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Abstract: The objective of the study was to explore the feasibility of a new drug delivery system
using laponite (LAP) and cyclic poly(ethylene glycol) (cPEG). Variously shaped and flexible hybrid
nanocrystals were made by both the covalent and physical attachment of chemically homogeneous
cyclized PEG to laponite nanodisc plates. The size of the resulting, nearly spherical particles ranged
from 1 to 1.5 µm, while PEGylation with linear methoxy poly (ethylene glycol) (mPEG) resulted in
fragile sheets of different shapes and sizes. When infused with 10% doxorubicin (DOX), a drug com-
monly used in the treatment of various cancers, the LAP-cPEG/DOX formulation was transparent
and maintained liquid-like homogeneity without delamination, and the drug loading efficiency of
the LAP-cPEG nano system was found to be higher than that of the laponite-poly(ethylene glycol)
LAP-mPEG system. Furthermore, the LAP-cPEG/DOX formulation showed relative stability in
phosphate-buffered saline (PBS) with only 15% of the drug released. However, in the presence
of human plasma, about 90% of the drug was released continuously over a period of 24 h for the
LAP-cPEG/DOX, while the LAP-mPEG/DOX formulation released 90% of DOX in a 6 h burst.
The results of the cell viability assay indicated that the LAP-cPEG/DOX formulation could effec-
tively inhibit the proliferation of A549 lung carcinoma epithelial cells. With the DOX concentra-
tion in the range of 1–2 µM in the LAP-cPEG/DOX formulation, enhanced drug effects in both
A549 lung carcinoma epithelial cells and primary lung epithelial cells were observed compared to
LAP-mPEG/DOX. The unique properties and effects of cPEG nanoparticles provide a potentially
better drug delivery system and generate interest for further targeting studies and applications.

Keywords: functional cyclized polyethylene glycol; PEGylation of laponite; hybrid nanoparticles;
drug delivery

1. Introduction

Following recent advancements in biomaterials and nanotechnology, drug delivery
has undergone enormous developments [1–3]. With their flexibility and durability, hybrid
organic–inorganic nanomaterials are considered a potential platform with applications
in chemistry, physics, life sciences, medicine, and technology [4]. Hybrid nanomaterials
based on silicate present an interesting group of materials due to their natural and widely
used properties. In the last two decades, laponite (LAP), a synthetic magnesium silicate
clay, has emerged as a novel drug delivery nanoplatform [5–7]. The dimension of this
disc-shaped particle is 25 nm in diameter and 1 nm in thickness with a relatively stable
chemical formula of Na+0.7[(Mg5.5Li0.3)Si8O20(OH)4]−0.7 [8]. The LAP nanoparticle has a
net negatively charged plane and an unstable positively charged edge due to the release
of sodium ions on its surface and the protonation of its hydroxyl groups on its edge.
Electrostatic interactions amongst the surfaces and edges of the nano discs allows LAP
to present as a homogenous dispersion, suspension, or gel, independent of the aqueous
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system [9,10]. The most basic application of the LAP nanoparticle is a drug–clay hybrid
formula that uses the direct mixing of a drug with a LAP aqueous system, and then
centrifugation to sediment the composite from solution. The resulting complex may also be
further coated with polymer materials for a better release profile.

Chen et al. investigated the absorption of LAP nanoparticles with the enterohemor-
rhagic E. coli (EHEC) protein and found that the LAP nano-adjuvant was able to induce
efficient humoral and cellular immune responses against the EHEC antigen [11]. Kalwar
et al. centrifuged an LAP/ciprofloxacin complex, which was then disseminated into poly-
caprolactone to make nanofibers for more sustained drug release [12]. The silanol group,
SiOH, on the edge of the clay sheet creates the potential to chemically modify clay for better
solubility and organophilicity. Modifying the edge of the LAP clay using alkoxy silanes
possessing additional primary amine groups has been reported by Wheeler et al. [13],
allowing more complex polymers to be covalently grafted to the LAP nanoplate, creating a
stable hybrid nanomaterial with an inorganic core. For example, a second generation of
poly(amidoamine) dendrimer has been conjugated to the LAP nanoplate as a dendrimer-
functionalized LAP hybrid nanomaterial [14]. After accreting doxorubicin (DOX), the
dispersed composites demonstrated a pH-dependent sustained release profile and more
potent inhibitory activities against KB human epithelial cancer cells than free DOX [14].

The excessive accumulation of LAP nano discs might lead to precipitation, so improv-
ing the dispersion stability of LAP particles would be a key to enhancing their performance.
Polymers are one of the most commonly used stabilizers of inorganic particles such as
silicate particles and gold nanoparticles (AuNPs). For example, Ling et al. illustrated
different degrees of stability of poly(ethylene glycol) (PEG)-coated AuNPs based on the
molecular weight of the linear PEGs used [15]. By adding sodium chloride, the coated
AuNPs present visual color changes. Furthermore, the treatment of LAP silicate clay with
poly(ethyleneoxide)alkyl ether enhanced stability and resulted in a nanocomposite sus-
pension with spherical particles ranging from 70 nm to 1 µm [16]. Additionally, Gaharwar
et al. cross-linked LAP with PEG to make a PEG-silicate nanocomposite hydrogel with
flexible interconnective pores, which proved to be mechanically strong and structurally
stable while maintaining a high water content [17]. In comparison with linear polymers,
cyclized polymers exhibit distinct properties: higher density, higher glass transition tem-
perature, smaller hydrodynamic volume, and lower viscosity [18,19]. By mixing cyclic
poly(ethylene glycol) (c-PEG) with AuNPs, Wang et al. proved that physiosorbed c-PEG
drastically enhanced the dispersion stability of AuNPs against an external environment
and physiological conditions when compared with its linear counterpart [20].

To improve the drug delivery performance, we designed novel hybrid nanoparticles
using LAP and cyclic PEG. We first synthesized cyclic PEG with an extra active OH group
(cPEG-OH) by which the cyclic PEG was covalently attached to the LAP nanoplate. The
chemical homogeneity of synthesized cPEG-OH was confirmed by NMR spectroscopy,
specifically 13C NMR, mass spectrometry (MS), and gel permeation chromatography (GPC).
Moreover, the cPEGylation of LAP to construct the hybrid LAP-cPEG system was charac-
terized by Fourier-transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, dynamic
light scattering (DLS), and scanning electron microscopy (SEM). Furthermore, the anti-
cancer drug DOX was captured in the LAP-cPEG system, and the release profile of the
LAP-cPEG/DOX formulation was determined in the presence of human plasma. Addition-
ally, the in vitro cytotoxic effect of the LAP-cPEG/DOX formulation was measured by XTT
and flow cytometric assays after incubation with A549 lung cancer cells or primary lung
epithelial cells.

2. Materials and Methods
2.1. Materials

LAP (laponite-FN) was provided by BYK Netherlands B.V. (Deventer, Netherlands). Poly
(ethylene glycol) 2000 (PEG); methoxy poly (ethylene glycol) 2000 (mPEG); DOX·HCl were
obtained from AvaChem Scientific (San Antonio, TX, USA). 4-Nitrophenyl chloroformate;



Pharmaceutics 2023, 15, 1998 3 of 15

1,3-diamino-2-propanol (Dimethylamino) pyridine (DMAP); N,N-diisopropylethylamine
(DiPEA); 3-aminopropyldimethylethoxysilane (APMES); sodium hydroxide; hydrochloric
acid and XTT reagents were all purchased from Sigma-Aldrich (St. Louis, MO, USA). A549
cells were purchased from Japanese Collection of Research Bioresources (JRCB) Cell Bank
(Tokyo, Japan). Trypsin-EDTA 0.25%, 7-aminoactinomycin (7-AAD), Fixable Viability Dye
eFluor™ 450 were obtained from Thermo Fisher Scientific (Waltham, MA, USA). Alexa
Fluor® 647 anti-mouse CD326 (EpCAM) was purchased from BioLegend (San Diego, CA,
USA). All solvents were purchased from Sigma-Aldrich and used as received. Deionized
(DI) water was used in all the experiments. Dialysis membranes were purchased from
Spectrum Laboratories (Rancho Dominquez, CA, USA).

2.2. Synthesis of LAP-cPEG Nanoparticles

The fundamental reaction was achieved by preparing the functional cyclic PEG
(cPEG-OH). In the current study, cyclized PEG chains were synthesized by a practical
and reliable method. First, to make LAP more active, the LAP nano discs were mod-
ified with amino groups via a condensation reaction of the LAP’s silanol groups with
3-aminopropyldimethylethoxysilane (APMES) to form LAP-NH2 (Scheme 1), as described
in previous publications [13,14].
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Scheme 1. Representation of a sheet of laponite (LAP) changed to LAP-NH2.

Meanwhile, as shown in Scheme 2, medium-sized PEG2000 was activated with
4-nitrophenyl chloroformate in the presence of DMAP to form polyethylene glycol dinitro-
phenyl carbonate (PEG-NP). Purified PEG-NP was treated with equivalent 1,3-diamino-
2-propanol to “lock” the terminals of PEG under dilute dichloromethane (DCM) solution
in the presence of DiPEA. Thus, a cyclic PEG with a bare hydroxy group was constructed.
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Scheme 2. Synthesis of functional cyclic PEG (cPEG-OH).

Using the same method for the activation of PEG, the desired product (cPEG-OH) was
also activated to form cPEG-NP and was then ready for coupling. The active cPEG-NP was
treated with LAP-NH2 to construct hybrid LAP-cPEG particles (Scheme 3).
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Scheme 3. Representation of covalent attachment of cyclic PEG to LAP.

To be used for comparison, linear mPEG with the same molecular weight as PEG was
activated and then coupled to LAP nanoplates using the same procedure as above, forming
the LAP-mPEG system (Scheme 4).
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2.2.1. Procedure for Activation of PEG, mPEG, and cPEG

A single-step method for activation of PEG using 4-nitrophenyl chloroformate (4-NPCl)
can produce a series of reactive PEG-phenylcarbonate derivatives. The PEG intermediates
are stable for storage, and reaction with amino groups proceeds rapidly at near-neutral
pH [21,22].

4-Nitrophenyl chloroformate (3 equiv) in DCM (100 mg/mL) and DMAP (3 equiv) in
DCM (100 mg/mL) were added into separate solutions of PEG, mPEG, and cPEG (1 equiv)
in DCM (50 mg/mL). The mixtures, now containing PEG-NP, mPEG-NP, and cPEG-NP,
were stirred for 16 h at room temperature. After DCM was removed by rotatory evaporation,
the residues were triturated from diethyl ether (50 mg/mL, 4 times), re-dissolved in DCM
(50 mg/mL), washed with 1 M HCl (50 mg/mL, 2 times), and then with water (50 mg/mL).
The resulting solutions were slowly added to an excess volume of diethyl ether (DCM:ether
in a 1:10 ratio). The precipitates were filtered and washed with ether and then dried
under vacuum.

For production of PEG-NP: activation of PEG (2.0 g, 1.0 mmol) yielded PEG-NP as
a white solid (1.4 g, 60%). 1H NMR (500 MHz, CDCl3): δ 8.28–8.26 (d, J = 10 Hz, 4H,
4ArH-NP), 7.40–7.38 (d, J = 10 Hz, 4H, 4ArH-NP), 4.44–4.42 (t, J = 5 Hz, 4H, 2CH2O-(C=O)),
3.82–3.80 (t, J = 5 Hz, 4H, 2CH2O-(PEG)), 3.69–3.64 (m, PEG backbone) ppm.

For production of mPEG-NP: activation of mPEG (2.0 g, 1.0 mmol) yielded mPEG-NP
as a white solid (1.9 g, 88%). 1H NMR (500 MHz, CDCl3): δ 8.29–8.27 (d, J = 10 Hz, 2H,
2ArH-NP), 7.40–7.38 (d, J = 10 Hz, 2H, 2ArH-NP), 4.44–4.42 (t, J = 5 Hz, 2H, CH2O-(C=O)),
3.82–3.80 (t, J = 5 Hz, 2H, CH2O-(PEG)), 3.69–3.54 (m, PEG backbone),
3.37 (s, 3H, CH3O) ppm.

For production of cPEG-NP: activation of cPEG (212 mg, 0.1 mmol) yielded PEG-NP
as a white solid (186 mg, 81%).1H NMR (500 MHz, CDCl3): δ 8.28–8.26 (d, J = 10 Hz,
2H, 2ArH-NP), 7.44–7.42 (d, J = 10 Hz,2H, 2ArH-NP), 5.69 (br s, 2H, 2NH), 4.79 (m, 1H,
CHO-(C=O)), 4.23–4.21 (t, J = 5 Hz, 4H, 2CH2O-(C=O)), 3.78–3.58 (m, PEG backbone)
3.50–3.39 (m, 4H, 2CH2N) ppm. 13C (500 MHz, CDCl3): δ 156.98 (NC=O), 155.45 (OC=O),
151.70 (ArC-NP), 145.40 (ArC-NP), 125.23 (ArC-NP), 121.96 (ArC-NP), 70.50 (PEG back-
bone), 69.39 (CH2O-(C=O)), 64.25 (CH2O-(PEG)), 40.04 (CH2N) ppm.
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2.2.2. Cyclization of PEG-NP to Form cPEG-OH

PEG-NP (300 mg, 0.13 mmol) was dissolved in DCM (300 mL) and cooled in an ice-
water bath. A solution of 1,3-diamino-2-propanol (13 mg, 0.14 mmol) in DCM (13 mL)
was added dropwise, followed by the addition of DiPEA (136 µL, 0.78 mmol). After being
stirred for 24 h at 3–5 ◦C, the reaction mixture was allowed to warm up to room temperature
and was then stirred for another 24 h. The resulting solution was concentrated by rotatory
evaporation to 3 mL and slowly added to 30 mL of diethyl ether. The precipitate was filtered
and washed with ether, and then further purified by flash column chromatography by
eluting with 10% methanol in DCM. The eluted product was triturated from ether, filtered,
and dried under vacuum to yield an off-white solid (177 mg, 64%). 1H NMR (500 MHz,
CDCl3): δ 5.66 (br s, 2H, 2NH), 4.22–4.20 (t, J = 5 Hz, 4H, 2CH2O-(C=O)), 3.79–3.64 (m,
PEG backbone), 3.51–3.49 (m, 1H, CHO), 3.28–3.27 (m, 2H, CH2N), 3.19–3.16 (m, 2H,
CH2N). 13C NMR (500 MHz, CDCl3): δ 157.29 (C=O), 70.52 (PEG backbone), 70.00 (CHO),
69.48 (CH2O-(PEG)), 64.02 (CH2O-(C=O), 40.01 (CH2N) ppm.

2.2.3. Modification of LAP to Form LAP-NH2

LAP powder (100 mg) was suspended in water (80 mL) and stirred while heating
at 50 ◦C overnight for an aqueous dispersion. Then, 32 mL of APMES aqueous solution
(2% w/w, i.e., 1 mL of APMES was combined with 40 mL of water) was added dropwise
under vigorous stirring. After stirring at 50 ◦C for 36 h, the reaction mixture was dialyzed
against water (12 times over 3 days) using a dialysis membrane with a molecular weight cut-
off (MWCO) of 15,000. The obtained aqueous solution was lyophilized to give a colorless
solid LAP-NH2 (74 mg).

2.2.4. PEGylation of LAP with mPEG or cPEG to Form LAP-mPEG or LAP-cPEG

First, 60 mg of activated mPEG-NP or cPEG-NP dissolved in acetonitrile (2 mL) was
added to 20 mL of an LAP-NH2 suspension (1 mg/mL) cooled in an ice-water bath. After
stirring for 24 h at 3–5 ◦C, 1 drop of 1N NaOH was added to maintain the reaction mixture
at a pH of 8–9. The mixture was stirred for another 24 h at 3–5 ◦C and then moved to room
temperature and stirred overnight. The clear yellow solution was dialyzed against water
(pH 8, 2 times), and water (pH 7.4, 10 times) using a dialysis membrane with an MWCO
of 15,000. The final solution was lyophilized to give white solid LAP-mPEG (36 mg) or
LAP-cPEG (31 mg).

2.3. LAP-PEG/DOX Formulation

LAP-PEG/DOX was formulated by mixing 10% (w/w) DOX·HCl with LAP-PEG (LAP-
mPEG or LAP-cPEG) in water. First, 0.16 mL of DOX·HCl aqueous solution (5 mg/mL) was
added to 8 mL of LAP-PEG solution (1 mg/mL). The mixture was stirred for 24 h at room
temperature in the dark. The resulting solution was dialyzed against water (150 mL, 4 times)
over 36 h in the dark using a membrane with a MWCO of 15,000. The LAP-PEG/DOX
(LAP-mPEG/DOX or LAP-cPEG/DOX) formulation in the membrane bag was collected
and stored at 3–5 ◦C in the dark for further application. Meanwhile, the combined dialysis
medium was concentrated by rotatory evaporation in reduced pressure and analyzed by
UV–Vis with a lambda 25 UV–Vis spectrophotometer (PerkinElmer, Waltham, MA, USA) at
480 nm. The amount of unencapsulated free DOX was determined using a DOX calibration
curve. The DOX loading efficiency was determined using the following equation:

DOX loading efficiency =
Mass of feeding DOX − Mass free DOX

Mass of feeding DOX
× 100%

2.4. In Vitro DOX Release Kinetics from LAP-cPEG/DOX Formulation

The drug release kinetics of the LAP-cPEG/DOX formulation was determined in the
presence of PBS or human plasma. Briefly, 1.8 mL of the formulation was mixed well with
0.2 mL of either PBS or human plasma and transferred to a dialysis bag with an MWCO
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of 15,000. The dialysis bag was then placed in 18 mL of PBS while stirring. At each time
interval (0, 0.33, 1, 3, 6, 12, 24 and 48 h), 0.6 mL of PBS buffer was taken for UV analysis
and replaced with an equal volume of fresh PBS solution. The concentration of DOX in the
dialysis medium was measured using a Lambda 25 UV–Vis spectrophotometer at 480 nm.
For comparison, DOX released from the LAP-mPEG/DOX formulation in the presence of
plasma was conduct in the same manner.

2.5. Antitumor Efficacy of LAP-cPEG/DOX Formulation
2.5.1. XTT Assay

Cell viability was performed via the XTT assay for A549 cells. Cells were planted
(15,000 cells/well) in a 96-well tissue culture plate with medium composed of RPMI, 10%
FBS, and 1% Pen–Strep, and incubated at 37 ◦C with 5% CO2 overnight. The cells were
then fed with DOX, LAP-mPEG/DOX, and LAP-cPEG/DOX to reach the applied DOX
concentrations. After 48 h, the supernatants were removed, PBS and XTT reagents were
added, and the plate was again incubated for two hours. Using the Synergy HT plate
reader (BioTek Instruments; Winooski, VT, USA), the absorbance could be measured as
an indication of cell viability, determined from the optical density differences at 690 nm
and 492 nm.

2.5.2. Flow Cytometric Assay

A549 cell death was analyzed by 7-AAD staining assay. Primary lung cell death was
analyzed by staining with EpCAM (CD326) and Fixable Viability Dye. Briefly, A549 cells
(2 × 105) or lung primary cells (1 × 106 cells) were seeded in 48-well plates and incubated at
37 ◦C with 5% CO2 overnight. Concentrated DOX, LAP-mPEG/DOX, or LAP-cPEG/DOX
was added to the wells to reach the DOX therapeutic concentration of 0.75 and 1.25 µM for
A549 cells or 2 µM for primary lung cells. After 24 h of treatment, cells were trypsinized,
washed twice with PBS, stained, and analyzed on the flow cytometer (Novocyte, Agilent,
Santa Clara, CA, USA). Flow cytometric data were analyzed using Flow-Jo V10.9 software.

3. Results and Discussion
3.1. Synthesis of Functional Cyclic PEG

Various approaches to the cyclization of PEG have been attempted [23–25]. One of
these studies prepared an early version of the fully closed cyclic PEGs as large crown
ethers, based on the Williamson reaction in the presence of powdered KOH, a harsh
reaction condition [23]. Another common approach uses “click” chemistry, regarded as a
mild way to cyclize polymers. A no outlet PEG copolymer was cyclized by click reaction
chemistry in the presence of copper cations based on traditional click chemistry [24]. A
tadpole-shaped functional copolymer was made by coupling azido-terminated PEG with a
dialkyne-terminated polymer [25]. As a result, heavy metals were ultimately introduced
to the system due to the formation of stable PEG (Cu+) complexes [26,27]. This study
provided a gentle approach to synthesize chemically homogeneous cyclic PEG with extra
functional groups.

13C and 1H NMR spectroscopy were used to analyze the cyclic PEG product. As shown
in the comparison of the 13C spectra of PEG, cPEG-OH, and cPEG-NP (Figure 1a), the
signals of neighboring methylene carbons (HO-CH2-CH2-PEG-CH2-CH2-OH) of hydroxyl
groups at the end of PEG appeared at 72.41 and 61.54 ppm, respectively. After cyclization,
the signals moved to 69.48 ppm and 64.02 ppm, respectively. Meanwhile, new single signals
appeared at 157.29, 70.00, and 40.01 ppm, belonging to a formed carbonyl carbon and the
methylidyne and methylene carbons of 1,3-diamino-2-propanol on cyclized PEG rings,
respectively. After activation of cPEG with 4-nitrophenyl chloroformate (4-NPCl) to form
cPEG-NP, signals for a new carbamate bond and nitrophenyl group appeared clearly, while
the resonance peak of the methylidyne carbon on the cPEG ring shifted downfield due to
carbamation. Correspondingly, in the 1H spectrum (Figure 1b), after cyclization to form
cPEG, the resonance peaks at 3.51–3.49 and 3.28–3.16 ppm representing methylidyne and
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methylene protons on diamino-propanol were observed, while the resonance peaks of the
methylene protons on the terminal PEG backbone shifted downfield due to the formation
of the carbamate bond. Nitrophenyl chloroformate activation of cPEG led to a significant
downfield shift for the methylidyne proton on the cPEG ring while new resonance peaks of
nitrophenyl protons were present after carbamation.
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Figure 1. 13C NMR spectra (a), and 1H NMR spectra (b) of PEG, cPEG-OH, and cPEG-NP in
deuterated chloroform CDCl3.

Mass spectrometry (MS) was used to analyze the molecular weight changes in the
reaction products. The mass spectra showed an overall increase in molecular weight,
centering at 1940.1 for cPEG-OH and 1797.0 for PEG (Figure 2a), in which each peak
distribution in cyclic PEG matched well with the precursor by an increase of ca. 142, which
corresponds to the molar mass of the monomer lock unit. Incidentally, a regular m/z interval
of ca. 44 was observed between neighboring peaks in each distribution for both linear and
cyclic PEG, which corresponds to the molar mass of the PEG backbone units.

Gel permeation chromatography (GPC) was used to monitor the changes in linear
PEG and cyclic PEG after the reaction. The observed GPC chromatogram of cPEG-OH
was unimodal with Mw/Mn = 1.11, compared to mPEG and PEG with Mw/Mn = 1.11
and 1.12, respectively, by the same PEG analytic approach (Figure 2b). While the linear
mPEG and PEG had similar retention times, cPEG-OH exhibited a distinctly longer re-
tention time, indicating that the cyclic topology changes the hydrodynamic properties
of PEG significantly.

13C and 1H NMR spectroscopy, mass spectrometry (MS), and gel permeation chro-
matography (GPC) results indicate cPEG-OH is a homogeneous product without linear
PEG mixtures.

3.2. PEGylation of Laponite with cPEG and mPEG

The generic route for covalent modification of the LAP surface with additional ac-
tivated amine groups was previously reported [8,9]. After modification, cPEG-OH or
linear mPEG can be covalently attached to LAP nanoplates by the treatment of activated
cPEG-NP or mPEG-NP with primary amine-functionalized LAP nanoplates (LAP-NH2).
As a result of PEGylation, cyclic PEG or linear mPEG molecules were both covalently
and non-covalently attached to LAP, respectively. With the minimum loss of LAP during
dialysis, there was a 55% weight increase with LAP-cPEG and an 80% weight increase with
LAP-mPEG, indicating the composition ratio of LAP:cPEG was about 2:1 for LAP-cPEG,
but 2:1.6 for LAP-mPEG.
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Figure 2. Representative mass spectra of PEG and cPEG-OH (a); gel permeation chromatography
traces of mPEG, PEG, and cPEG-OH (b).

Fourier transform infrared (FTIR) and 1H NMR spectra were used to verify the PE-
Gylation of LAP. As shown in Figure 3a, all the FTIR signals of cPEG-OH were reflected
on LAP-cPEG. The peak at 1648 cm−1 could be assigned to the carbamate bond formed
between cPEG and LAP. In Figure 3b, the PEG backbone has a signal at 3.70 ppm that was
observed after PEGylation, and the weaker signals at 3.30 to 3.10 ppm corresponded to
the methylene groups of the lock molecule diamino-2-propanol in the LAP-cPEG system.
Notably, the signal corresponding to the methylidyne proton in cPEG ring shifted from
3.55 to 4.42 ppm, confirming the formation of the carbamate bond between LAP and cPEG.
Moreover, the corresponding integral of the signal ratio is 1:9, indicating that the ratio
of covalently attached cPEG: non-covalently attached cPEG is about 1:2 (Supplementary
Figure S2). Similarly, FTIR and NMR studies confirmed the successful coupling of linear
mPEG to LAP. An FTIR signal at 1647 cm−1 was observed in LAP-mPEG, confirming the
formation of the carbonyl bond between mPEG and LAP (Supplementary Figure S3a).
In the NMR spectra (Supplementary Figure S3b), an expected peak at 4.65 observed in
LAP-mPEG corresponded to the protons adjacent to the terminal hydroxy groups in mPEG
while forming the carbamate, and the peak at 3.38 ppm corresponded to the terminal
methyl group of mPEG.
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3.3. Microstructure of PEG-cPEG Particle System

To investigate the size and shape of the synthesized LAP-PEG nano system, a scanning
electron microscope (SEM) was used. While LAP particles physically absorbed PEG copoly-
mer surfactant (Brij58) to form rough and stiff spheres ranging from 70 nm to 1000 nm [16]
and while cross-linked by PEG copolymer chains led to a tough cellular fiber structure [17],
LAP particles attached by cyclic PEG resulted in a distinguishable well-defined structure,
a flexible and nearly spherical particle of about 1 µm (Figure 4(a-1,a-2)), in contrast to the
attachment of linear PEG, which led to an irregular fiber sheet (Figure 4(b-1,b-2)). cPEGy-
lation of LAP resulted in a stable LAP-PEG system as expected. Higher accumulation of
LAP might lead to precipitation from the LAP suspension; however, owing to the specific
properties of cPEG, LAP-cPEG remains a clear liquid without precipitate even when stored
at lower temperature for longer times (Supplementary Figure S4). The cPEG endows
inorganic LAP particles with greater hydrophilicity and organophilicity.
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3.4. Dynamic Light Scattering (DLS) Characterization of PEG-cPEG Nanoparticles

The average hydrodynamic size of native LAP varies greatly from 100 nm to 300 nm
depending on concentration, which is attributed to the stacking of LAP disc crystals in
water [16]. Dynamic light scattering (DLS) was used to monitor the changes in hydrody-
namic size and zeta potential of modified LAP (Figure 5). In the study, solid samples of
LAP, LAP-NH2, and synthesized LAP-PEG were dispersed in water at a concentration of
0.05 mg/mL for DLS analyses. As summarized in Table 1, from LAP to LAP-NH2, a slight
increase in average size and remarkable increase in average zeta potential were due to the
modification of the LAP discs with amine groups, which are positively charged by protona-
tion. The subsequent PEGylation of LAP discs with PEG leads to the expansion of average
hydrodynamic size, and the recovery of average zeta potential due to the conversion of
amine groups to carbamate groups after coupling. The hydrodynamic size for LAP-cPEG
centered at 4661 nm is larger than the size of the mono LAP-cPEG nanoparticle, with an
SEM measurement at roughly 1000 nm, indicating the higher order cluster behavior of
LAP-cPEG nanoparticles.
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Table 1. Zeta potential, hydrodynamic size, and polydispersity of LAP, LAPNH2, LAPm-PEG, and
LAP-cPEG.

Nanoparticles Hydrodynamic Size (nm) Zeta Potential (mV) Polydispersity (PDI)

LAP 284 ± 6 −37.5 ± 0.7 0.32
LAP-NH2 360 ± 19 −18.8 ± 1.2 0.52
LAP-mPEG 2653 ± 42 −30.7 ± 5.5 0.85
LAP-cPEG 4661 ± 32 −27.2 ± 3.2 0.41

3.5. Primary Studies of LAP−cPEG/DOX Formulation
3.5.1. LAP−cPEG/DOX Formulation

In this study, 10% DOX was mixed well with LAP-cPEG (1 mg/mL) and then dialyzed
against water using a membrane with an MWCO of 15,000 to remove any remaining DOX.
The combined dialysates with free DOX were concentrated and quantified by UV–Vis using
a standard curve as described in the Supplementary Materials. The drug loading efficiency
of LAP-cPEG was found to be 64%, which was higher than that of mPEG (46%). In contrast,
when 10% DOX was fed with LAP (1 mg/mL), the LAP/DOX complex precipitated from
the solution during dialysis (Supplementary Figure S5).

The encapsulation of DOX in LAP-cPEG was confirmed by UV–Vis spectroscopy.
The characteristic peak of DOX was observed in the absorption spectrum of the LAP-
cPEG/DOX formulation with an absorption maximum at around 480 nm (Figure 6a). With
its liquid-like properties, the LAP-cPEG/DOX formulation could be characterized by ultra-
performance liquid chromatography (UPLC) chromatography. The retention time of the
composite slightly lagged in contrast to DOX alone (Figure 6b).
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Figure 6. UV–Vis spectra (a) and UPLC chromatogram (UV traces at 480 nm) (b) representative of 
aqueous solutions of LAP-cPEG, DOX, and LAP-cPEG/DOX. 
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aqueous solutions of LAP-cPEG, DOX, and LAP-cPEG/DOX.

3.5.2. In Vitro Release Studies

The quantitative drug release profile in human plasma was determined by means
of dialysis as described in the Supplementary materials. With the 15 kDa membrane, the
free DOX was able to diffuse across the membrane and into the outer medium, which was
measured by UV–Vis spectroscopy at predetermined time intervals. As shown in Figure 7a,
in the presence of human plasma, compared to the LAP-mPEG/DOX formulation with a
burst release of drug at 6 h, the LAP-cPEG/DOX formulation showed a prolonged release
profile over 24 h. In the presence of PBS, while almost 100% of DOX was released from
DOX solution in less than 3 h, only 15% of the drug was released from the LAP-cPEG/DOX
system, indicating that the LAP-cPEG/DOX formulation remained stable in aqueous PBS.
Free DOX would form a red precipitate in PBS due to the formation of covalently bonded
DOX dimers [28]. Additionally, due to the degradation of free DOX in the presence of
plasma [29], a reduction in the concentration of DOX in the measured solution was observed
(Figure 7a).
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formulation in the presence of PBS or human plasma, and LAP-mPEG/DOX formation in human
plasma (a); in vitro XTT cell viability assay of A549 cells treated with free DOX, LAP-mPEG/DOX,
and LAP-cPEG/DOX at different DOX concentrations for 48 h (b).

3.5.3. Efficacy of LAP-cPEG/DOX Formulation on A549 Cell Growth Inhibition

After a 48-h incubation, A549 cells had similar levels of viability with DOX or LAP-
cPEG/DOX (Figure 7b), suggesting that the DOX in the hybrid nanoparticles can still
effectively inhibit cancer cell proliferation. While there was delayed and slow release of
DOX from the delivery system, the A549 cell growth inhibition by LAP-cPEG/DOX was
found to be similar to DOX in the free form. This indicates that the synthesized LAP-cPEG
is functional and has potential as a novel drug delivery system. The OD value in each group
was normalized against the OD value in cells cultured with only the appropriate medium.
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3.5.4. Increased Drug Efficacy in LAP-cPEG/DOX in Comparison with LAP-mPEG/DOX

At lower DOX concentrations (<0.01 µM), DOX or its LAP-PEG formulations did
not affect the survival of A549 cells, while at high DOX doses (e.g., 10 µM) , DOX or its
LAP-PEG formulations demonstrated similar effects such that almost all A549 cells were
killed indiscriminately. In this study, A549 cells were treated with either DOX alone or
LAP-PEG/DOX formulations with a final DOX concentration, representing 0.75, 1, and
1.25 µM for 24 h. As summarized in Figure 8, a similar trend was seen in both DOX and
LAP-cPEG/DOX treatments, in which cell survival decreased along with increased DOX
concentration, whereas cells treated with LAP-mPEG/DOX maintained a consistently
higher survival rate. At a DOX concentration of 1 µM or 1.25 µM, LAP-cPEG/DOX was
twice as efficient as LAP-mPEG/DOX at inhibiting cancer cell proliferation. Toxicity
analysis of these nanoparticles indicated that there was no remarkable interference from
the agents (Supplementary Figure S6). The significant increase in the drug efficacy may
be a result of the greater accumulation of LAP-cPEG, which enhanced permeability and
retention (EPR) [30,31].
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Figure 8. XTT assay results summary of A549 cells treated with DOX, LAP-mPEG/DOX, and LAP-
cPEG/DOX at DOX concentrations of 0.75, 1, and 1.25 µM The viability of the cells treated with
LAP-cPEG/DOX was significantly decreased compared to those treated with LAP-mPEG/DOX
(* p < 0.05; ** p < 0.01).

Based on the series of XTT assays in A549 cells, the IC50 value for A549 cells was
calculated as approximately 1 µM DOX, which corresponded to 9 µg/mL of the LAP-
cPEG/DOX complex. This concentration is similar to the free DOX reported in this study.
When using this complex to further target specific tumor biomarkers, the advantages of
LAP-cPEG/DOX delivery system are enormous due to the lower toxicity.

Flow cytometry was also used to evaluate the effects of the formulations on A549 cells.
As shown in Figure 9, LAP-cPEG/DOX kept pace with DOX, displaying rapidly increasing
lethality with increasing DOX concentrations from 0.75 to 1.25 µM. In comparison, the
effect of LAP-mPEG was much weaker. The 7-AAD staining results were in line with the
data from the XTT assay.
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Figure 9. Evaluation of apoptosis in A549 cells by 7-AAD assay after 24 h of treatment with DOX,
LAP-mPEG/DOX, and LAP-cPEG/DOX. As shown, there was a significant increase in the number of
apoptotic cells treated with the LAP-cPEG/DOX formulation compared to the LAP-mPEG/DOX at a
DOX concentration of 1.25 µM (*** p < 0.001).

3.5.5. Increased Drug Efficacy in LAP-cPEG/DOX in Primary Lung Epithelial Cells

The use of primary lung epithelial cells to evaluate the effects of LAP-cPEG/DOX has
the clear advantage of a higher biological relevance compared to A549 cell data. After 24 h
incubation, the cells were trypsinized and double-stained with epithelial and live–dead
markers for the flow cytometry assay. The result showed that LAP-cPEG/DOX induced
apoptosis in about 3% of lung primary epithelial cells, while LAP-mPEG/DOX induced
apoptosis in about 1% (Figure 10). This suggests that conjugation of cyclized PEG, but
not linear PEG, led to better accumulation and permeation of DOX. Free DOX had similar
performance to LAP-cPEG/DOX, consistent with the previous XTT and flow cytometry
assays in A549 cells.
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4. Conclusions

The goal of the current study was to design and assess the feasibility of a new drug
delivery system using LAP and cPEG. Chemically homogeneous cyclic PEG with a bare
functional hydroxy group was synthesized using gentle conditions. This synthetic approach
produces the cPEG in a non-toxic manner and markedly enhances the biocompatibility.
The cPEGylation leads to a variety of physical and covalent interactions between LAP
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nanoparticles and cPEG rings. The increase in surface area enhances the adsorption
propensity for organic molecules. Moreover, the presence of cPEG molecules renders
the system more hydrophilic and organophilic. LAP-cPEG nanoparticles have a greater
solubility and are more biocompatible.

Our drug encapsulation studies indicate that DOX-loaded LAP-cPEG nanoparticles
maintain their solubility after being fed with 10% of DOX and have a loading efficiency
1.5 times higher than that obtained with LAP-mPEG. The LAP-cPEG/DOX formulation
increased stability over the LAP-mPEG formulation. Moreover, our results have demon-
strated that the LAP-cPEG/DOX formulation displays efficient anticancer activity.

The unique properties, release profile, and enhanced cytotoxicity performance en-
courages further special affinity studies. Furthermore, uniform sizes and morphological
factors of the LAP-cPEG nano system would be a priority for its advanced applications.
This cPEGylation sets a precedent for constructing these unique organic–inorganic hybrid
nanoparticles. Thus, this unique cPEGlyation has further potential in targeting approaches
and biological applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15071998/s1, Figure S1: Calibration curve of
DOX in water at 480 nm; Figure S2: Representative peak integration values of LAP-cPEG system;
Figure S3: FTIR spectra (a), and 1H NMR spectra (b) of LAP, LAP-NH2, mPEG and LAP-mPEG;
Figure S4: LAP and LAP-NH2 suspensions (1 mg/mL) vs. LAP-mPEG and LAP-cPEG solutions
(5 mg/mL); LAP/DOX, LAP-mPEG/DOX, and LAP-cPEG/DOX formulations are subjected in 15 K
dialysis membranes after 6 h; Figure S6: In vitro cell cytotoxicity test of raw LAP, LAP-mPEG, and
LAP-cPEG by means of XTT assay; Figure S7: 1H NMR spectrum of PEG-NP (a) and mPEG-NP (b) in
CDCl3; 1H NMR spectrum (a) and 13C NMR spectrum (b) of cPEG-OH in CDCl3; Figure S9: 1H NMR
spectrum of LAP-cPEG (a), and LAP-mPEG (b) in D2O; Table S1: The summary of calculation of the
DOX loading efficiency; Table S2: The absorbances of withdrawn dialysis medium at different time
points; Table S3: The concentrations of DOX (mg/mL) in dialysis medium at different time points;
Table S4: DOX release percentages from the formulations at different time points.
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