 

bradykinin via cleavage of the intact form of HK 
[4,12] 

 

6. ARBs 
 

Blocks AT1R, promoting the release of Ang II available to bind to 
Ang-IV, thereby facilitating memory and learning. It stimulates the 

PPARy, which is related to neuroprotection 
[1] 

They are associated with a lower amyloid burden in non APOEe4+ [13] 

7. AT1 

It is naturally upregulated with ageing and its activation promotes 
M1 microglial phenotype activation, which releases TNF, IL-1ß, NO 

and ROS. It can impair cognitive function. 
[14]  

Its activity is directly liked to inflammation, oxidation, neurotoxicity, 
and BBB damage [15] 

8. AT2 

Linked to cell proliferation, differentiation, apoptosis, and 
regeneration of tissues [16] 

Not detected on healthy microglia. Promotes M2 microglia 
phenotype, which produces anti-inflammatory cytokines [14] 

9. MasR 

Neuroprotective effect. Enhances long-term potentiation [14,16,17] 

Reduces oxidative stress: Increases NO and decreases mitochondrial 
respiration. Induces M2 microglia polarization, which enhances 

BDNF 
[14] 

10. Ang IV Enhances cholinergic transmission and improves cognitive abilities. [1,14,15] 

11. ACE2 
Its overexpression is associated with decreased activity of ACE1, 

Ang-II and AT1R expression, as well as decreased oxidative stress 
and neurofilament. It converts Aß43 into Aß42 

[17] 

12. ACE1 

Increased ACE activity in patients with AD. Related to amyloid load 
and severity of AD [2,17,18] 

It converts Aß42 into Aß40 [2,14,16,17] 

13. 
Doxazosin 

Doxazosin may reduce p-tau formation due to PI-3K/Akt-mediated 
inhibition of GSK-3 activity [19] 

14. NO 
Neuroprotective at normal brain concentration. Its excess of its 
deficiency is associated with neurodegeneration and neuronal 

damage 
[20] 

15. GSK3ß 

Angiotensin may activate GSK3ß and induce tau phosphorylation [18] 

It may be activated by PS1 overexpression. Its overexpression is 
associated with disrupted islet ß cells and with tau 

hyperphosphorylation 
[21] 

16. CCB 
Downregulate amyloid levels and slow its production [22,23] 

Enhance cerebral vascularization [24] 



Their effect on Aß clearance depends on their ability to facilitate Aß 
transcytosis. Drugs such as nimodipine or nitrendipine have this 

property 
[25] 

 
Aß= Amyloid beta peptide; ACEi= Angiotensin converting enzyme inhibitors; ACE1= 
Angiotensin converting enzyme 1; ACE2= Angiotensin converting enzyme 2; ARBs= 
Angiotensin receptor blockers; BDNF= brain-derived neurotrophic factor; BK= Bradykinin; 
AT1= Angiotensin 1 Receptor; AT2= Angiotensin 2 Receptor; B1R= Bradykinin 1 receptor; B2R= 
Bradykinin 2 receptor; CCB= Calcium channel blockers; GSK-3= Glycogen synthase kinase 3; 
HK= high molecular weight kininogen; MAPK= mitogen activated protein kinase; MasR= 
Mitochondrial Assembly Receptor; NF-kB= nuclear factor-kB; NO= nitric oxide; PKA= protein 
kinase A; PI-3K/Akt= Phosphatidylinositol 3-kinases/ protein kinase B; PKC= protein kinase 
isoforms; PPARy= peroxisome proliferator activated receptor gamma; ROS= Reactive Oxygen 
Species 
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