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Abstract: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result
of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines
with fundamentally new mechanisms of action and some small-molecule antiviral drugs targeting key
proteins in the viral cycle have been developed. The most effective small-molecule drug approved to
date for the treatment of COVID-19 is PaxlovidTM, which is a combination of two protease inhibitors,
nirmatrelvir and ritonavir. Nirmatrelvir is a reversible covalent peptidomimetic inhibitor of the main
protease (Mpro) of SARS-CoV-2, which enzyme plays a crucial role in viral reproduction. In this
combination, ritonavir serves as a pharmacokinetic enhancer, it irreversibly inhibits the cytochrome
CYP3A4 enzyme responsible for the rapid metabolism of nirmatrelvir, thereby increasing the half-life
and bioavailability of nirmatrelvir. In this tutorial review, we summarize the development and
pharmaceutical chemistry aspects of Paxlovid, covering the evolution of protease inhibitors, the
warhead design, synthesis and the mechanism of action of nirmatrelvir, as well as the synthesis of
ritonavir and its CYP3A4 inhibition mechanism. The efficacy of Paxlovid to novel virus mutants is
also overviewed.

Keywords: viral proteases; SARS-CoV-2; non-structural protein (NSP); main protease (Mpro); 3CL
protease; nirmatrelvir/ritonavir; electrophilic warhead; covalent inhibitor; booster; drug–drug interactions

1. Introduction—Viral Proteases as Drug Targets

The genetics and reproduction of viruses differ significantly from what we are used
to in eukaryotes in many respects. One important difference is that many viruses, includ-
ing retroviruses, herpesviruses, flaviviruses and coronaviruses, do not encode functional
proteins that are synthesized individually, but rather one or two large polyproteins that
are then cleaved by viral proteases into functional proteins [1]. Proteases are a subgroup
of hydrolases, enzymes that catalyze hydrolytic reactions. There are many mechanisms
of proteolysis; a common method is the use of a nucleophilic group, generated from the
side chain of serine (serine proteases) or cysteine (cysteine proteases), which can perform
a nucleophilic attack on the partially positively polarized carbonyl carbon atom of the
peptide bond. In aspartic proteases, a water molecule bound to aspartic acid in the active
site of the enzyme acts as a nucleophile. In the case of serine and cysteine proteases, the
nucleophile is generated by the amino acids in the active site of the enzyme. A common
system for this is the so-called catalytic dyad or catalytic triad, which consists of two or
three amino acids [1,2]. One of the three amino acids that make up the catalytic triad carries
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an acidic side chain, e.g., aspartic acid (Asp), the other carries an alkaline side chain, e.g.,
histidine (His), and the nucleophilic group is formed from the third amino acid, which is
serine (Ser) or cysteine (Cys).

In some cysteine hydrolases, histidine and cysteine form a catalytic dyad in the active
site; in such enzymes, the role of the third amino acid, Asp, is played by an activated
water molecule (Scheme 1). In the first step of the enzyme’s catalytic mechanism, the
imidazole ring of histidine as a base deprotonates the thiol group of cysteine, forming a
thiolate–imidazolium ion pair. Next, the thiolate group performs a nucleophilic attack on
the carbonyl C atom of the peptide bond of its substrate. As a result, the peptide bond is
cleaved, the amine terminus of the peptide fragment (R-NH2) is released, while the acyl part
forms a thioester with the cysteine, and the histidine is reestablished to its deprotonated
form. Finally, the thioester bond of the acylated enzyme is hydrolyzed by an activated
water molecule to generate a carboxylic acid group on the remaining substrate fragment
(R’-COOH), regenerating the free enzyme.
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Viral proteases play a key role in viral replication for all positive single-stranded RNA
viruses and some DNA viruses, such as herpesviruses. To treat infections caused by these
viruses, proteases are considered excellent drug targets [3]. Protease inhibitors are now
routinely used in antiviral therapy for human immunodeficiency virus (HIV) and hepatitis
C virus (HCV) infections.

The pathogen responsible for the outbreak of the COVID-19 pandemic, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), is an enveloped β-coronavirus. It
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belongs to the family of positive single-stranded RNA viruses and, as such, also encodes
proteases. SARS-CoV-2 main protease (Mpro), also known as 3-chymotrypsin-like protease
(3CLpro) or nonstructural protein 5 (NSP5), is a cysteine hydrolase that plays an essential
role in the SARS-CoV-2 life cycle. Mpro is a homodimer with each monomer consisting of
three distinct domains (I, II and III). Both monomers contain a catalytic site at the interface
of domains I and II, but only one active site is functional in the dimeric form. Domain III
is required for homodimerization, which is critical to the enzyme’s catalytic activity. The
enzyme has six substrate binding sub-pockets in the active site, sub-pockets S1, S2 and
S4 in the protein cavity, while sub-pockets S1’, S3 and S5 are located on the surface of the
protein. The active site of the enzyme contains a catalytic dyad consisting of Cys145 and
His41, and a catalytic water molecule H-bonded to His41 [4–6].

Since SARS-CoV-2 Mpro plays a key role in viral replication by cleaving viral polypro-
teins, inhibition of its catalytic activity represents an attractive therapeutic approach for
the treatment of COVID-19. In addition, Mpro has two properties that make it an ideal
target for antiviral drugs. First, its recognized sequence is Leu-Gln-Ser-Ala-Gly, and it
cleaves the peptide chain after a glutamine (Gln) unit; since there are no known human Cys
proteases that cleave the protein after Gln, the proteolytic action of SARS-CoV-2 Mpro can
be specifically inhibited without inhibiting human proteases. Second, unlike spike protein,
Mpro is a highly conserved protein, mutations in this protein could be fatal to the virus,
which reduces the risk of developing drug resistance [5,6].

Nirmatrelvir is a newly developed potent inhibitor of the main protease of SARS-CoV-2.
However, due to its rapid metabolism by the cytochrome CYP3A4 enzyme, it is not effective
on its own in vivo. Nirmatrelvir became suitable for therapeutic use in com bination with
ritonavir, originally designed as a HIV protease inhibitor, which can sufficiently increase
the bioavailability of nirmatrelvir by inhibiting the CYP3A4 enzyme. The nirmatrelvir–
ritonavir combination was developed by Pfizer and marketed under the brand name
PaxlovidTM as an oral drug for the treatment of COVID-19.

Since the approval of Paxlovid for the emergency treatment of COVID-19 in 2021,
many reviews have been published focusing primarily on the drug’s effectiveness, safety,
side effects and drug–drug interactions [7–12]. In this tutorial review, we give a medicinal
chemistry overview of the two pharmacologically active components of Paxlovid, focusing
on the structural similarities of currently used protease inhibitor antivirals, the role of the
warhead in the mechanism of action of nirmatrelvir, as well as the details of the booster
effect of the ritonavir. We also briefly discuss drug–drug interactions and Paxlovid’s
effectiveness against new virus variants.

2. Protease Inhibitors as Antivirals
2.1. Protease Inhibitor Drugs for the Treatment of HCV and HIV Infections

The two main groups of protease inhibitors (PIs) currently used in medicine are HIV
and HCV protease inhibitors (Figure 1). Hepatitis C virus (HCV) is a small RNA virus
that causes hepatic diseases. HCV protease inhibitors, such as asunaporevir, telaprevir, and
boceprevir, target the NS3/4A serine protease of the virus (NS stands for “nonstructural” in
the name of viral proteins, indicating that the given protein is not a structural protein) [13,14].
The structures of these protease inhibitors appear to be very different, but all contain at least
one peptide (amide) bond (highlighted in red in Figure 1). This is necessary because these
inhibitors act by binding to the active site of the enzyme, so they must have a chemical
structure similar to the natural peptide substrate, so the inhibitors are peptidomimetics.
Some of the inhibitors contain a “warhead” group, which reacts with the enzyme and binds
covalently to the active site, thereby inactivating the protease. It is important to note that
although inhibitor–protease binding is usually covalent, the inhibition is reversible. The
warheads used in the case of serine protease include, for example, an α-ketoamide, boronic
acid or α-keto acid group. To learn about the general structure of protease inhibitors,
let us take a closer look at boceprevir. In the commonly used nomenclature of protease
inhibitors, the positions from the cleavage site towards the C-terminal of the molecule
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are numbered P1′, P2′, P3′, etc., while the groups towards the N-terminal are P1, P2, P3,
etc. [15]. Accordingly, there is an α-ketoamide warhead in the P1 position of boceprevir
to ensure the covalent inhibitory effect. Other parts of the molecule serve to bind to the
enzyme with secondary bonds. The P3 position is “capped” with a carbamide type group.
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Figure 1. Structures of viral protease inhibitor drugs.

HIV protease inhibitors are used against the human immunodeficiency virus (HIV),
which causes Acquired Immune Deficiency Syndrome (AIDS). HIV protease is an aspartic
acid protease that cleaves the peptide bond between a phenylalanine and a proline. Its
inhibitors, such as nelfinavir, saquinavir, atazanavir, etc., are peptidomimetics that contain
a non-cleavable hydroxyethylene group [16,17]. HIV PIs are used in highly efficient an-
tiretroviral therapy, which is the standard protocol for treating HIV infection, converting it
from a fatal disease to a chronic infection.

2.2. Development and Mechanism of Action of Nirmatrelvir

The structure of nirmatrelvir (PF-07321332) [4] from Pfizer can be traced back to a
previous Pfizer compound, PF-00835231 [18], which was generated to inhibit the main
protease of SARS-CoV-1. The zoonotic coronavirus SARS-CoV-1 emerged in China in 2002
and caused an epidemic leading to ~8000 cases and almost 800 confirmed deaths [19]. Due
to the high similarity (~96% sequence homology) between the main proteases of the two
viruses, PF-00835231 can also inhibit SARS-CoV-2 Mpro [4,18].

The problem with PF-00835231 is that it has very low oral absorption. A development
process was started by Pfizer to solve the problem (Figure 2) [4,6,20]. One way to increase
the oral bioavailability of a molecule is to reduce the number of hydrogen bond donor
groups (HBD) [21]. Therefore, the α-hydroxymethyl ketone warhead was changed to
benzothiazol-2-yl ketone (highlighted in yellow). Furthermore, the P2 unit was replaced
by a pyrrolidine ring (highlighted in green in 1) to get rid of the N–H group, which is
an HBD group, to give compound 1. However, these changes eliminated the possibility
of H-bonding with amino acid Gln-189 of Mpro, thereby weakening the binding to the
target enzyme, which reduced the inhibitory activity. The indole component P3 was
replaced with a smaller acyclic sulfonamide unit (highlighted in blue) to fit into the S3
pocket of Mpro, thereby increasing the binding affinity to the enzyme, which increased the
inhibitory effect. The antiviral activity of compound 2 obtained through the changes was
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indeed better than that of compound 1, and its oral bioavailability was higher than that of
compound PF-00835231. Subsequently, the P3 cap was replaced with a trifluoroacetamide
group (highlighted in green in 3), which further improved antiviral activity, as well as
increased metabolic stability and oral pharmacokinetics. Finally, the introduction of the
nitrile warhead at the P1′ position (highlighted in green in nirmatrelvir) further enhanced
the antiviral activity and oral bioavailability. An additional advantage of the nitrile warhead
was that it facilitated the synthesis, since the nitrile-containing compound was more soluble
and less prone to epimerization [4].
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During the development process, the activity of the compounds was compared with
enzyme inhibitory (Ki) and anti-SARS-CoV-2 (EC50) measurements, and for their pharma-
cokinetic characterization, oral bioavailability (oral F) and metabolic stability tests were
performed [4]. Oral bioavailability was assessed in rats and metabolic stability was assessed
by measuring intrinsic clearance against human liver microsomes (HLM Clintr). The results
of these tests are summarized in Figure 2.

Nirmatrelvir (PF-07321332) is an orally administered covalent inhibitor of SARS-CoV-2
Mpro. As shown in Figure 3A, it has a high structural similarity to boceprevir, but their
warheads are different.

The main structural elements of nirmatrelvir are depicted in Figure 3B. The warhead
of the molecule is the nitrile group in the P1′ position, which covalently reacts with the
enzyme, while the rest of the molecule, mimicking the natural recognition sequence of Mpro,
the tripeptide Val-Leu-Gln (valine-leucine-glutamine), ensures that nirmatrelvir fits into
the active site of the enzyme and binds there with secondary bonds [22]. The P1 unit is a
Gln analog with a cyclic (γ-lactam) side chain that can form H-bonds. It is an advantageous
modification because the amide group of native Gln can react intramolecularly with certain
types of warheads, rendering the molecule ineffective. This cyclic moiety is more rigid
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than the native Gln side chain, which may be beneficial in terms of binding to the target
enzyme [23]. Furthermore, the modification of Gln into a cyclic derivative also helps
the synthesis. The P2 group is a dimethylcyclopropyl proline (DMCP) and is a leucine
analog that binds primarily to the enzyme at the S2 position through lipophilic interactions.
The P3 residue is a tertiary leucine that mimics valine. The N-terminal is capped with a
trifluoroacetyl group [4,24].
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The nitrile warhead plays a key role in the protease inhibitory mechanism of nirma-
trelvir. It is worth noting that the nitrile group is also used in other drugs (e.g., vildagliptin)
and drug candidates (e.g., Cbz-A VLQ-CN) to target serine and cysteine peptidases. Al-
though nitrile is less reactive compared to other warheads (e.g., aldehydes), which can be
a disadvantage; however, on the other hand, it provides better selectivity and metabolic
stability [23].

The covalent interaction between nirmatrelvir and SARS-CoV-2 main protease is
shown in Scheme 2. The P1′ nitrile group forms a thioimidate bond with the Cys-145 thiol
functional group of Mpro through a Pinner-like reaction. Since the thiol group of Cys-145
is essential for catalyzing the hydrolysis of peptide bonds, the function of the enzyme is
blocked [20,25].
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2.3. Synthesis of Nirmatrelvir

A synthesis route of nirmatrelvir developed by Pfizer involved the preparation and
coupling of the P1 building block 6 and the P2-P3 dipeptide building block 12, with the
formation of the nitrile warhead at the P1′ position as the final step (Scheme 3). The
production of the P1 building block started from the protected amino acid derivative 4. The
amino group of 4 is protected in the form of a carbamate with a tert-butoxycarbonyl (Boc)
group, which can be cleaved by acidic hydrolysis, and its carboxyl group is protected in
the form of a methyl ester, which can be removed under alkaline conditions. In the first
step, compound 4 was treated with methanolic ammonia to cleave the methyl ester to give
amide 5, which was Boc-deprotected with hydrochloric acid to form the hydrochloride salt
6. In parallel, N-Boc-t-butylalanine (or N-Boc-3-methylvaline) (7) as the carboxylic acid
reactant and compound 8 as the amine reaction partner were coupled to form dipeptide 9,
using diisopropylethylamine (DIEA), as the base and O-(7-azabenzotriazol-1-yl)-N,N,N’,N’-
tetramethyluronium hexafluorophosphate (HATU) as coupling agent; the conditions used
are common in peptide chemistry. The methyl ester group of 9 was cleaved with LiOH
to give compound 10, the Boc group was then removed from the N-terminus with HCl
to give compound 11. Ethyl trifluoracetate was used to convert the NH2 group of 11
to acetamide. The obtained compound 12 containing a free carboxyl group was ready
for coupling with compound 6. Peptide coupling was performed using DIEA as base,
1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI) as coupling agent,
in the presence of 2-hydroxypyridine 1-oxide (HOPO), which served to suppress the
racemization. The inner salt methyl-N-(triethylammoniosulfonyl)carbamate is the so-called
Burgess reagent, usually used to convert amide groups into nitriles by dehydration. Here,
in the last step, the P1′ nitrile group was formed by using Burgess reagent. As a result of
the work-up procedure, the product is isolated as a methyl tert-butyl ether (MTBE) solvate.
Nirmarelvir was obtained with an overall yield of 49% by the synthetic route shown in
Scheme 4 [4,23,26].

Of note, compound 8, a bicyclic proline methyl ester derivative containing three chiral
centers, is a key building unit in the synthesis of nirmatrelvir. Since 8 is also a building
block of boceprevir, many different synthetic routes have been described for it [27].

Another synthetic method (Scheme 4) was reported by Zhao et al. This is a much
shorter and simpler reaction route, consisting of only two amide couplings and a depro-
tection step starting from 8, and it also gives free nirmatrelvir instead of MTBE solvate.
The overall yield of the presented synthesis steps was 60%, but it should be noted that the
synthesis of building blocks 14 and 16 has not been reported [28].
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In 2023, Ruijter, Turner and co-workers reported a remarkable new synthetic approach
to nirmatrelvir based on a highly diastereoselective Ugi-type three-component reaction
(Scheme 5) [29]. One of the key building blocks, the chiral bicyclic imine 18, was prepared
by enantioselective oxidative desymmetrization of meso-pyrrolidine 17 with monoamine
oxidase N (MAO-N) [30]. Due to the high volatility of 18, it was isolated in the form of
its crystalline bisulfite adduct 19 [31], from which the free imine 18 was generated in situ
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for the three-component reaction by basic treatment. The isocyanide building block 23
was prepared from the known Boc-protected amino ester 4. To ensure the appropriate
stability and reactivity of isocyanide 23, the C-terminus of 4 was converted to the protected
primary alcohol 21 in two steps including reduction (20) and benzoylation. Boc deprotection
followed by immediate formylation resulted in formamide 22, from which cyanide 23 was
obtained by dehydration with triphosgene. Ugi-type reaction [32] of the commercially
available carboxylic acid 14 with the in situ prepared imine (18) and isocyanide (23) afforded
the nirmatrelvir core 24 in 68% yield and high diastereoselectivity. After debenzoylation,
the oxidative conversion of the C-terminal primary alcohol of 25 to a nitrile was performed
in a one-pot process, combining PhI(OAc)2/TEMPO-mediated oxidation with ammonium
acetate as the nitrogen source. This multicomponent synthesis proceeded in six steps
yielding nirmatrelvir with an overall yield of 46%.
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Scheme 5. Multicomponent synthesis of nirmatrelvir. (MAO-N: monoamine oxidase N, ee: enan-
tiomeric excess, THF: tetrahydrofuran, BzCl: benzoyl chloride, py: pyridine, TFA: trifluoroacetic
acid, DIPEA: disopropylethylamine, Et3N: triethylamine, dr: diastereomeric ratio, TEMPO: (2,2,6,6-
tetramethylpiperidine-1-yl)oxyl, PhI(OAc)2: (diacetoxyiodo)benzene).
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2.4. Synthesis and SAR Study of Nirmatrelvir Analogs

Chia and co-workers synthesized a small library of nirmatrelvir analogs with different
P1′ moieties (Figure 4) to study the role of the warhead in antiviral activity. The compounds
were tested for their enzyme inhibitory activity against the 3CLpro (Mpro) protease of
SARS-CoV-2 and hCoV 229E (a human coronavirus that causes the common cold), and
their antiviral activity against hCoV 229E. Derivatives without a warhead and with primary
alcohol, primary amide, or methyl ester warheads were ineffective.
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Derivatives containing ethyl propenoate, ketobenzothiazole, benzyloxymethyl ketone,
ketoamide and aldehyde warheads showed similar or better Mpro inhibitory effect than
nirmatrelvir. However, in a cell-based assay, their antiviral activity against hCoV 229E was
inferior to nirmatrelvir, probably due to their lower cell penetration ability.

In this compound library, a derivative with a hydroxymethyl ketone warhead was
the most potent one, exerting stronger protease inhibitory activity and similar anti-hCoV
activity to nirmatrevil. However, a serious limitation of the study is that the cell-based antiviral
tests were only performed with the hCoV 229 coronavirus, not with SARS-CoV-2 [33].

2.5. Novel Covalent and Non-Covalent Inhibitors of SARS-CoV-2 Mpro

Several other peptidomimetic inhibitors of SARS-CoV-2 Mpro (Figure 5A) have been
developed with different warheads, including an epoxide ring (26), a fluoromethyl group
(27), a cinnamic ester (28) and a vinyl ester (29). In the latter two compounds, the α,β-
unsaturated ester warhead acts as a Michael acceptor, reacting with the thiolate group of
MPro Cys145, thus forming an irreversible covalent adduct with the enzyme [6,34,35].

Interesting non-peptidic inhibitors were also identified (Figure 5B), such as the com-
mercially available piperazine-2 derivative Y020-9948 with an α-chloroacetamide warhead.
Compound QUB-00006-Int-07 was developed based on in silico studies. It contains an
α,α-difluoroamide group in a benzene-fused six-membered ring. Esters, such as GRL-0920,
also showed significant enzyme inhibitory activity due to the electrophilic nature of the
ester group, which makes it a suitable warhead [6].

Non-covalent inhibitors represent an attractive alternative in the development of
anti-coronavirus agents. They do not have an electrophilic warhead, so they only form
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secondary interactions with the active site, such as H-bonds, hydrophobic stacking, and
van der Waals forces. For this reason, they generally show lower reactivity but better
selectivity than covalent inhibitors [34]. An important representative of non-covalent
inhibitors of SARS-CoV-2 Mpro is ensitrelvir (S-217622). This compound fits into the S1 and
S2 sub-pockets of the active site, where it forms H-bonding and π-π interactions with the
enzyme. Ensitrelvir is approved for COVID-19 in Japan and marketed under the brand
name Xocova. Despite its proven efficacy, it is insufficient for hard endpoints such as
mortality or hospitalization, which, along with other problems (e.g., the occurrence of
resistance), may limit its future use [36].
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3. Ritonavir as a Pharmacokinetic Enhancer
3.1. Structure, Enzyme Inhibitory Activity and Drug–Drug Interactions of Ritonavir

Ritonavir (Figure 6) was originally developed as an HIV protease inhibitor, but un-
fortunately, it is very poorly tolerated at an effective antiviral dose (400–500 mg). On the
other hand, it turned out that ritonavir at a low dose (~100 mg) can outstandingly inhibit
the CYP3A4 enzyme [34,37,38]. CYP3A4 is a member of the cytochrome P450 enzyme
superfamily. It is mainly produced in the liver and is responsible for the metabolism of
many endogenous and exogenous molecules, including many drugs [39]. Taking advantage
of its CYP3A4 inhibitory effect, ritonavir has been used in combination with other HIV PIs
(e.g., saquinavir, indinavir, or lopinavir) to prevent the degradation of these pharmacons.
In these combinations, ritonavir is used at a low dose (usually 100 mg), in which it has
no significant antiviral effect but is relatively well tolerated, while the other PI is used
at a higher concentration as an antiviral agent. The advantage of co-administering an
antiviral PI with ritonavir is that inhibition of CYP3A4 increases the half-life of the antiviral
component, allowing lower doses or less frequent dosing. Both reduce therapy costs and
increase patient adherence [37,38]. In this context, it is worth mentioning that in the early
stages of the pandemic, the lopinavir/ritonavir combination originally developed against
HIV was tested for the treatment of COVID-19, but was found to be ineffective [40].
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The role of ritonavir in PaxlovidTM is to enhance the effects of nirmatrelvir by inhibiting
its metabolism by CYP3A4. The disadvantage of using ritonavir is the increased risk of
drug–drug interactions (DDI). The most important type of potential DDI is when the
patient is taking other drugs metabolized by CYP3A4 (e.g., simvastatin or midazolam).
In this case, ritonavir may even increase the concentration of the other drug to a toxic
level. This can be a serious problem if the other drug used has a narrow therapeutic index
(the concentration range in which the drug is effective but not toxic), such as tacrolimus,
an immunosuppressive agent. Due to the effect of ritonavir on metabolism, it is worth
considering, if possible, temporarily suspending (or replacing with other drugs) the use
of drugs that are mainly metabolized by CYP3A4, during treatment with Paxlovid and
for 3 days afterwards. However, stopping the regimen does not help with drugs with
a long half-life, such as, e.g., the antiarrhythmic drug amiodarone, because its plasma
concentration may remain high for a long time after the drug is discontinued [12].
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Another type of drug–drug interaction is the use of enzyme-inducing drugs (e.g.,
phenobarbital or carbamazepine), which can counteract the effects of ritonavir by increasing
CYP3A4 activity. The inducer effect may persist even after the administration of the
inducer molecule is stopped, therefore, pausing the application does not eliminate this
interaction [12,41]. Ritonavir also affects other enzymes and transport proteins, but these
are of minor importance during Paxlovid treatment.

Although it is well known that ritonavir is a strong, irreversible inhibitor of the
CYP3A4 enzyme, the precise mechanism of inhibition is currently not fully understood.
Various mechanisms have been proposed in the literature for the inactivation of CYP3A4,
such as (i) coordination of an uncharacterized metabolic intermediate of ritonavir to the
heme unit of the enzyme, (ii) ligation of ritonavir to the hem iron of the enzyme, and
(iii) covalent binding of a reactive ritonavir intermediate to CYP3A4 apoprotein [42]. There
are two proposed mechanisms for the latter covalent attachment (Scheme 6). One possible
mechanism is that after oxidation by CYP3A4, an elimination reaction takes place, resulting
in an isocyanate derivative (route B) [20]. Isocyanates are carbamoylating agents that
can react with nucleophilic groups of proteins (e.g., amino groups). Therefore, ritonavir
covalently binds to CYP3A4, rendering it inactive. The restoration of enzyme activity
requires the synthesis of new CYP3A4 molecules, which takes time. This is why the
inhibitory effect slowly wears off after stopping ritonavir. According to the other proposed
mechanism, the double bond of the thiazole ring of ritonavir is oxidized to an epoxide,
then the amino group 254Lys of the enzyme opens the epoxide ring, so that ritonavir is
covalently bound to the apoprotein (route A) [42,43].
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3.2. Synthesis of Ritonavir

Ritonavir was developed as an HIV protease inhibitor at Abbott Laboratories [44]. The
synthesis strategy of ritonavir involved the preparation and coupling of the chiral building
blocks of amine 35 and carboxylic acid 42 (Scheme 7) [45,46]. First, cyclocondensation
reaction of thioformamide 30 and ethyl 2-chloro-2-chloroacetate 31 followed by reduction
with lithium aluminum hydride resulted in 5-hydroxymethylthiazole 32. By reacting com-
pound 32 with 4-nitrophenylchloroformic acid, carbonate derivative 33 is obtained, which
is then combined with chiral diamino alcohol 34 to obtain compound 35, which contains
one of the carbamate groups of ritonavir. There are several methods for the synthesis of the
(S,S,S)-diamino alcohol (34) used, which are not discussed here [46,47]. In a parallel route,
valine methyl ester 36 was activated as carbamate (37) with 4-nitrophenylchloroformic
acid. i-Butyramide (38) was converted to 2-methylpropanethioamide 39 by oxygen–sulfur
exchange with phosphorus pentasulfide. Then, by cyclocondensation of compound 39
with 1,3-dichloroacetone, thiazole derivative 40 is obtained, which is converted into the
N-methyl derivative 41 in the reaction with methylamine. Compounds 37 and 41 are
coupled in the presence of triethylamine and 4-dimethylaminopyridine bases; the methyl
ester is cleaved parallel to the formation of the amide bond, thus obtaining compound 42
with a free carboxyl group. Compounds 35 containing an amino group and 42 containing a
carboxyl group were coupled by classical peptide synthesis, using EDC as a coupling agent
and HOBt to prevent racemization, to give ritonavir.
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EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, HOBt: 1-hydroxybenzotriazole).

4. Paxlovid—Application and Activity against Mutant Variants

PaxlovidTM is a product that contains co-packed nirmatrelvir (150 mg/tablet) and
ritonavir (100 mg/tablet). The normal dose is 300 mg nirmatrelvir (two tablets) and 100 mg
ritonavir (one tablet) two times per day. Nirmatrelvir dosage should be reduced in patients
with moderate kidney dysfunction, and its use is not recommended in patients with severe
kidney dysfunction. The treatment lasts 5 days [48].

In a phase II/III clinical trial (EPIC-HR = Evaluation of Protease Inhibition for COVID-19
in High-Risk Patients), Paxlovid reduced the combined risk of death and hospitalization
related to COVID-19 by 89% compared to the placebo group [49]. A 2022 meta-analysis
found that nirmatrelvir/ritonavir was successful in reducing hospitalizations and mortality
in patients with COVID-19, but there was no difference between emergency department
visits and intensive care unit admissions based on an analysis of 314,353 patient trials. [9]
Unfortunately, the EPIC-SR trial, which was designed to test Paxlovid in a standard-
risk population, was terminated due to low hospitalization/death rates in the standard-
risk population.

Paxlovid was approved for emergency use authorization by the USA in 2021, for
the treatment of patients with mild/moderate COVID-19 with high risk of progression to
severe disease, with no requirement of oxygen supply. It gained conditional authorization
in 2021 in the UK and in 2022 in the EU [48].
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Nirmatrelvir has proven to be highly active against the Omicron variant of SARS-CoV-2
and its sub-variants. However, there are already circulating strains with mutations that
may give the virus some level of resistance to nirmatrelvir [50,51]. Fortunately, such known
mutations are not very common. In a study based on the GISAID database, among more
than 13 million sequences, the occurrence of resistance-causing mutations was 0.5%, and
no increasing trend was observed; however, there are strains in which certain mutations
are dominant [52]. Most of the omicron subvariants are still sensitive to nirmatrelvir, but it
is important to monitor the emergence of new potentially resistant strains [53].

5. Conclusions

Although there are several effective and safe vaccines against COVID-19, this virus
is unlikely to disappear anytime soon, so there is a need for effective therapeutic agents,
especially oral medicines that people can take at home. There are open questions about
Paxlovid, e.g., the therapeutic advantage for vaccinated and standard-risk patients, or the
phenomenon of rebound, which means that symptoms reappear in some patients after
the end of therapy [54–56]. Nevertheless, Paxlovid is a valuable antiviral agent against
SARS-CoV-2 with high efficacy and safety. At the same time, despite the success of the
nirmatrelvir–ritonavir combination, research into alternative MPro inhibitors should not
be stopped; fortunately, research efforts aimed at developing novel MPro inhibitors are
ongoing [34], as was briefly presented in Section 2.5.

The development of pan-coronavirus antivirals, based on the screening of natural
compounds or the design of new molecules, is emerging as a new strategy to combat
potential future pandemics. Fusion inhibitors are typically considered pan-coronavirus
agents that target the heptad repeat 1 (HR-1) domain of the spike protein S2 subunit. Fusion
inhibitors can effectively inhibit the infection of SARS-CoV-2 variants and other human
coronaviruses, their broad-spectrum effect is based on the fact that the spike protein (S
protein) responsible for viral entry plays a key role in viral infections, and the HR-1 domain
is highly conserved region between coronaviruses [57–59].
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