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Abstract: Over the past several decades, liposomes have been extensively developed and used for
various clinical applications such as in pharmaceutical, cosmetic, and dietetic fields, due to its versa-
tility, biocompatibility, and biodegradability, as well as the ability to enhance the therapeutic index
of free drugs. However, some challenges remain unsolved, including liposome premature leakage,
manufacturing irreproducibility, and limited translation success. This article reviews various aspects
of liposomes, including its advantages, major compositions, and common preparation techniques,
and discusses present U.S. FDA-approved, clinical, and preclinical liposomal nanotherapeutics for
treating and preventing a variety of human diseases. In addition, we summarize the significance
of and challenges in liposome-enabled nanotherapeutic development and hope it provides the fun-
damental knowledge and concepts about liposomes and their applications and contributions in
contemporary pharmaceutical advancement.
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1. Introduction

Cancer has brought a critical burden to the economy and society. GLOBOCAN
(the World Health Organization’s International Agency for Research on Cancer Global
Cancer Observatory) 2020 reported an estimation of 19 million new cancer cases and
10 million cancer deaths occurred worldwide [1]. Currently, cancer treatments are still
mainly proceeded by surgery, radiotherapy, and chemotherapy, although gene therapy
and immunotherapy have been brought up as novel methods with a higher therapeutic
index. However, some challenges remain unsolved even with the advanced therapies,
such as low solubility, poor pharmacokinetics, non-specific biodistribution, and systemic
toxicities [2,3]. Therefore, targeted delivery of therapeutics to specific sites has been an
active area of research in the last couple of decades. Of note, several drug delivery platforms
have been reported, and some are being used in clinical settings, including antibody-drug
conjugates, polymers, as well as liposomes [4–6]. Of those, liposomes are a promising drug
delivery vehicle due to their biocompatibility and biodegradability, good stability, as well
as the ability to encapsulate both hydrophobic and hydrophilic contents [7]. When the first
liposome was described by Bangham et al. in 1964 [8], it had grown to be a great interest in
cosmetic, dietetic, and pharmaceutical areas [9–11].

Due to the natural properties of liposome, the major components are lipids and fatty
acids comprising phospholipids, which can spontaneously self-assemble into a lipid bilayer
with an aqueous core. The phospholipid bilayer is similar to the construction of the cell
membrane. Therefore, liposomes are considered to be biocompatible and biodegradable [7].
Because of the presence of a lipid membrane and a hydrophilic interior, liposomes can be
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used to deliver both hydrophilic and hydrophobic molecules. With that, liposomes have
been further researched of their benefits as a drug delivery platform (Table 1).

Table 1. Advantages of liposomes.

Advantages of Liposome:

■ Improved solubility of encapsulated drugs

■ Reduction of the free drug side-effects and toxicities

■ Flexibility in size, charge, and lamellarity

■ Non-toxic, biocompatible, and biodegradable

■ Versatility with surface modifications

This review will summarize the characterizations of liposomes and elaborate some
major liposome preparation methodologies as well as explore the applications of liposomes
in different diseases and introduce some of the U.S. FDA (Food and Drug Administration)
approved and preclinical- and clinical-testing liposomal nanodrugs. We also discuss recent
novel applications and comment on the disadvantages of liposomes. We believe that
this review is an attempt to provide a detailed insight in understanding how to prepare
liposomes and why liposomes are used as nanocarriers for therapeutic delivery.

2. Characterization and Major Components of Liposomes

Several ways can be used to classify liposomes, including size, lamellarity, and method
of preparation [12,13]. We define liposomes by their size and lamellarity. These two factors
also dominate the drug encapsulation efficiency and ADME (absorption, distribution,
metabolism, and elimination) of the drug [7,14,15]. By lamellarity, liposomes can be defined
as: a unilamellar vesicle (ULV), with one bilayer membrane; an oligolamellar vesicle (OLV),
with 2–5 bilayer membranes; or a multilamellar vesicle (MLV), with five or more bilayer
membranes. Furthermore, ULV can be classified by its size, including small unilamellar
vesicle (SUV) ranging from 20 to 100 nm; large unilamellar vesicle (LUV) with a size larger
than 100 nm; and giant unilamellar vesicle (GUV) with a size bigger than 1000 nm [16].
Generally, ULV is formed by a phospholipid bilayer and an aqueous core. More uniquely,
several ULVs with gradually smaller sizes caging inside each other compose the MLV,
which resembles an onion, and each lipid bilayer is separated by an aqueous layer [17].

Three dominant components that contribute to the formation, stability, and functional-
ity of liposomes include phospholipids, cholesterol, and polyethylene glycol (PEG).

2.1. Phospholipids

Phospholipids, amphiphilic in nature, contain both polar and non-polar groups. In the
aqueous solution, phospholipids self-assemble into a bilayer sheet where the headgroups
align, forming two lipid layers with their tail groups facing each other [18].

Generally, a phospholipid is composed of hydrophobic fatty acyl chains, a glyc-
erol or sphingosine backbone, and a hydrophilic headgroup. The fatty acid chain takes
part in structure functions of phospholipids, also called “building blocks” of the cell
membrane [19]. It can differ by length, branch, and degree of saturation of the carbon
chain [20]. Phosphatidic acid (PA) is a phospholipid found in cell membranes and acts
as a building block for the biosynthesis of other phospholipids (Figure 1). Common
phospholipids, including phosphatidylethanolamine (PE), phosphatidylglycerol (PG),
phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI), are
all derivatives of PA [21], and the main differences among these phospholipids are the
functional head groups (Table 2). Cationic phospholipids, such as 1,2-di-O-octadecenyl-
3-trimethylammonium propane (DOTMA), 1,2-Dioleoyl-3-trimethylammonium propane
(DOTAP), and Dimethyldioctadecylammonium (DDAB), are well known for their ability for
gene delivery (Figure 2) [22]. Moreover, the most representative of sphingosine-consisting
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phospholipid is sphingomyelin, which contains an amino alcohol on the backbone [23]. As
the main structural and functional component in liposomes, phospholipids play a vital role
in the constitution of liposomes, and they also act as a surfactant and help in solubilization
and metabolism of the vesicles, as phospholipids can not only maintain the integrity of
cellular structure and functions to regulate the passage of molecules, ions, and nutrients
in/out of the cells, but also contribute to forming lipid droplets as triglycerides to store
energy [24–26].
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headgroup of the phosphatidic acid.

Table 2. Common phospholipids with their respective chemical formula of the headgroup.

Name of the Phospholipids R-Group

Phosphatidic acid -H

Phosphatidylethanolamine -CH2-CH2-NH3
+

Phosphatidylglycerol -CH2-CHOH-CH2-OH

Phosphatidylcholine -CH2-CH2-N(CH3)3
+

Phosphatidylserine -CH2-CH-NH2COOH

Phosphatidylinositol
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2.2. Cholesterol

Cholesterol plays an important role in cell membranes and acts as the precursor
to the biosynthesis of several compounds, including bile acid, Vitamin D, and steroid
hormones [27–29]. Structurally, cholesterol is a rigid molecule with a steroid skeleton of four
fused rings, three six-member rings, and one five-member ring (Figure 3). Stereochemistry
and oxidation states changes on the fused rings, hydrocarbon side chains, and the functional
groups will lead to the biosynthesis of the compounds as mentioned above. Additionally,
within the phospholipid bilayer, cholesterol significantly influences membrane fluidity,
permeability, and stability by interacting with the nonpolar tails of phospholipids and their
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polar headgroups. The interaction of cholesterol involves binding its nonpolar portion
to the hydrophobic tails of phospholipids while its polar head group associates with the
hydrophilic headgroups of phospholipids [30,31]. Consequently, cholesterol plays a dual
role in contributing to the formation of phospholipid bilayers and impacting the properties
of liposomes. Moreover, it impacts the rigidity, strength, and permeability of the lipid
membrane by modulating the ratio of phospholipids to cholesterol within the bilayers.
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2.3. Polyethylene Glyco

Polyethylene glycol (PEG) forms through the polymerization of ethylene glycol,
ethylene oxide, or diethylene glycol in the presence of water and a catalyst under pres-
sure [32,33]. The chemical structure of PEG generally comprises OH-[CH2-CH2-O]n-H.
Being hydrophilic in nature, PEG can be covalently attached to the surface of liposome to
impart the “stealth” effect [34,35] via educing protein binding and opsonization as well as
diminishing degradation by metabolic enzymes. This occurs because PEG prevents the
approach or recognition by blood proteins, proteolytic enzymes, and antibodies during
circulation, thereby enhancing the therapeutic index in comparison to the raw drugs [36,37].
Notably, PEGylated liposomes have been shown to increase in vivo circulation time and
improved formulation stability [38]. This extension of circulation time and enhancement of
stability are crucial factors in improving the performance of liposomal drug delivery systems.

2.4. Major Methods of Liposome Preparation

Several ways are developed for liposome preparation, both conventional and novel
techniques. Different methods can affect the properties of liposomes, including size, lamel-
larity, and encapsulation efficiency [12–14].

2.4.1. Thin Film Hydration

When the thin film hydration method (Figure 4), also called the Bangham method, was
first described in 1967, it was used as the most common and simplest technique for liposome
synthesis in laboratory scale [39]. In this method, the lipids and amphiphilic molecules are
mixed in the organic solvent, as the liposome formation precursor, which is then transferred
to the round-bottom flask. Following the solvent evaporation by rotary evaporator, a thin
lipid film on the bottom of the flask is formed. A freezing-drying procedure, typically
conducted on hydrated lipids, can also be utilized to ensure the complete the removal
of solvents. The film is then hydrated with an aqueous solution that contains drugs.
This step facilitates the encapsulation of drugs into the lipid thin film, and subsequent
hydration triggers the formation of liposome. It is also crucial that the temperature of
the hydration buffer remains above the gel–lipid phase transition temperature ™ [13].
Furthermore, several other critical factors affecting liposomal characteristics include the
volume of the hydration solution and the rate of hydration [12,40]. A large volume of the
hydration solution tends to generate a great number of multilamellar vesicles (MLVs) with
a more heterogeneous size distribution. Additionally, MLVs will be formed if rehydration
after freeze-dry is too energetic, in another word, vigorous swirling [41], while a gentle
rehydration will form GUVs [40].
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Therefore, size reduction methods are needed to generate homogenous SUVs. Two
size reduction methods are widely used, including sonication and multiple extrusions.
Sonication is mainly applied by probe sonication or water bath sonication. Size distribution
of the liposomes can be determined by the frequency ultrasonic waves and the duration
of the sonication [42]. A jacked extruder can also be used to reduce the size and generate
homogenous size liposomes by multiple extrusions through a polycarbonate membrane.
Size distribution of the liposomes is dependent on the number of extrusions and the
size of the polycarbonate membrane pores [43,44]. Despite the advantages, the thin film
hydration method also has its drawbacks, such as low aqueous core entrapment and low
drug encapsulation efficiency [13,16].

2.4.2. Reverse Phase Evaporation

The reverse phase evaporation technique tends to form intermediates of invert mi-
celles or a water-in-oil emulsion, where the encapsulated drugs are stocked in the water
phase and lipids comprise the organic phase, which contribute to the liposome formation
(Figure 5) [16]. Reverse phase evaporation can generate a mixture of LUVs and MLVs,
resulting in the entrapped aqueous phase. This outcome significantly enhances drug
loading capacity and allows for the entrapment of larger molecules, such as proteins or
nucleic acids [7]. This method is similar to the thin film hydration technique. Starting with
mixing the amphiphilic phospholipids and other lipids (e.g., cholesterol) together in the
organic solvent and following with evaporation by rotatory evaporator, the thin film is
formed in the round-bottom flask. Different from thin film hydration, here, the thin film
is redissolved in the organic phase, usually by an organic solvent consisting of diethyl
ether and/or isopropyl ether. An aqueous solution containing the drug of interest is then
added into the redissolved lipid phase. Following the sonication, it yields a two-phase
system, where the liposome is obtained. The organic solvent is then removed under low
pressure evaporation, and the conversion system leads to form a viscous gel. The remaining
solvent can be removed by dialysis, centrifugation, or passing through a Sepharose gel
column [16,45]. For size reduction purposes, multiple extrusions can then be made on the
final product. With respect to the desired size distribution of the liposome, it can be deter-
mined by the pore size of the polycarbonate membrane and numbers of extrusions [44,45].
The potential drawbacks of the reverse phase evaporation technique lie in the remaining
trace elements from the incomplete removal of organic solvent in redissolved liposome,
which can interrupt the chemical or biological stability of the drug-laden liposomes [45].
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representation of the main stages of the reverse-phase evaporation method. Lipids are dissolved in
organic solvent (A), and the formation of inverted micelles is observed (B). The addition of aqueous
media (buffer), followed by emulsification of the solution, favors the formation a homogeneous
dispersion of a W/O microemulsion (C). With the final elimination of the organic solvent (by using
rotary evaporation, under vacuum), a viscous gel is formed in the solution, which finally collapses to
form liposomes (D) (LUVs).

2.4.3. Solvent Injection

From its name, solvent injection is conducted by injecting the phospholipids dissolved
in the organic phase into a drug-containing aqueous solution, leading to the formation of
liposomes (Figure 6). In this technique [47], lipids and amphiphilic molecules are dissolved
in an organic solvent with low boiling temperature. The mixture is then injected into a
drug-containing aqueous solution at a constant and higher temperature than the boiling
point of the mixture. By this way, the organic solvent can be evaporated, and the liposome
vesicle will be formed. Typically, solvent injection will produce LUVs. Alternatively, if the
organic solvent has a higher boiling point than the aqueous phase, then after injection, the
organic solvent can be removed by dialysis, centrifugation, or passing through a Sepharose
gel column [48,49].
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solution favors the self-assembly of lipid components and the formation of bilayer planar
fragments (B). Finally, the ethanol evaporation (depletion) favors the fusion of the lipids’ fragments
and the formation of closed unilamellar vesicles (SUL and LUV) (C).

The limitations of the solvent injection technique include: high poly-dispersity indexes
(PDI), which indicates a heterogeneous size distributions [47], and incomplete removal of
the organic phase, which is harmful for liposome construction after formation.

2.4.4. Detergent Removal

The detergent removal method, also called detergent dialysis, uses detergent micelles
to produce liposomes. Some detergents can solubilize lipids at their critical micelle concen-
trations, including cholate, alkyl glycoside, and Triton X-100 [7]. In this method, detergent
micelles are added into the drug-containing aqueous solution. The detergent is then re-
moved by dialysis or size exclusion gel chromatography [13,50]. When the detergent is
removed, the micelles tend to favor forming liposomes and eventually generate LUVs. The
disadvantage of this technique can be emphasized by high PDI.

2.4.5. Micro Hydrodynamic Focusing

The micro hydrodynamic focusing method was first described by Jahn et al., and it
was used to form the monodisperse liposome [51]. In this method, two kinds of small
microfluidic channels have been used, and both channels have varying diameters up to
500 µm (Figure 7). A flow of phospholipids in an organic phase occur in the center and
cross with the perpendicular streams of aqueous buffer containing the drugs. The crossflow
results in diffusive mixing and the formation of lipid vesicles. By using this technique, the
liposome size distribution and encapsulation efficiencies can be controlled by the aqueous
buffer-to-organic phase flow rate ratio, diameter of the microchannels, and concentration of
the lipids in the organic solvent [52]. The micro hydrodynamic focusing method has most
of the benefits for liposome preparation. Compared with other techniques, this microfluidic
injection method is convenient, quick, and affordable, and it can be easily adopted in any
biomedical or pharmaceutical research laboratory [53].Pharmaceutics 2024, 16, x FOR PEER REVIEW 8 of 28 
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2.5. Major Methods of Liposome Characterization

The efficacy of a liposome formulation is defined by several key aspects including size
distribution, zeta-potential, stability and drug leakage, and phase transition temperature.
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2.5.1. Size Distribution and Zeta-Potential

Size distribution and zeta-potential are properties affected by the liposome prepa-
ration techniques and compositions, playing critical roles in the liposomal therapeutic
delivery [55,56]. Both size distribution and zeta-potential can be measured by dynamic
light scattering (DLS), in which the size distribution of liposomes indicates the diameter
and polydispersity index (PDI), and zeta-potential emphasizes the overall charge that the li-
posomes in a particular medium. [57–59]. Liposome sizes range from very small (0.025 µm)
to large (2.5 µm), typically designed to be <400 nm to enable passive accumulation of lipo-
somes within the tumor microenvironment through the enhanced permeation and retention
(EPR) effect [7,60]. The measurement of PDI determines the uniformity of the liposome
size, where the smaller the PDI, the more uniform the liposome will be [61]. Liposome
surface charge can decide its targeting. Liposomes with positive surface charge facilitate
the absorption into tissues, whereas those with a slightly negative charge appear to prolong
the circulation time by efficiently minimizing the protein binding and opsonization. Thus,
we can adjust the surface charges on liposomes to potentially improve in vivo targeting
efficacy [62,63]. Additionally, liposomes with neutral surface charge tend to aggregate [13].

2.5.2. Stability and Drug Leakage

Liposome stability is a critical index that impacts its potential efficacy and utility
in clinic. The physical and chemical instability of liposomes can lead to side effects and
efficacy reduction [64,65]. Physical stability refers to the ability of liposomes to maintain
their structural integrity over time. It is crucial for their storage, handling, and successful
delivery to the target site [66]. The stability of a liposome formulation is typically analyzed
by measuring size distribution and zeta-potential at multiple timepoints, such as days,
weeks, or months, and assessing drug leakage [13]. If liposomes experience physical
instability, they may undergo aggregation, fusion, or leakage of their contents, which can
result in a loss of drug efficacy or altered pharmacokinetics.

Chemical stability refers to the ability of liposomes to resist degradation and main-
tain the integrity of the encapsulated drugs or therapeutic agents. Chemical instability
in liposomes could arise from the degradation mechanisms of oxidation and hydrolysis,
etc. Oxidation is highly likely to occur as a result of the presence of free radicals in fatty
acids, which serve as intrinsic components. Within this mechanism, unsaturated fatty acids
exhibit greater susceptibility compared to their saturated counterparts [67]. If liposomes
undergo chemical instability, the active compounds may degrade, lose their potency, or
undergo undesirable chemical reactions, leading to reduced therapeutic effectiveness [68].
Additionally, instability of liposomes induced by the chemical nature of the encapsulated
drugs also remain a concern in drug delivery. The interactions between drugs and phospho-
lipids can disrupt the chemical stability of liposomes due to various drug-related factors,
including hydrophobicity/hydrophilicity, pH sensitivity, and chemical reactivity [64,69,70].
Hence, understanding the inherent chemical properties of the delivered drug is crucial
in designing liposomal formulations that minimize leakage and improve drug retention
within the vehicles.

The propensity of hydrogen bond formation in liposomes is crucial for structural
stability. Hydrogen bonds serve as a pivotal factor in maintaining the structural integrity of
liposomes [71]. These bonds are conducive to stabilizing the phospholipid bilayer, which
constitutes the basic structure of liposomes, by enhancing the interaction between lipid
molecules. This could prevent a breakdown and sustain the integrity of the vesicle structure.
Moreover, it also plays a vital role in membrane permeability [72]. Depending on the types
or strength of hydrogen bonds present, the liposome membrane displays varied degrees
of permeability. Consequently, it is possible to regulate the encapsulation and subsequent
drug release within the liposomes via modulating the hydrogen bonding.
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2.5.3. Phase Transition

Phase transition temperature (Tc) of phospholipids also stands as a critical parameter
influencing the fluidity of liposomes within the lipid bilayer. This transition, from a rigid
gel phase to a more fluidic liquid crystalline phase, significantly impacts the permeability
and aggregation tendencies of the liposome [69,73]. Moreover, the Tc of phospholipids is
contingent upon on the lengths and types (saturated and unsaturated) of their fatty acid
chains [74]. Consequently, monitoring the fluidity of bilayers or liposomes can be achieved
by selecting different phospholipids.

Additionally, lipid aggregates undergo two distinct types of phase transition: ther-
motropic and lyotropic [75].

Thermotropic phase transitions occur when the temperature changes, leading to
alterations in the organization and composition of lipid structures. Lipid molecules can
transition between various states, such as from a structured and rigid gel phase to a more
fluid and less ordered liquid crystalline phase as temperature increases. These changes
relate to the packing and mobility of lipid molecules within the assemblies as temperature
fluctuates [75,76].

Changes in solvent concentration, such as water, within a system containing lipids
or amphiphilic compounds lead to lyotropic phase transitions. These transitions involve
restructuring and altering the structure of lipid aggregates, such as micelles or bilayers,
in response to changes in solvent concentration. For example, fluctuations in water con-
centration prompt lipid molecules to adopt various organized arrangements like lamellar
structures (sheets), hexagonal patterns, or micelles. These modifications occur due to
interactions between the lipids and the solvent molecules [77].

2.5.4. Fluorescence Microscopy

Fluorescence microscopy techniques enable multi-color imaging of individual lipo-
some, providing a more quantitative and comprehensive understanding of their biochemi-
cal properties [78]. Among these techniques, two commonly utilized methods include laser
scanning confocal fluorescence microscopy (LSCFM) and total internal reflection fluores-
cence microscopy (TIRFM). LSCFM, known for its high resolution, optical sectioning, and
3D imaging capabilities [79,80], serves to characterize liposomes and observe their structure,
behavior, and interactions with high precision [81,82]. In contrast, TIRFM is well-known
for its accessibility and high sensitivity in probing biomolecules properties [83]. When
characterizing liposomes, TIRFM presents unique advantages by allowing observations of
membrane-related phenomena and interactions at the liposome interface [84,85]. Both LSCFM
and TIRFM play pivotal roles in unraveling the liposomal structure and their interactions,
contributing significantly to our understanding of the liposomal delivery platforms.

2.5.5. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) is a potent analytical technique exten-
sively utilized in liposomes research, including composition assessment, structural analysis,
interaction studies, and stability evaluation [86–88]. Different functional groups in lipids
have unique peaks in the FTIR spectrum, enabling the straightforward determination of
lipid composition and ratios within liposomes. Changes in specific absorption bonds will
be indicated as interactions between lipid and encapsulated molecules, such as hydrogen
bonding, while also serving as a mean to access liposome stability by detecting alteration
because of oxidation or degradation. Thus, FTIR provides invaluable insight into the
liposome characterization, contributing significantly to the optimization of liposome-based
drug delivery platforms.

2.6. Stimuli-Responsive Liposomes

Stimuli-responsive liposomes are specifically designed to release their payloads in
response to specific external stimuli. Many environmental stimuli have been explored
including pH, temperature, and enzymes.
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2.6.1. pH-Responsive Liposomes

pH-responsive liposomes are specialized nanocarriers that are responsive to alter-
nations in the acidity or alkalinity of the surroundings. These liposomes are engineered
to maintain their stability at certain pH and then can rapidly dissociate once exposed to
a different pH environment [89]. Normally, most of the components in pH-responsive
liposomes are similar to other liposomal drugs, except for the pH-sensitive component.
Zhao et al. developed a pH-responsive liposome platform for co-delivery of PLK-1 specific
siRNA and docetaxel using a dual pH-sensitive peptide sequence, composed of three units:
a cell-penetrating domain (polyarginine), a polyanionic shielding domain (ehG)n, and an
imine linkage [90]. During the blood circulation, the liposomal formulation remains inert
until reaching the acidic tumor microenvironment, and then its contents release is initiated
by the breakage of the imine bonds within the pH-responsive peptide under acid-catalyzed
hydrolysis.

Additionally, pH-responsive liposomes have been investigated for the delivery of various
therapeutic agents, such as proteins, nucleic acids, and chemotherapeutics drugs [91,92].

2.6.2. Temperature-Responsive Liposomes

Temperature-responsive liposomes can alter their original structures or behavior in
response to varied temperature. These liposomes are designed to maintain their stability
at one temperature and then undergo conformational changes at a different temperature
threshold.

Zhao et al. investigated a temperature-responsive liposome based on the insertion of
the ion pair of polyethyleneimine (PEI) and (phenythio)acetic acid (PTA) into the liposomal
bilayer [93]. This ion pair, formed by electrostatic interaction between PEIs and PTAs,
possesses amphiphilic properties, facilitating self-assembling in the aqueous solution [94].
Being a compatible molecule, the amphiphilic ion pair contributes to the creation of DOPE
liposomes, with the PTAs’ phenyl head group inserting into the bilayer while PEI’s chain
fills the space among the phospholipid headgroups. As the temperature rises, the ion pair
loses its amphiphilicity due to the hydration of the phenyl group on PTAs [95]. This enables
the detachment of the ion pair from DOPE liposomes, destabilizing the liposomes and
consequently releasing the payload.

Temperature-sensitive liposomes provide the advantage of precise control over drug
release triggered by temperature change, which has been widely applied in various cancer
treatments [96,97].

2.6.3. Enzyme-Responsive Liposomes

Enzyme-sensitive liposomes are designed to release their encapsulated payloads in
the presence of specific enzymes. The controlled release of their contents is triggered by the
exposure or recognition of particular enzymes.

Chasteen et al. explored enzyme-responsive liposomes by modifying the N-acylated
DOPE into the liposomes [98]. Exposure to specific temperature (55 ◦C to 65 ◦C) in the
presence of palladium, as a catalyst for biorthogonal chemistry [99], will generate triggered-
release liposomes. This involves crafting chemically caged polar lipids capable of transition-
ing from a structure that maintains a liposomal membrane to one that disrupts the bilayer.

Enzyme-responsive liposomes show potential for targeted drug delivery in various
medical fields, as they could be easily tailored to respond to different enzymes associated
with specific diseases for precise therapeutic delivery [96,100].

3. Pharmaceutical Applications of Liposomes

Owing to its biocompatibility, biodegradability, nontoxicity, and favorable physical
properties for convenient modifications of surface charge and its size, since the 1990s, there
have been more than a dozen U.S. FDA-approved liposomal or lipid-based nanodrugs
(Table 3) with numerous more under preclinical and clinical development.
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Table 3. U.S. FDA-approved liposomal/lipid-based nanodrugs.

Name Clinical
Approval Year Liposomal Composition Drug Encapsulated Drug Type Route of

Administration Company References

Doxil 1995 HSPC:Cholesterol:DSPE-PEG2000 Doxorubicin Chemotherapeutic I.V. Johnson & Johnson, Milpitas, CA, USA [101,102]

Abelcet 1995 DMPC:DMPG Amphotericin B Antifungal I.V. Leadiant Biosciences. Inc.,
Rockville, MD, USA [103,104]

DaunoXome 1996 DSPC:Cholesterol Daunorubicin Chemotherapeutic I.V. Galen US, Inc., Souderton, PA, USA [101,105]

Amphotec 1996 Cholesteryl sulphate:Amphotericin B Amphotericin B Antifungal I.V. Sequus Pharmaceuticals Inc., Menlo Park,
CA, USA [101]

Inflexal V 1997 70% Lecithin, 20% Cephalin and 10% Phospholipids Influenza virus antigen, strain A
and B Vaccine I.M. Sun Pharmaceutical Industries Ltd.,

Princeton, NJ, USA [101,106]

Ambisome 1997 HSPC:DSPG:Cholesterol:Amphotericin B Amphotericin B Antifungal I.V. Fujisawa Healthcare, Inc. and Gilead
Sciences, Inc., Foster City, CA, USA [101]

Myocet 2000 EPG:Cholesterol Doxorubicin Chemotherapeutic I.V. Zeneus Pharma Ltd., Oxford, UK [101,107]

Visudyne 2000 Verteporfin:DMPC and EPG Verteporfin Photosensitizer I.V. Novartis International AG,
Basel, Switzerland [101]

DepoDur 2004 DOPC:DPPG:Cholesterol:Tricaprylin and Triolein Morphine sulfate Narcotic Analgesic Epidural Pacira Pharmaceuticals, Inc., Watford, UK [101,108]

Mepact 2004 DOPS:POPC Mifamurtide Immunomodulator/
Antitumor I.V. Takeda Pharmaceutical Limited,

Tokyo, Japan [101]

Exparel 2011 DEPC:DPPG:Cholesterol:Tricaprylin Bupivacaine Anesthetic I.V. Pacira Pharmaceuticals, Inc.,
Parsippany-Troy Hills, NJ, USA [101]

Onivyde 2015 DSPC:MPEG-2000:DSPE Irinotecan Chemotherapeutic I.V. Merrimack Pharmaceuticals, Inc.,
Cambridge, MA, USA [101,109]

Vyxeos 2017 DSPC:DSPG:Cholesterol Daunorubicin + Cytarabine Antineoplastic I.V. Jazz Pharmaceuticals, Inc.,
Dublin, Ireland [110]

Onpattro 2018 Cholesterol,
DLin-MC3-DMA:DSPC:PEG2000-C-DMG Patisiran RNAi agent I.V. Alnylam Pharmaceuticals, Cambridge,

MA, USA [111]

Comirnaty 2021 ALC-0315:ALC-0159:cholesterol:DSPC
Nucleoside-modified mRNA
encoding the viral spike (S)
glycoprotein of SARS-CoV-2

Vaccine I.M. Pfizer-BioNTech, Mainz, Germany [112]

Spikevax 2022 SM-102:mPEG2000-DMG:Cholesterol:DSPC
Nucleoside-modified mRNA
encoding the viral spike (S)
glycoprotein of SARS-CoV-2

Vaccine I.M. Moderna, Cambridge, MA, USA [113]
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3.1. Anti-Cancer

Cancer is a disease which is flourishing rapidly throughout the world. The ultimate
goal of cancer therapy is to destroy all the malignant cells. Conventional chemotherapy, as
one of the most common cancer treatments, employs cytotoxic agents that target rapidly
proliferating cells, especially like cancer cells [114]. For instance, anthracyclines, including
Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Mitoxantrone, and Valrubicin, are
used as chemotherapeutic agents for treatment of numerous types of cancers [115]. Yet,
chemotherapies have been associated with severe unwanted systemic toxicities, off-target
effect, and rapidly emerging drug resistance [116]. Most of the chemotherapeutic drugs are
not selective to cancer cells, which indicate that they not only target cancer cells, but also can
be randomly distributed to healthy organs. As reported, detrimental effects to the central
nervous system (CNS) are recognized as cognition dysfunction during chemotherapy for a
non-CNS cancer [117]. Furthermore, chemotherapeutic drug resistance of malignant cells
builds another bottleneck for cancer chemotherapy. Several factors are attributed to the
drug resistance, including the heterogeneity of the tumor cell population [118], the tumor
microenvironment, and the limited ability of the drug to penetrate tumor tissue to reach
the potential lethal concentration for all tumor cells [119]. To overcome these challenges,
various drug delivery systems have been developed including viral [120,121] and non-viral
vectors such as liposomes [122].

3.1.1. Doxil

The liposome has been the most successful in therapeutic delivery as evidenced
by numerous FDA-approved liposomal nanodrugs (e.g., Doxil, DaunoXome, Depocyt,
Myocet, Mepact, and Onivyde, etc.) for diverse diseases management (e.g., cancers).
Doxil, the first FDA-approved nanodrug delivery system using pegylated liposomes
to encapsulate doxorubicin, consists of three major components: the high-transition-
temperature (Tm) phospholipid hydrogenated soy phosphatidylcholine (HSPC; Tm 52.5 ◦C);
cholesterol; and N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-
phosphoethanolamine sodium salt (MPEG-DSPE) [101]. The pharmacokinetics of Doxil
were analyzed by Gabizon et al. [123]. The clinical result substantiates that the longevity
of liposomes in circulation prolongs the drug’s circulation time compared to free drugs.
Consequently, this enhances drug accumulation in malignant tissues, resulting in improved
anticancer efficacy [124].

3.1.2. Onivyde

Onivyde, also known as an irinotecan liposome injection, is used for patients with
metastatic adenocarcinoma of the pancreas with cancer progression after the gemcitabine-
based therapy, usually in combination with fluorouracil and leucovorin [125]. The Onivyde
liposomal vesicles comprise three key components: distearoylphosphatidylcholine
(DSPC), cholesterol, and methoxy-terminated polyethylene glycol (MW2000)-
distearoylphosphatidylethanolamine (MPEG-2000-DSPE) [126]. The efficacy and safety
of Onivyde were evaluated in a global, randomized, open-label NAPOLI-1 clinical trial
involving patients with metastatic pancreatic cancer who experienced disease progression
after gemcitabine treatment [127]. The clinical results confirmed that liposomal irinotecan,
Onivyde, significantly extends the lifespan of patients compared to free drugs.

3.1.3. Liposome-Peptide Conjugated Drugs

Peptides play a critical role in genes and drugs delivery, classified into two types:
cell-penetrating peptides and cell-targeting peptides (Figure 8) [128]. Peptides exhibit
advantageous properties, being biocompatible and well-tolerated, with modifiable fea-
tures such as hydrophobicity, charge, solubility, and stability [129]. While most of the
cell-penetrating peptides are cationic peptides and possess the ability for cellular uptake
without inducing cytotoxicity, they lack selectivity and receptor-dependence, thereby limit-
ing tissue specificity and tumor targeting [130]. As the need for enhanced peptide targeting
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and selectivity emerged, liposomes have been introduced as a delivery platform, form-
ing an engineered combination known as liposome–peptide conjugates [129,130]. These
conjugates showcase remarkable performance improvements in cellular uptake, tumor pen-
etration, extended circulation time, and enhanced site-specific targeting, surpassing both
liposomal drugs and free drugs [131]. Recent studies have highlighted the use of a chimeric
peptide, RIPL, formed by combining cell-specific (IPL, IPLVVPLC) and cell-penetrating
(R8, RRRRRRRRC) peptides. This RIPL peptide was conjugated with a liposome, creating
RIPL peptide-conjugated liposomes [132,133]. The IPL component in this strategy targets
hepsin, a protein overexpressed in cancer cells, exhibiting high affinity and selectivity to
IPL peptides [134]. Consequently, this approach significantly enhances cellular uptake and
strengthens selective binding with the RIPL–liposome conjugates [135].
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Figure 8. Illustration of tumor cell penetration with a peptide-decorated liposome [136]. (A) The
Structure of peptide-decorated liposomes under different pH environments. (B) Within tumors,
the peptide-decorated liposomes could target integrin αVβ3 and initiate internalization and further
intertumoral activities.

3.2. Anti-Fungal

There are two forms of fungi existing in nature, yeasts and molds [137]. Most fungi do
not live dependent on animals or human beings. Yet, some groups are exterior pathogens
in humans, such as Candida spp., Aspergillus spp., Cryptococcus spp., Fusarium spp., Muco-
rales, and endemic mycosis [138], and these cause superficial, subcutaneous, or systemic
infections. Additionally, a severe, systemic fungal infection with yeasts or molds is clini-
cally described with invasive fungal infection. Although some infections, like superficial
infections, are not life-threatening, the consequences could be severe and affect the patient’s
quality of life [139]. On the other hand, in immunocompromised patients, for example,
bone marrow and organ transplant patients, systemic fungal infections are associated with
high mortality rates [140,141].

3.2.1. Amphotericin B and Ambisome

Amphotericin B is one of the most widespread therapeutic polyene antifungals [142].
According to the Infectious Diseases Society of America (IDSA) [143] and the European
Confederation of Medical Mycology (ECMM) [144], Amphotericin B is still recommended
as first line treatment polyene antifungals used for severe cryptococcosis, disseminated
histoplasmosis, and mucormycosis. However, a number of studies show that Ampho-
tericin B treatments of systemic mycosis caused by species such as Aspergillus terreus [145],
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Scedosporium spp. [146], and Candida auris [147] are not always effective, which results
from the intrinsic or acquired drug resistance [148]. Moreover, the intrinsic host toxicity of
Amphotericin B is another clinical concern [148]. Herein, the maximum tolerance dose of
Amphotericin B deoxycholate is assigned within the range of dose-related toxicity, and the
affinity of Amphotericin B to fungal ergosterol (Kd = 6.9 × 105) is 10-fold higher than its
affinity to mammalian cholesterol (Kd = 5.2 × 104), yet Amphotericin B can non-selectively
target mammalian cell membrane and disrupt its structure [149,150]. Nevertheless, increas-
ing exposure of Amphotericin B to renal cells can cause nephrotoxicity [150]. As a result,
the treatment choice of Amphotericin B is often limited by its intrinsic drug resistance,
and dose reduction is necessary to avoid nephrotoxicity. Therefore, to overcome these
drawbacks, lipid-based formulations have been developed to enhance the therapeutic index
and lessen the toxic complications.

To date, several liposomal formulations for anti-fungal infections have been approved
by the FDA, including Abelcet, Ambisome, and Amphotec. Ambisome was developed by
Astellas Pharma USA for the treatment of serious, life-threatening fungal infections, and
also for Amphotericin B intolerance or renal-impaired patients who were infected with in-
vasive systemic infections caused by Aspergillus, Candida, or Cryptococcus [101]. Structurally,
the lipid bilayer of Ambisome is composed of hydrogenated soy phosphatidylcholine
(HSPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG), and Ampho-
tericin B [151]. Additionally, Ambisome showed its potential in prolonged circulation time
and high circulation plasma levels at 37 ◦C due to the lipids presented therein, including
HSPC and DSPC [152].

Preclinical data reported by Adler-Moore et al. illustrated that Ambisome showed
significant reduction in toxicity and improved therapeutic index in animal models for
the treatment of systemic fungal infections [153]. Walsh et al. [154] established an open-
label, multidose pharmacokinetic study with 36 patients who were assigned one of four
different dosage cohorts of Ambisome, 1.0 mg/kg (N = 8), 2.5 mg/kg (N = 8), 5.0 mg/kg
(N = 12), and 7.5 mg/kg (N = 8), to determine the safety, tolerance, and pharmacokinetics
of Ambisome. Walshe et al. observed that continued administration of Ambisome resulted
in more sustained plasma levels and decreased total body clearance. In other words,
Ambisome increased the circulation time.

3.2.2. Nystatin and Nyotran

Like Amphotericin B, Nystatin is a polyene antibiotic. However, due to its systemic toxic-
ity and low intestinal permeability, the therapeutic application of Nystatin has been limited to
topical use in mucocutaneous (oral) and cutaneous (vaginal) forms of candidiasis [155].

To overcome these limitations, lipid-based nanotechnologies have been applied to
Nystatin as a multilamellar liposome, known as Nyotran, used in treating systemic fungal
infections [156]. With the liposomal formulation, Nyotran shows reduced toxicity, improved
pharmacokinetics, and better tolerability [157]. Another clinical report also stated that
Nyotran was active in some patients in which Amphotericin B treatment failed [158].

3.2.3. Inhaled Liposomal Antimicrobial Medications

Besides the most common routes of liposomal drug delivery, such as oral, typical,
and parenteral, the use of inhaled liposomal dosage form for treating respiratory diseases
and/or infections has been used increasingly in clinical practice [159]. Inhaled liposomal
dosage forms offer potential advantages for the treatment of respiratory infections includ-
ing targeted delivery, reduced systemic toxicity, improved efficacy, and minimized side
effects [160–162].

Amphotericin B, as the common treatment for pulmonary fungal infections, is limited
by high mortality in achieving the minimum inhibitory concentration in the lung [163]. To
address these challenges, clinical studies have explored the administration of a liposomal
amphotericin B parenteral formulation alone or with amphotericin B deoxycholate through
nebulization [164]. Nebulization is the method that converts medications into fine mist
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for inhalation, which has shown promise in enhancing the delivery of amphotericin B
and combating pulmonary fungal infections. Apart from the nebulization, pressurized
metered-dose inhalers (pMDIs) and dry powder inhalers (DPIs) are also being used for
drug delivery, but each device requires different formulations to ensure successful drug
delivery into the lung [165–167].

3.3. Pain Management

Acute pain mostly happens following tissue damage associated with surgery, also
known as acute postoperative pain, and chronic pain would persist during the healing
process for at least three months after the surgery [168]. Additionally, chronic pain could
produce an enormous financial burden for the patients [169]. While chronic pain is not
life-threatening, it may have a lasting impact on functioning and influence the quality of
life of the patients.

An ideal postoperative pain management should use a multidisciplinary approach
to interfere with different pain propagation and perception mechanisms [170]. Moreover,
an effective pain management control method is to shorten the inpatient time, avoid
opioid dependence or addiction, and reduce the mortality [171]. In addition, regional
and local anesthesia play an important role in postoperative pain control, as they block
the afferent neural stimuli from the surgical area in order to reach the effective analgesic
effect [172]. Local anesthetics, such as bupivacaine, provide more successful pain control
than opioids and are widely used for preemptive infiltration during the postoperative
period with prolonged duration of action [173]. Moreover, catheter delivery systems
are common techniques for continuously administering local anesthetics to prolong the
duration of analgesia [174,175]. However, the value of these systems is limited by the
cost of the equipment, the difficulty to maintain the correct position of the catheter, and
the additional trainings and skills required for clinicians [176]. Thus, the development of
novel, long-acting local anesthetics, like liposomal bupivacaine, is potentially important in
postoperative pain management.

3.3.1. Exparel

Two FDA-approved liposome formulations (DepoDur and Exparel) have been used
for pain management. Exparel is a multivesicular liposomal formulation of bupivacaine
being developed for wound infiltration in patients with hemorrhoidectomy and bunionec-
tomy [177]. Exparel is composed of dierucoylphosphatidylcholine (DEPC), which is a
novel phospholipid excipient, and other lipid components, including DPPG, cholesterol,
and tricaprylin.

The efficacy of liposomal bupivacaine was analyzed by Davidson et al. in eight healthy
volunteers [178]. Davidson et al. reported that liposomal bupivacaine showed no reduction
in consumption compared to plain bupivacaine with no side effects of local anesthetics.
Strikingly, they found that the terminal half-life of liposomal bupivacaine (1294 ± 860 min)
after IV administration was around 10-fold longer than that of the plain bupivacaine
(131 ± 58 min). Therefore, liposomal formulation imparts significant benefits of prolonging
the circulation time of bupivacaine after administration compared with plain bupivacaine.

3.3.2. Liposomal Cannabidiol

Cannabidiol (CBD), a phytocannabinoid discovered in 1940, can be used to treat
a number of diseases, such as Alzheimer’s disease, Parkinson’s disease, and chronic
pain [179–181]. The traditional form of CBD has low oral bioavailability and off-targeting
effects, thus impeding its optimal therapeutic index [182]. Nanocarriers have been used
for the targeted delivery of various phytocompounds, including CBD, and can improve
the stability of phytocompounds, enhance bioavailability, and increase solubility and
permeability [183]. A study has shown that liposomal CBD improved bioavailability for
pain management in dogs [184]. Another human safety study consolidated the tolerability
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and safety profile of liposomal CBD to explore its therapeutic delivery further in more
clinical studies [185].

3.4. Vaccination

Conventional or classical vaccines are based on the use of whole or killed bacteria or
viruses to mimic their natural interaction with human immune systems [186,187]. Vaccines
remain the most cost-efficient way to defend infectious diseases. Nonetheless, several
challenges are yet to be solved, such as the identification of the antigen candidates, ability
to induce appropriate immune responses for protection, cross-protection against differ-
ent strains of pathogens, and route of administration [188]. In vaccine development, the
ability of initiating the innate and adaptive immune responses is essential. To elicit a suffi-
cient immune response against the antigens, choosing the appropriate immunostimulatory
molecules (e.g., adjuvants) and the efficient delivery platform matters. The adjuvants could
not only help prolong the exposure time of the vaccine molecules to the antigen-presenting
cells (APCs) but could also interact with APCs and trigger immune responses by them-
selves [189,190]. Liposomes were first investigated as vaccine adjuvants and a delivery
platform in 1974 [191]. Due to their flexibility and versatility, immuno-stimulation induced
by liposome-carried vaccines can be modified by various factors including liposome compo-
sition, size and homogeneity, charge, and location of antigens and/or adjuvants [192]. It is
well noted that the versatility of liposomes in cargo selection plays a pivotal role in vaccine
delivery system [193]. Water-soluble antigens such as proteins, peptides, and nucleic acids
are encapsulated in the aqueous core of the liposomes, while the lipophilic substrates
such as adjuvants, glycolipids, and lipopeptides are entrapped in the lipid bilayers of the
liposomes. The antigens could also associate with the surface of the liposome by absorption
or covalent binding [194]. Regardless of where the antigens are present (in/on liposomes),
the immune responses can be induced by the liposomes, which are phagocytosed by the
macrophage and the antigens are processed and presented on the macrophage surface
with either the MHCI (major histocompatibility class I) complex if antigens end up in the
cytoplasm or the MHCII if antigens end up in the lysosomes. Consequently, the antigen
peptides on the MHC complex are recognized by the cytotoxic T lymphocytes (CTLs) and
bind to the T cells. Specific cytokines are secreted from the T cells, interacting with B cells
and then stimulating B cells to produce antibodies [195].

3.4.1. Liposomal Vaccines

Liposome-based vaccines have been practiced for delivery of several antigens for
different disease preventions, including Ag85B-ESAT-6 (H1 antigen) and Ag85B-ESAT-6-
Rv2660c (H56 antigen) for tuberculosis vaccines [196,197], Epaxal (hepatitis A antigen) for
hepatitis A virus vaccine [198], and Inflexal V (hemagglutinin and neuraminidase from
inactivated influenza) for influenza virus vaccine [198].

3.4.2. Lipid-Based mRNA Nanovaccines

Due to the global pandemic of COVID-19, the development of therapeutic and pro-
phylactic options for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) have
been racing. Two mRNA lipid-based nanovaccines targeting SARS-CoV-2 (Comirnaty and
Spikevax, developed by Pfizer/BioNTech and Moderna, respectively) have been approved
by FDA to control COVID-19 [112,199–201]. While mRNA was found to be safe due to its
physiochemical properties such as hydrophilicity and negative charge, it has low passive
diffusion efficiency through the plasma membrane [202]. Moreover, free mRNA is degraded
quickly in the body, and the short half-life can barely allow it to reach its proposed effi-
cacy [203]. Therefore, mRNA delivery efficiency to the target sites determines its ultimate
therapeutic effect. Liposome-associated nanotechnology has shown to protect mRNA from
degradation and extend the circulatory half-life, as well as enhance the vaccination effects.
Thus, liposome/lipid-based nanoplatforms represent promising strategies for improved
mRNA vaccine delivery.
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4. Discussion and Outlook

The pharmaceutical applications of liposomes are not limited to what have been
mentioned above. Liposomal drugs have also been used for photodynamic therapy [204],
bacterial infections [205], and cardiovascular diseases [206]. In addition, liposomes have
been explored for nanotechnologies as signal enhancers in medical diagnosis [207], solubi-
lizers for various ingredients, and penetration enhancers in cosmetics [55].

Because of the unique characteristics of liposomes, they have also been developed
as carriers for brain delivery of bioactive constituents and used for treatments of various
central nervous systems disorders such as Alzheimer’s disease [208], ischemic disease [209],
and Parkinson’s disease [210,211]. However, to fulfill their clinical translation, the liposomal
formulations are required to undergo additional studies to further prove their effectiveness,
such as to evaluate the combinations of bioactive molecules, measure the dosage of bioactive
molecules administered, and perform assessment in patients with different central nervous
system disorders [212].

The liposome exhibits various advantages, such as reducing the side effects, improving
the pharmacokinetics, and enhancing the delivery efficiency to target sites as compared to
free (unentrapped) drugs. However, liposomes still face some challenges. One critical issue
is drug leakage from the liposome during the circulation before it is navigated to the tumor
site [213]. Unwanted leakage would not only yield suboptimal circulation times but also
release the cytotoxic agents prematurely, damaging the healthy organs/tissues [213]. The
primary cause of liposomes’ drug leakage is serum proteins, such as lipoproteins, which
can interrupt the integrity of liposome bilayers [213,214]. Moreover, other factors could
also impact the stability of liposomes, including types of phospholipids, drug-to-lipid
ratio, and liposome compositions [13,61]. One approach to stabilize liposome bilayer is to
modify its surface with polymers, typically PEG, which is known as polymer-stabilized
liposomes [215]. This strategy is to covalently link the polymers onto the hydrophilic
headgroups of the lipids or physically absorb the polymers into the surface of the liposomes.
The polymers can either act to repel serum proteins in the plasma [216] or to adjust the drug
release rate [217]. Furthermore, off-targeting has generated an unignorable hit to liposomes
as they not only accumulate at the target site (e.g., tumors), but also stagger in normal
tissues such as in the liver, kidney, and spleen, yielding non-specific side effects [218,219].
Various strategies have been explored to enhance the targeting efficiency of liposomes, such
as functionalizing their surface with tumor-specific ligands (small molecules: folate, biotin,
vitamin A, etc.; peptides: iRGD, RIPL, NZX, etc.; antibodies; aptamers, etc.) [132,220–227].
However, as of now, there is no FDA-approved ligand-decorated liposomal nanomedicine.
Hence, liposome-enabled nanotechnology still needs to be further optimized to realize its
full therapeutic delivery potential.

While liposomes have shown potential to mitigate systemic toxicity associated with
delivered therapeutic agents, systematic evaluation of side effects stemmed by liposomal
nanocarriers in preclinical and clinical settings remains crucial [228,229]. Organ toxicity is
a major concern of liposomal nanodrugs [230] because they prefer to accumulate in certain
organs, such as the liver and spleen, affecting the tissue-specific functionality and poten-
tially causing toxicities [231]. In addition, liposomes may interact with cell membranes,
which can alter cell permeability and integrity, ultimately causing cellular damage [232].
Addressing these safety concerns requires strategic refinement and optimization. The
formulation of liposomes plays a pivotal role in liposome-induced cytotoxicity. By further
optimizing and modifying liposome composition, size, and surface properties, interactions
with specific organs could be minimized. Additionally, efforts in enhancing the target-
ing specificity of liposomal dosage form are research directions that can greatly limit the
off-target organ distribution, thus further reducing the systemic toxicities.

5. Conclusions

From the concept of liposomes being implemented for therapeutic applications to
their recognition as the mainstream and most successful drug delivery platforms, the
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development path has been endless and tortuous in the past several decades. Nowadays,
liposomes have been extensively used in cosmetics, dietetics, and pharmaceuticals, and
most importantly in clinical applications for treating and managing a variety of diseases
and conditions (e.g., cancers, infectious diseases, and pain) and for improved delivery of
vaccines and gene therapeutics. Noteworthily, some studies have credited liposomal drugs
more on reducing the side effects and toxicities than on increased efficacy compared with
free drugs [233]. While free drug toxicities can be reduced by encapsulating into liposomes,
the therapeutic effects are not bound to be improved in patients. Further optimization
is required for liposomes; notwithstanding, significant clinical needs and challenges still
await to be resolved in the future by liposomes.
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J.; et al. Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in
liposomes formation. Sci. Rep. 2020, 10, 5595. [CrossRef]

55. Maja, L.; Željko, K.; Mateja, P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 2020, 165, 104984. [CrossRef]
56. Yang, K.; Mesquita, B.; Horvatovich, P.; Salvati, A. Tuning liposome composition to modulate corona formation in human serum

and cellular uptake. Acta Biomater. 2020, 106, 314–327. [CrossRef]
57. Cauzzo, J.; Jayakumar, N.; Ahluwalia, B.S.; Ahmad, A.; Škalko-Basnet, N. Characterization of liposomes using quantitative phase

microscopy (QPM). Pharmaceutics 2021, 13, 590. [CrossRef]
58. Liu, W.; Liu, J.; Salt, L.J.; Ridout, M.J.; Han, J.; Wilde, P.J. Structural stability of liposome-stabilized oil-in-water pickering

emulsions and their fate during in vitro digestion. Food Funct. 2019, 10, 7262–7274. [CrossRef] [PubMed]
59. Wang, D.Y.; Yang, G.; van Der Mei, H.C.; Ren, Y.; Busscher, H.J.; Shi, L. Liposomes with Water as a pH-Responsive Functionality

for Targeting of Acidic Tumor and Infection Sites. Angew. Chem. 2021, 133, 17855–17860. [CrossRef]
60. Subhan, M.A.; Yalamarty, S.S.K.; Filipczak, N.; Parveen, F.; Torchilin, V.P. Recent advances in tumor targeting via EPR effect for

cancer treatment. J. Pers. Med. 2021, 11, 571. [CrossRef] [PubMed]
61. Maritim, S.; Boulas, P.; Lin, Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation,

stability and drug release in glibenclamide liposomes. Int. J. Pharm. 2021, 592, 120051. [CrossRef] [PubMed]
62. Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine

review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019, 10, 11. [CrossRef]
63. Ren, H.; He, Y.; Liang, J.; Cheng, Z.; Zhang, M.; Zhu, Y.; Hong, C.; Qin, J.; Xu, X.; Wang, J. Role of liposome size, surface charge,

and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl. Mater. Interfaces 2019, 11, 20304–20315. [CrossRef] [PubMed]
64. Jyothi, V.G.S.; Bulusu, R.; Rao, B.V.K.; Pranothi, M.; Banda, S.; Bolla, P.K.; Kommineni, N. Stability characterization for pharma-

ceutical liposome product development with focus on regulatory considerations: An update. Int. J. Pharm. 2022, 624, 122022.
[CrossRef]

65. Eskandari, V.; Sadeghi, M.; Hadi, A. Physical and chemical properties of nano-liposome, application in nano medicine. J. Comput.
Appl. Mech. 2021, 52, 751–767.

66. Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.;
Beheshtkhoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front.
Bioeng. Biotechnol. 2021, 9, 705886. [CrossRef]

67. Demetzos, C. Differential scanning calorimetry (DSC): A tool to study the thermal behavior of lipid bilayers and liposomal
stability. J. Liposome Res. 2008, 18, 159–173. [CrossRef]

68. Patel, N.; Panda, S. Liposome drug delivery system: A critic review. JPSBR 2012, 2, 169–175.
69. Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J.

Pharm. 2021, 601, 120571. [CrossRef] [PubMed]
70. Khan, D.R.; Rezler, E.M.; Lauer-Fields, J.; Fields, G.B. Effects of drug hydrophobicity on liposomal stability. Chem. Biol. Drug Des.

2008, 71, 3–7. [CrossRef] [PubMed]
71. Haneef, J.; Amir, M.; Sheikh, N.A.; Chadha, R. Mitigating Drug Stability Challenges Through Cocrystallization. AAPS

PharmSciTech 2023, 24, 62. [CrossRef] [PubMed]

https://doi.org/10.1016/j.bbamem.2020.183361
https://doi.org/10.3390/pharmaceutics14030543
https://doi.org/10.1016/j.jddst.2020.102174
https://doi.org/10.3390/foods10081789
https://www.ncbi.nlm.nih.gov/pubmed/34441566
https://doi.org/10.1021/ja0318030
https://www.ncbi.nlm.nih.gov/pubmed/14995164
https://doi.org/10.2147/IJN.S331639
https://www.ncbi.nlm.nih.gov/pubmed/34764647
https://doi.org/10.1002/gch2.202000123
https://www.ncbi.nlm.nih.gov/pubmed/34267927
https://doi.org/10.1038/s41598-020-62500-2
https://doi.org/10.1016/j.supflu.2020.104984
https://doi.org/10.1016/j.actbio.2020.02.018
https://doi.org/10.3390/pharmaceutics13050590
https://doi.org/10.1039/C9FO00967A
https://www.ncbi.nlm.nih.gov/pubmed/31620755
https://doi.org/10.1002/ange.202106329
https://doi.org/10.3390/jpm11060571
https://www.ncbi.nlm.nih.gov/pubmed/34207137
https://doi.org/10.1016/j.ijpharm.2020.120051
https://www.ncbi.nlm.nih.gov/pubmed/33161039
https://doi.org/10.1186/s12645-019-0055-y
https://doi.org/10.1021/acsami.8b22693
https://www.ncbi.nlm.nih.gov/pubmed/31056910
https://doi.org/10.1016/j.ijpharm.2022.122022
https://doi.org/10.3389/fbioe.2021.705886
https://doi.org/10.1080/08982100802310261
https://doi.org/10.1016/j.ijpharm.2021.120571
https://www.ncbi.nlm.nih.gov/pubmed/33812967
https://doi.org/10.1111/j.1747-0285.2007.00610.x
https://www.ncbi.nlm.nih.gov/pubmed/18086150
https://doi.org/10.1208/s12249-023-02522-x
https://www.ncbi.nlm.nih.gov/pubmed/36759434


Pharmaceutics 2024, 16, 34 21 of 27

72. Raju, R.; Abuwatfa, W.H.; Pitt, W.G.; Husseini, G.A. Liposomes for the treatment of brain cancer—A review. Pharmaceuticals 2023,
16, 1056. [CrossRef] [PubMed]
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