
Citation: Kampourakis, V.;

Makrakis, G.M.; Kolias, C. From

Seek-and-Destroy to

Split-and-Destroy: Connection

Partitioning as an Effective Tool

against Low-Rate DoS Attacks. Future

Internet 2024, 16, 137. https://

doi.org/10.3390/fi16040137

Academic Editor: Massimo Cafaro

Received: 27 February 2024

Revised: 2 April 2024

Accepted: 4 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

From Seek-and-Destroy to Split-and-Destroy: Connection
Partitioning as an Effective Tool against Low-Rate DoS Attacks
Vyron Kampourakis 1,† , Georgios Michail Makrakis 2,† and Constantinos Kolias 2,*

1 Department of Information Security and Communication Technology, Norwegian University of Science and
Technology, 2802 Gjøvik, Norway; vyron.kampourakis@ntnu.no

2 Department of Computer Science, University of Idaho, Idaho Falls, ID 83402, USA; gmakrakis@uidaho.edu
* Correspondence: kolias@uidaho.edu
† These authors contributed equally to this work.

Abstract: Low-rate Denial of Service (LDoS) attacks are today considered one of the biggest threats
against modern data centers and industrial infrastructures. Unlike traditional Distributed Denial
of Service (DDoS) attacks that are mainly volumetric, LDoS attacks exhibit a very small network
footprint, and therefore can easily elude standard detection and defense mechanisms. This work
introduces a defense strategy that may prove particularly effective against attacks that are based
on long-lived connections, an inherent trait of LDoS attacks. Our approach is based on iteratively
partitioning the active connections of a victim server across a number of replica servers, and then
re-evaluating the health status of each replica instance. At its core, this approach relies on live
migration and containerization technologies. The main advantage of the proposed approach is that
it can discover and isolate malicious connections with virtually no information about the type and
characteristics of the performed attack. Additionally, while the defense takes place, there is little
to no indication of the fact to the attacker. We assess various rudimentary schemes to quantify the
scalability of our approach. The results from the simulations indicate that it is possible to save the
vast majority of the benign connections (80%) in less than 5 min.

Keywords: connection migration; connection partitioning; moving target defense; cloud computing

1. Introduction

Nowadays, evildoers of variable capabilities and skill levels target cloud infrastruc-
tures, having as their ultimate goal the theft of private data of individuals, espionage at
the corporate level, or simply making systems unresponsive, an attack that is commonly
known as Denial of Service (DoS). So far, the most popular means of orchestrating DoS
attacks is by collaboratively transmitting a large volume of traffic against a target host or
a network in hopes of exhausting the target’s resources, including the bandwidth of the
network and the memory or processing capacity of computational nodes. However, today,
an alternative methodology for achieving DoS that is based on the transmission of traffic at
a low rate is gaining traction. Even though LDoS attacks have been studied extensively,
effective countermeasures against such sneakier attacks are yet to be developed.

In LDoS attacks, the aggressor first establishes a long-lasting connection with the
victim. Most of the time, they do not utilize the connection, as LDoS attacks operate in
bursts with malicious traffic forming periodic pulse patterns. While each pulse may carry
a relatively high volume of traffic, its lifespan is generally short; thus, the average traffic
emanated by an attacker over time is kept small. Moreover, even at its peak, the LDoS
transmits a significant volume of traffic, comparatively, the volume is still only a small
fraction of the totality of the network activity and certainly orders of magnitude lower than
volumetric DDoS attacks [1]. For this reason, LDoS are considered stealthy and a significant
mass of research works has been dedicated to its detection [2–5]. In practice, LDoS attacks
exploit mechanisms of legacy transport layer protocols, which exist to provide fairness, and

Future Internet 2024, 16, 137. https://doi.org/10.3390/fi16040137 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16040137
https://doi.org/10.3390/fi16040137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-4492-5104
https://orcid.org/0000-0002-1280-6568
https://orcid.org/0000-0002-3020-291X
https://doi.org/10.3390/fi16040137
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16040137?type=check_update&version=1


Future Internet 2024, 16, 137 2 of 31

stability in the network; a prominent example is the exploitation of Transmission Control
Protocol (TCP) protocol’s adaptive mechanisms. Alternatively, LDoS exploits application
layer protocol vulnerabilities, rendering the detection of the attack even harder. Altogether,
LDoS aims to reduce the throughput of the targeted link or (more commonly) degrade the
Quality of Service (QoS) of an attacked service. Typically, the main target of LDoS attacks is
critical systems that offer highly centralized services that receive large volumes of traffic
daily. Such alluring candidates include cloud computing platforms. Real-life incidents
include the Internet2 Abilene backbone, which in the past has been the target of an LDoS [6]
and the Chinese Web service qq.com, which was seriously affected by an LDoS [7].

This work introduces a novel strategy for isolating malicious connections against
server systems operating in mainly, but not restricted to, cloud infrastructures. Our strategy
is based on iteratively engaging in partitioning of connections among numerous replicas of
the original servers and then observing the results. After a certain number of iterations, it
is possible to identify configurations where all connections assigned to a specific replica are
benign (or malicious). The proposed solution is inspired by existing connection-shuffling
schemes [8–12] that migrate network connections among servers. Thus, our scheme can
vaguely be categorized as Moving Target Defense (MTD). The key difference is that while
most of these defenses focus mainly on the detection of malicious traffic or aim to confuse
the attacker, our scheme aims mainly at the isolation of malicious connections. Most
importantly, our approach requires virtually no information about the attack itself or
the characteristics of the corresponding connections, although it can greatly benefit from
such information. Therefore, it could be effective even against several zero-day attack
methodologies, as long as their effects are observable.

Obviously, the proposed solution can be a part of a general Intrusion Detection Sys-
tem (IDS), benefiting from the monitoring capabilities of the IDS to dynamically adjust
partitioning strategies and isolate malicious connections more effectively. Additionally, our
strategy can be utilized as an input for an Intrusion Prevention System (IPS) to proactively
block suspicious connections identified through the partitioning process. In the same
spectrum, the proposed scheme can be blended with other known security mechanisms
such as firewalls or Security Information and Event Management (SIEM) systems to further
enhance access control policies and enable more efficient incident response and threat
intelligence sharing across the entire security infrastructure.

Regarding the nature of the attacks, there are only two assumptions. First, the attacks
are based on long-lived network connections. While this method is generic within this
context, attacks such as LDoS, False Data injection, TCP session hijacking, reverse shells, data
exfiltration constitute potential candidates for our proposed scheme. Second, the impact of
the attack is observable and possibly quantifiable. For example, in the case of LDoS attacks,
an application or the entire system becomes unresponsive for a short amount of time; note,
however, that the malicious connection(s) are hidden in plain sight, among the plethora of
benign ones. Upon discovery, thanks to the proposed scheme, the malicious connections
can be isolated, examined in further detail, or redirected to honeypot systems.

Behind the scenes, the proposed partitioning strategy is based mainly on two mech-
anisms. Namely, the containerization technology, which is used to spawn replicas of ex-
isting server systems in a fast and inexpensive manner. Additionally, the mechanism of
live-migration of connections is employed to transfer living connections from an existing
running system to another with minimal downtime. We anticipate that the described
technique can provide another active defense tool in the quiver of defenders, allowing
them to adapt to attacks in real time. Our key contributions can be summarized as follows.

• We formulate the problem, presenting its parameters and key performance indicators.
• We provide the blueprints of a generic solution strategy.
• We detail an implementation of our connection partitioning strategy prototype.
• We perform simulations based on the provided metrics to demonstrate the feasibility

of our approach at scale.



Future Internet 2024, 16, 137 3 of 31

The next section provides a brief overview of the relevant works in the area. In
Section 4, we delve into the problem, the proposed methodology, key assumptions, and
suggest performance metrics. The evaluation of the prototype implementation of the
proposed scheme is presented in Section 5. Finally, the conclusions and future directions of
our research are outlined in Section 6.

2. Related Work

In this section, we discuss related work in the areas of resource migration and shuffling
schemes vis-à-vis the strategy that is proposed in this paper.

2.1. Resources Migration

The studies by Bicacki et al. [13] and Qin et al. [14] focused on the migration of
whole Virtual Machines (VM) without interrupting active client flows. To achieve this,
they employed the TCP-Freeze and Traffic-Redirection virtual machine Migration (TRM)
techniques, respectively. In an effort to increase efficiency, our approach aims to migrate
individual connections only. In this way, we can reduce the number of resources needed
and indirectly converge to a solution, i.e., isolate malicious connections faster.

The work by Wood et al. [15] introduced CloudNet, which can achieve the live migra-
tion of VMs in Wide-Area Network (WAN) data centers and can be beneficial for networks
with high-latency and low-bandwidth links. To maintain a seamless migration of TCP
connections, the system utilized Virtual Private LAN Service (VPLS) bridges to connect
the Virtual Local Area Networks (VLAN) of the old and new locations. Still, this solution
adds more complexity with the use of additional protocols and focuses on the migration of
entire VMs and not individual connections.

Chaufournier et al. [16] proposed the use of Multi-Path TCP (MPTCP) for live mi-
gration of VMs to improve migration time and network transparency of applications that
reside in them. However, they focused on applying MPTCP in edge networks, which
usually have a high variance in terms of bandwidth, round-trip time, and congestion. In
such placements, TCP might have the disadvantage of performing an adaptive selection of
the least congested path. Our focus on this work is the migration of connections inside a
data center where such manual decisions can be made by skilled administrators.

Chen et al. [17] introduced SplitStack, attempting to tackle the problem of responding
to asymmetric DDoS attacks. They accomplished this by separating the victim server
applications into a “stack” of components and tried to replicate and migrate the attacked
components by utilizing idle resources in a data center. While our solution differs from
SplitStack on a fundamental level, we have drawn inspiration from their migration process
and their dispersion-based style of defense.

Bernaschi et al. [18] suggested SockMi, achieving transparent TCP migration for both
sides of a connection. Using a Network Address Translation (NAT) entity it can redirect
packets to the new host which utilized the previously exported socket. The importing host
bypasses the NAT and sends the response traffic directly to the client. In our solution, all
inbound and outbound traffic passes from a central location namely a Load Balancer (LB),
that does not notify the attackers about our mitigation technique.

The work by Araujo et al. [19] aimed to analyze attacking methodologies, by keeping
the attackers engaged in a honeypot system. When an attempt to exploit a patched system
was identified, the attackers’ connections were migrated to an ephemeral honeypot based
on an unpatched but not valuable version of the system. However, our end goal is to
identify and isolate the malicious connections without requiring an on-the-fly analysis of
the characteristics of malicious behavior.

2.2. Shuffling Schemes

In their study, Jia et al. [12] introduced an MTD technique to thwart DDoS attacks by
replicating servers at different network locations and shuffling a subset of the client assign-
ments. The shuffling was performed with dynamic programming and greedy algorithms.



Future Internet 2024, 16, 137 4 of 31

However, this mechanism focused only on the Hypertext Transfer Protocol (HTTP) and is
not generalizable as it relied on the HTTP redirection mechanism.

Similarly, Bandi et al. [20] proposed a similar MTD architecture but with the addition
of a layer of proxies between the clients and the server. Relying on fast-flux techniques, they
minimized the replica server’s synchronization and maintenance costs by implementing
the proxy servers as tiny VMs. The system we propose eliminates the need for an external
entity and makes the migration process transparent to clients and/or attackers.

Yang et al. [9] investigated a shuffling scheme in which legitimate and malicious users
are mapped to several servers. Their scheme periodically shuffled the mapping of users to
servers, monitoring the communication performance of the sessions post-shuffle to classify
them as benign or malicious. While their work centered on connection migration among
servers, our approach diverges fundamentally, distributing connections to replica servers
rather than shuffling them among existing servers.

Alavizadeh et al. [8] introduced a combination of the shuffle and diversity MTD
techniques, also evaluating their effectiveness by deploying different combination strategies
in cloud environments using two-layered Graphical Security Models (GSM). Particularly,
for their shuffling technique they utilized live migration of VMs between the two layers of
the GSM based on the VMs’ importance. At the same time, they exploited live Operating
System (OS) diversification to deploy the diversity technique. Conversely, our approach
aims at migrating individual connections instead of entire VMs without changing any of
their configuration. Moreover, the proposed MTD works only if the attacker exploits certain
vulnerabilities that are relevant to the underlying OS, while our scheme requires almost
zero knowledge of the attack.

The work by Hong et al. [10] introduced the Shuffle Assignment Problem (SAP), which
entailed reconfiguring the network topology by altering the network routing/attack path.
Solving SAP, they computed Defensive Network Reconfiguration Scenarios (DNRSes),
i.e., network topologies with desired security properties. Consequently, they presented
a shuffling-based MTD that exploits DNRSes, to disrupt previous attack paths by con-
tinuously changing the network topology. However, the proposed MTD functions in
small-sized networks and is under the assumption that there is an ongoing privilege escala-
tion attack. On the contrary, our scheme scales regardless of the network size, focusing on
LDoS attacks, and requiring minimal information about the attack.

Stavrou et al. [11] presented a cloud-based MTD, dubbed MOTAG. Particularly, MO-
TAG is based on the increased use of resources or service nonresponsiveness that is due to a
DDoS. Similarly to our work, MOTAG reassigns connections to different servers on demand
without significant loss of resources or server downtime. Nevertheless, MOTAG differs
from our approach as it shuffles the connections among the servers, while our scheme
simply splits the connections to the newly spawned servers to reduce demands on both
time and resource requirements. Furthermore, MOTAG is effective against DDoS attacks,
where the results are more easily observed, while our scheme deals with LDoS attacks
which often operate at lower intensities and are designed to evade detection by mimicking
legitimate traffic patterns.

3. Problem Formulation & Terminology

Let Φ = {c1, c2, c3, . . . , cn} be a set of active connections/traffic flows supported by the
system of interest. Also, let M = {m1, m2, . . . , mk} be a set of malicious connections. For
simplicity reasons, assume that M ̸= Φ and M ⊂ Φ. Then, there exists a configuration
that can be obtained from simply partitioning the connections in Φ into multiple subsets
u1, u2, . . . ul so that there is at least one u = M. To discover M our strategy may engage
in an iterative process of partitioning Φ into further subsets. Finally, we assume that each
iteration of partitioning involves some cost W . Then, in its simplest variation, the task at
hand can be defined as to discover a partitioning strategy that identifies M, with arg min W .
By discovering such a configuration, one may achieve full isolation of malicious connections
without any prior knowledge of the status of each connection (malicious, benign).



Future Internet 2024, 16, 137 5 of 31

Notice that the optimal configuration merely depends on the applied partitioning
algorithm and the time needed to achieve that configuration; thus, the resources of the
underlying environment. Therefore, when the decided partition strategy is applied, the
infrastructure should expect to see an insignificant impact on their resource allocation, i.e.,
decreased replica servers’ utilization, increased network traffic, and power consumption.
Additionally, the effectiveness of migration techniques depends on the quality and maturity
of existing technologies. Increasing the frequency of migration can help identify or mitigate
the cause of an attack, but this comes with added defense costs [21]. Additionally, the
configuration of migration spaces, such as the structure of the network environment can be
pivotal towards improving security. In this work, we do not investigate those impacts since
that requires a large-scale realistic setup, e.g., a testbed residing on a cloud data center.

3.1. Threat Model & Assumptions

We assume that aggressors can unleash network attacks that require the establishing
and maintaining of long-lived connections with the target system. Note that the term connec-
tion is used loosely, not necessarily corresponding to TCP connections only, but rather it
might include any type of network flows. Such attacks may aim at injecting spurious data
or exfiltrating any piece of information from the target system, or simply DoS. An example
of the latter is a low-rate attack that can cripple powerful servers by sending merely KB (if
not less) of data. Henceforth, LDoS are to be treated as the main exemplar. In this context,
works such as the ones in [1,22] studied LDoS extensively and attempted to provide a
basic model of this family of attacks. Notice that although LDoS incidents may vary in
terms of duration L and volume intensity/transmission rate R, in practice all attempts
tend to unfold in bursts, i.e., the malicious packets follow a normal distribution. Moreover,
even at its peak volume, the malicious traffic corresponding to an LDoS is insignificant
compared to the volume of the normal traffic. Figure 1 provides an example of the volume
of malicious traffic across time corresponding to an LDoS attack. In real-life scenarios, any
user interacts directly with a centralized component, i.e., the LB or a reverse proxy and not
the actual servers. For this reason, we assume that the attacker has no visibility into the
internal structure of the network and they have no means of monitoring the traffic inside
the data center.

Figure 1. Model of traffic conditions during an LDoS attack.

Finally, a basic assumption of our approach is that the defenders have some indicator
of compromise of the system or pointers that some type of attack is unfolding. Particularly



Future Internet 2024, 16, 137 6 of 31

for LDoS such an indicator, might be that the application OS is unresponsive or that the
communications are unusually slow. The reader should notice that the term indicator is
kept intentionally vague, as it typically is a highly empirical process that may in some
cases rely on manual human input. For this reason, we assume that the simple action
of checking is comparatively one of the most time-consuming processes and should be
performed sporadically.

3.2. Definitions

Hereunder, we outline the basic terms that will be used throughout this article and
provide brief explanations.

Node: Systems that can serve one or multiple connections. Note that attacks against
one of these nodes may lead to leakage or corruption of data. Nodes may be part of
the original configuration or virtual replicas.
Replica: A virtual copy of the original system, typically a VM or a container. Notice
that replicas are not honeypots. Their purpose is not to study the connections.
Configuration: An instance of the system including all nodes and the connections
distributed among these nodes.
Healthy Node: A node whose connections are all benign. Typically, the purpose of
our partition strategy is to discover such instances as fast as possible. The connections
of healthy nodes are excluded from subsequent partition-shuffling iterations.
Partition: The process of spawning nodes with the sole purpose of migrating a subset
of active connections to these new nodes. Each node essentially provides a testing
environment for its connections. If the result of the evaluation is ongoing attack, then
this implies that at least one of these connections is responsible for the attack. In
the simple variation of the problem, the defender cannot distinguish between the
connections, namely, the malicious connection(s) are hidden in plain sight.
Evaluation: The assessment of the health status of each replica node after the parti-
tion process.
Splitting Factor: The number of new nodes generated from a single node during
an epoch.
Pollution Factor: The rate of benign to malicious connections across all nodes.
Epoch: A cycle of partitioning and evaluating processes.
Stopping Criterion: A condition which, when met, forces the partitioning strategy to
exit. Typical stopping criteria include that a certain number of connections has been
identified as benign and was salvaged, or that a certain number of replica nodes has
been spawned. In the experiments we conducted we applied three stopping criteria,
namely, (a) total time spent, (b) the total number of replicas spawned, and (c) the
percentage of connections saved.

3.3. Evaluation Metrics

In this section, we describe the three evaluation metrics used to assess the effectiveness
of the proposed partitioning strategy. Note that our strategy was only tested through a
simulation, meaning that metrics such as scalability, distinguishability, QoS, and defense
cost [21] are not directly applicable. Nevertheless, as future work, we aim to stretch our
strategy in real-life scenarios, e.g., through a testbed deployed on a cloud data center and
in the presence of a real-life attack, say, Slowloris.

Time elapsed: When no stopping criteria are applied this metric refers to the time
required to fully isolate all malicious connections to several nodes. Conversely, if
a stopping criterion is applied the metric pertains to the time required to isolate a
satisfactory percentage of the malicious connections in several nodes. Note that in
case of a suboptimal solution, we are willing to sacrifice a small number of benign
connections. By relaxing this constraint the system may yield suboptimal solutions
significantly faster.



Future Internet 2024, 16, 137 7 of 31

Detection rate: The percentage of the benign connections that are salvaged in the
event of a suboptimal solution. In the case of a complete solution, this metric is
irrelevant, as all the malicious connections are isolated.
Resources consumption: The number of resources including nodes spawned, Random-
Access Memory (RAM) consumption, and number of threads required for the scheme
to converge to a solution. The act of partitioning that internally involves the spawning
of new nodes contributes to the consumption of significant resources. Note that since
our partitioning strategy was only tested in a simulation context, we only measured
the nodes spawned as the resource consumption metric.

4. Proposed Solution

This section details the proposed solution along with basic assumptions and presents
concrete examples for better understanding.

One naive solution might be to create a replica of the original server, migrate one
connection at a time, and check whether that connection is problematic. That approach
requires the maximum amount of time translated to the processes of checkpointing the
connection status, spawning the replica server, migrating the connection parameters over
the network, resuming the connection, and finally, checking the health status of the replica
server. Empirically, out of all these processes, the last step is particularly time-consuming.
Therefore, this approach is very time-intensive, albeit it relies upon the creation of only one
replica server, and thus very cost-efficient. Another naive solution might be to spawn many
replicas, precisely as many as the active connections supported by the server, and migrate
each connection to its own replica server in parallel. Then, for each replica, the effects of
the connection to the underlying, say, Web application would be studied in isolation. That
would ensure that all steps would be performed in parallel, but the maximum number of
replicas (and therefore resources) are required.

4.1. Toy Examples

To aid the reader in better understanding the proposed solution, we provide two
comprehensive examples illustrating the two aforementioned naive strategies.

Example 1. Consider eight total connections handled by a single server; therefore, the initial
configuration is Φ = {c1, c2, c3, c4, c5, c6, c7, c8}. Let us assume that two connections
M = {m1 = c7, m2 = c8} are malicious. This information is unknown to the defender. With
reference to Section 3.2, for this example, the splitting factor is set to two. The stopping criterion is
set to four total replicas. In the first epoch, the defense spawns two new nodes and partitions the
active connections in half. After this step, the active configuration is u1 = {c1, c2, c3, c4} and
u2 = {c5, c6, c7, c8}. During the end of the first iteration, the status of each node is re-evaluated.
Node Replica 1.A consists of benign-only connections. The node is considered a healthy node and
the corresponding connections are all flagged as safe and are excluded from future shuffling and
partitioning rounds. Node Replica 1.B indicates an ongoing attack. An additional partition will
be performed. During the second iteration, two new nodes are created, redistributing the active
connections accordingly. By the end of this epoch, the configuration is the following: u3 = {c5, c6}
and u4 = {c7, c8}. The status of the two nodes is re-evaluated. Node Replica 2.B is a healthy node.
Node Replica 2.C still indicates an ongoing attack. The process stops because the total number of
replicas created is 4. Despite the stopping criterion, the scheme reached a perfect solution.

Example 2. Consider eight total connections handled by a single server. Therefore, the initial
configuration is Φ = {c1, c2, c3, c4, c5, c6, c7, c8}. Let us assume that two connections
M = {m1 = c4, m2 = c8} are malicious. For this example, the split step is set to four. No stopping
criterion is defined. In the first epoch, the defense spawns four new nodes and distributes the
connections accordingly. After this step the active configuration is u1 = { c1, c2}, u2 = { c3, c4},
u3 = { c5, c6, }, and u4 = { c7, c8}. During the end of the first epoch, the status of each node
is re-evaluated. Nodes u1, u3 are healthy and excluded from subsequent iterations. An additional



Future Internet 2024, 16, 137 8 of 31

partition is performed. During the second iteration, eight new nodes are supposed to be spawned, but
since there are only four connections only four nodes are created, namely u5 = { c3}, u6 = { c4},
u8 = { c7}, and u4 = {c8}. Once again, the process reaches a complete solution.

In view of both the aforementioned examples, it is essential to emphasize that our
strategy lacks (does not depend on) any prior knowledge about the nature of each connec-
tion, i.e., if it is benign or malicious. Recall that, in practice, attackers can craft LDoS attacks
in such a way that they resemble data flows of legitimate users at a very slow rate [23].
Given this characteristic of the LDoS attacks, the deployment of the proposed scheme is
only based on basic indicators of abnormality. Note that the term indicator is intentionally
left ambiguous, as it often involves a highly empirical process that may require manual
human input.

4.2. Advantages

Having in mind the previous paradigms, in summary, the advantages of our proposed
approach can be outlined as follows:

• It can always lead to a perfect solution without sacrificing benign connections, assum-
ing enough time and resources are spent.

• It can converge to suboptimal solutions much sooner, assuming we are willing to
sacrifice some benign connections.

• It does not require knowledge of the characteristics of the ongoing attack; this renders
it effective even against unknown (zero-day) attacks.

• It does not rely on sophisticated intrusion detection tools as indicators of attacks.
While it is possible to incorporate such tools as a means of automating aspects of the
decision-making process, simple criteria that can lead to a binary decision regarding
whether a node is still under attack are sufficient.

5. Experiments

To further demonstrate the effectiveness of the proposed strategy, this section elab-
orates on the experimental verification of the connection partitioning strategy through
several simulations. Algorithm 1 describes the standard process that our strategy fol-
lows. Particularly, the inputs that the algorithm requires comprise a configuration, the
utilized splitting factor, and the threshold values for three stopping criteria defined in
Section 3.2, as detailed in lines 4 to 12 of Algorithm 1.

For all experiments, the configuration is structured as follows. We assume that the
malicious connections follow a normal distribution across time. Moreover, for the sake of
simplicity for all experiments, the peak of the malicious activity is located in the middle
of the considered time slot. Additionally, we conducted experiments considering three
distinct pollution factors, namely, 1%, 5%, and 10% of the total connections. Finally, we
considered alternative sizes of connection pools, ranging from 1K to 10K, with increments
of 1K. Each experiment was repeated 1000 times to extract the mean for all metrics.

Without considering any stopping criteria, the simulation completes only when all the
malicious nodes have been isolated, each to their own replica server, as indicated in lines 13
and 14 of Algorithm 1. Recall that the defender does not have any means of distinguishing
between normal and benign connections; therefore, hosting a single connection in its
own replica is important if it requires certainty regarding the nature of the connections.
However, for reasons of completeness, we also conducted simulations considering the
aforementioned three stopping criteria. Whether applying a stopping criterion or not, the
simulation exits by returning the total elapsed time, the total connections saved, and the
total nodes spawned, as shown in Algorithm 1.



Future Internet 2024, 16, 137 9 of 31

Algorithm 1: Split and Destroy
Input: configuration, splitting_factor, max_time, min_connections_saved,

max_number_of_nodes
Output: total_elapsed_time, total_connections_saved, total_nodes_spawned

1 new_con f iguration = con f iguration
2 con f iguration_health_status = []
3 while true do
4 // Check stopping criteria and terminate if met
5 if total_elapsed_time > max_time then
6 return
7 end
8 if total_connections_saved > min_connections_saved then
9 return

10 end
11 if len(new_configuration) > max_number_of_nodes then
12 return
13 end
14 // Check if all nodes of the configuration contain a single

connection and terminate if met
15 if all_nodes_are_size_of_one then
16 return
17 end
18 // Splitting phase
19 foreach node in new_con f iguration do
20 new_con f iguration.extend(split_nodes(node, splitting_ f actor))
21 end
22 total_elapsed_time += SpawnTime + FreezeTime + RestoreTime
23 // Evaluation phase
24 foreach node in new_con f iguration do
25 con f iguration_health_status[node] = evaluateNodeHealthStatus(node)
26 end
27 total_elapsed_time += EvalTime
28 // Remove healthy nodes
29 foreach node, status in new_con f iguration, con f iguration_health_status do
30 if status == 0 then
31 new_con f iguration.remove(node)
32 total_connections_saved += len(node)
33 end
34 end
35 total_nodes_spawned += len(con f iguration)− len(new_con f iguration)
36 end

Referring to Algorithm 1, through a while loop, all simulation strategies assessed
here are comprised of several cycles of node partitioning and evaluating phases, referred
to as epochs in Section 3.2. Recall that, in the first phase, the replica nodes are spawned,
followed by actions such as freezing the state corresponding to each connection, migrating the
connection objects to newly spawned nodes through the network, and restoring connections
to the replicas, as described in lines 16 to 19 of Algorithm 1. In the second phase, the
partitioning has been completed, allowing the assessment of the health status of each
replica node, as shown in lines 20 to 29 Algorithm 1. Notably, the evaluation time depends
on the particular application, setup, and attack. Nonetheless, we expect this time to be
significant. Hence, for all simulations, we have arbitrarily chosen to adopt a large value,
i.e., an order of magnitude greater than the most time-consuming among the rest of the



Future Internet 2024, 16, 137 10 of 31

actions. The time per epoch refers to the accumulated time required to perform all these
actions for a single node, referred to as total elapsed time in Algorithm 1. We assume that
all these actions are executed in parallel for each node. The total time per epoch TEpoch is
calculated by the following formula:

TEpoch = S(r) + arg max F(c, s) + arg max R(c, s) + E (1)

where S(r) is the time required for spawning r replica servers, F(c, s) is the time required
to freeze the state for c number of connections when the state size is s. R(c, s) is the time
required to restore the state s relevant to c number of connections to the newly spawned
replicas. Finally, E is the time needed to evaluate the health status of every replica. Table 1
recapitulates the duration for spawning different numbers of replicas, as well as the time
taken for freezing, migrating, and restoring various numbers of connections.

Table 1. Average times for all the actions performed per epoch for various replica numbers and
connection pools.

Time (s)

Replicas (r)/Connections (c) Num. 10 20 30 40 50

S(r) 5.13 7.77 10.36 13.75 18.04
F(c, s) 0.002 0.005 0.008 0.011 0.015
R(c, s) 0.006 0.015 0.021 0.029 0.033

Specifically, to determine the time S(r) required for spawning r replica servers, we
utilized a Docker container running a basic echo server written in Python. We recorded
the duration of these processes and subsequently stopped the containers. In front of
the containers, a transparent LB was used to hide the backend servers and assign client
requests to each one of those servers using a predefined algorithm, e.g., round-robin. This
also allowed the connections between the LB and the servers to be suspended without
interrupting active client flows, given that the client has support for persistent connections
in HTTP versions > 1.1 [24]. Generally, we expect that the proposed strategy will not
perceptibly affect the QoS for legitimate users. This stems from the fact that the migration
process to the replica servers is transparent to them, and any latency resulting from the
migration is anticipated to be insignificant. To suspend the connections, we relied on CCRIU
Libsoccr library [25]. This library facilitates the suspension of established connections
without terminating them. This suspension is achieved by saving the state and data present
in the input and output queues of the connections into a series of files. Moreover, we utilized
Docker’s volume feature to share these connection files from Libsoccr across containers. As
a result, we obtained the value F(c, s) starting from the moment we decided to suspend the
connections until their state was saved to the files.

To restore the connections, we first accessed the corresponding files from the shared
volume and re-established the connections to a different container. This functionality was
made possible through the TCP connection repair feature of the Linux kernel. Thus, in
this context, R(c, s) is the time necessary to read the saved files, restore the state, and
populate the data into the input and output queues of the connections. It is important
to highlight that multiple freezing and restoration actions occur in parallel, leveraging
Python’s threading capabilities. All the aforementioned procedures were repeated 100 times
to compute and report the average time.

5.1. Experiment 1: Two Extreme Cases

The purpose of this experiment is to measure the time elapsed and resources consump-
tion, corresponding to the first and third metrics of Section 3.3 following the two naive
approaches presented in Section 4. Keep in mind that both these cases should not be treated
as viable options, as they require either extreme time or resources. Regardless, they provide
an upper/lower bound for alternative strategies.



Future Internet 2024, 16, 137 11 of 31

In the serial approach, we spawn a single replica server, sequentially migrating one
connection at a time. Each connection operates in isolation in the replica server. Since it is
the only connection running in that node, if it is malicious, it causes an observable effect.
In this case, there is certainty regarding the status of the connection (malicious, or benign)
and then it can be isolated immediately. Because all operations are performed sequentially,
requiring many evaluations (as many as the number of connections), this approach requires
the maximum time. However, concurrently, only one replica server is needed, and for this
reason, it consumes the minimum amount of resources.

The parallel approach operates as follows. We spawn a number of replica servers equal
to the number of connections. Then, simultaneously, we migrate each connection to its
own replica server. Again, in parallel, we check the health status of each replica. While this
approach requires the maximum number of replicas, it takes the minimum amount of time
to reach a complete solution. Both these approaches are illustrated in Figure 2.

Figure 2. Two extreme approaches as partition strategies. The use of a single replica server involves
significant time to converge to a full solution; however, it has the minimum requirements in terms of
replica servers spawned (left). The use of one replica-per-connection has maximum requirements in
terms of resources but achieves minimum time to converge to a full solution as all processes can be
executed in parallel (right).

Both these approaches require the same time and resources, irrespective of the pol-
lution factor. This is because both adopt an exhaustive, brute-force method, examining
every single connection. In the parallel approach, the total time required does not exceed
one minute for identifying the status of all connections. However, as expected, the serial
approach requires much more time to converge to a full solution. More specifically, the
simulations indicate that the total time increases by ≈80–90 min for every 1K additional
connections. For 10K connections, it takes roughly 14 h or 835 min for the completion of
the scheme. The serial approach requires precisely a single replica to evaluate each of the
connections, while in the parallel case, each of the connections is evaluated in a separate
replica server spawned for the same purpose. In other words, the number of replica servers
that are required in the parallel approach increases linearly according to the number of
connections. The results are illustrated in Figure 3 and outlined in Table 2.

Takeaways: The time and replicas needed to reach a complete solution scale linearly
based on the total number of connections. However, for a large number of initial connec-
tions, the described approaches become prohibitively expensive either in terms of time
(serial approach) or resource (parallel approach) requirements. More specifically, the serial
approach requires more than 835 min to reach a full solution when 10K connections are
considered. Similarly, the parallel approach necessitates the spawning of 10K replicas
assuming the same parameters.



Future Internet 2024, 16, 137 12 of 31

Figure 3. Comparison between the two extreme approaches based on the average time (left) and the
total number of replicas required (right) without any stopping criterion applied. In this example, a
pollution rate of 5% is considered.

Table 2. Time elapsed in minutes (left) and resource consumption (right).

Time (min) Num. of Replicas

Num. of Conn. Par. Approach Ser. Approach Num. of Conn. Par. Approach Ser. Approach

1000 0.18 83.52 1000 1000 1
2000 0.27 167.10 2000 2000 1
3000 0.37 250.55 3000 3000 1
4000 0.45 334.12 4000 4000 1
5000 0.54 417.37 5000 5000 1
6000 0.64 501.28 6000 6000 1
7000 0.73 584.64 7000 7000 1
8000 0.82 668.07 8000 8000 1
9000 0.91 751.45 9000 9000 1

10,000 1.00 835.20 10,000 10,000 1

5.2. Experiment 2: Static Splitting Factor with No Stopping Criteria

The purpose of this experiment is to evaluate the efficiency of the splitting strategy
for different splitting factors, calculating the time elapsed and resources consumption. These
correspond to the first and third metrics of Section 3.3. More specifically, in each epoch,
each node is split into replica nodes and the connections serviced by the original node
are redistributed equally among the new ones. In this experiment, we evaluate each case
with different pools of initial connections, considering no stopping criteria. Note at this
point that recycling replicas or other techniques for conserving resources have not been
considered. The results of this experiment may allow us to properly calibrate the stopping
criteria for the subsequent simulations. By examining the results of the simulations, we
observe that low-splitting steps generally lead to more efficient solutions.

With reference to Figure 4 and Table 3, considering a pollution factor of 1% and a
small-sized connection pool of 1K to 4K, then splitting factors of 2 and 4 are optimal. For
medium-sized connection pools, i.e., 5K to 7K, a splitting factor of 6 provides optimal
results, while for large-sized pools, namely, 8K to 10K connections, the optimal splitting
step is 10. Low splitting factors generally lead to the spawning of a lower total number of
replicas. This translates as follows. For 2K connections and a pollution factor of 1% using
a splitting factor of 4 will lead to the full solution in the shortest time; however, a total
of 126 replicas need to be spawned. In contrast, using an even smaller splitting factor of
2 will require even fewer replicas, i.e., 100, meaning 26% less replica utilization. For the
same pollution factor, assuming a 10K pool of connections and the optimal split factor in
terms of time efficiency, i.e., 10, then a total of 901 replicas will be spawned as opposed to
440 when the splitting factor is 2. This is an increase of roughly 50%. In this respect, it is
clear that there is a trade-off between time and resource requirements, depending on the
employed splitting factor. Oppositely, higher splitting factors lead to less effective solutions.



Future Internet 2024, 16, 137 13 of 31

Specifically, in small-sized connection pools, splitting factors of 14 and 20 yield the poorest
performance, whereas in medium- to large-sized connection pools, factors of 16, 18, and
20 exhibit inferior performance. Indicatively, when considering 10K connections, a splitting
factor of 20 requires around 28 min and 1000 nodes to reach a complete solution, meaning
that there is a 65.6% and a 58.5% increase for time and resource demands, respectively,
compared to the best-performing factors.

Similarly, as depicted in Figure 4 and outlined in Tables 4 and 5, when applying a
pollution factor of 5% and 10%, low-to-medium splitting factors outperform the high ones
both in time and resource requirements. Time-wise, splitting factors of 6, 8, and 10 are
consistently the best-performing factors across the considered connection pools. However,
it is worth noting that in cases of 5% and 10% pollution factors, splitting factors of 14, 18,
and 20 sporadically exhibit the highest efficiency for pools of 2K, 5K, and 8K connections,
respectively. Regarding resource utilization, the optimal choice across all connection pools
is consistently a splitting factor of 2. Similarly to the case of 1% of pollution factor, it is
evident that there is a trade-off between time and resource requirements. For instance, a
splitting factor of 10 requires 19.91 min and 1364 nodes in the case of a 10% pollution factor
and 10K connections. On the contrary, a splitting factor of 2 needs ≈31% more time, but it
spawns ≈18% less nodes.

Takeaways: Utilizing a low-to-medium splitting factor that remains unchanged
throughout all epochs may result in a speed-up ranging from one to (approximately) two
orders of magnitude for reaching a complete solution. Taking for example a pollution factor
of 10% and a connection pool of 10K, splitting each node into 10 new nodes per epoch
consumes 29.03 min for the isolation of all malicious connections as opposed to 835.20 min
required by the naive, serial checking, approach. At the same time, adopting a very low
partition factor of 2 will result in spawning a total of 1688 replicas vs. 10K replicas required
by the naive, parallel approach. More sophisticated schemes may better balance the time
and resources required for a complete solution.

Figure 4. Cont.



Future Internet 2024, 16, 137 14 of 31

Figure 4. Comparison of the efficiency of the proposed scheme when considering various splitting
steps. The pollution factors considered are 1% (top), 5% (middle), and 10% (bottom). In this case, no
stopping criterion is set.

Table 3. Time elapsed in minutes (top) and resource consumption (bottom) when considering a
pollution factor of 1%. Highlighted are the best (green) and worst (red) configurations.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 1.84 1.25 1.26 1.74 1.23 1.58 2.03 2.12 2.34 2.91
2000 2.97 2.62 2.95 2.73 3.61 4.34 2.96 3.46 3.67 4.38
3000 4.18 3.29 3.92 3.38 4.49 6.08 7.47 4.11 5.16 5.86
4000 4.82 3.75 4.61 3.82 5.53 6.80 8.64 4.61 5.72 7.14
5000 6.60 6.22 5.48 8.06 6.58 8.65 10.41 12.87 7.21 8.09
6000 6.98 6.62 5.70 8.92 6.69 9.16 11.60 13.95 16.34 8.53
7000 7.73 7.50 6.62 10.19 7.72 10.18 13.02 15.69 18.60 9.65
8000 8.32 7.96 10.72 10.71 8.09 10.59 13.72 16.49 19.13 9.76
9000 11.11 9.21 12.79 12.59 9.18 12.65 16.20 19.58 23.24 26.73

10,000 11.61 9.61 13.10 13.11 9.52 12.95 16.67 20.22 24.27 27.68
Num. of

connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 49 64 69 80 100 92 94 87 88 114
2000 100 126 138 147 165 200 213 193 169 168
3000 144 184 200 225 217 279 355 301 294 267
4000 179 238 254 309 283 287 389 428 403 403
5000 235 304 341 398 379 420 474 602 619 532
6000 259 323 387 434 408 424 501 576 684 656
7000 302 388 491 495 541 510 559 650 785 860
8000 338 412 521 515 610 534 568 645 797 970
9000 413 511 685 648 818 691 717 806 983 1040

10,000 440 542 675 662 901 737 740 802 945 1061

Table 4. Time elapsed in minutes (top) and resource consumption (bottom) when considering a
pollution factor of 5%. Highlighted are the best (green) and worst (red) configurations.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 3.03 2.15 2.23 4.06 1.97 2.91 3.70 5.14 5.89 6.85
2000 5.31 5.53 7.26 5.75 9.28 13.38 4.87 6.47 7.99 9.87
3000 8.98 7.10 9.78 7.16 11.86 17.69 23.28 7.79 10.56 13.05
4000 10.05 7.71 10.91 7.46 14.11 20.35 27.14 7.89 10.51 13.48
5000 14.78 16.13 11.61 24.16 14.38 23.04 32.00 40.44 10.91 13.75
6000 16.48 18.09 12.79 26.80 15.51 24.27 34.86 46.03 57.21 15.04
7000 17.92 19.77 13.78 30.00 16.80 27.16 38.32 50.08 62.98 15.31
8000 19.62 21.78 35.18 32.83 18.10 32.31 41.92 56.09 68.80 16.26
9000 27.35 22.12 36.13 33.91 18.86 37.78 43.44 57.79 75.72 90.28

10,000 29.72 24.51 39.95 37.30 19.91 41.86 46.64 64.07 81.17 97.92



Future Internet 2024, 16, 137 15 of 31

Table 4. Cont.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 118 138 141 136 168 170 151 163 152 149
2000 233 258 291 288 279 353 360 342 313 296
3000 386 430 439 504 452 477 620 592 593 566
4000 483 580 565 673 631 587 677 777 755 746
5000 596 698 718 808 763 734 778 894 973 928
6000 720 808 911 932 959 880 890 1012 1189 1193
7000 851 947 1120 1045 1092 1079 1046 1113 1321 1405
8000 989 1088 1313 1202 1147 1303 1215 1303 1469 1692
9000 1076 1158 1349 1220 1202 1377 1314 1288 1438 1653

10,000 1245 1378 1567 1488 1364 1666 1552 1573 1641 1953

Table 5. Time elapsed in minutes (top) and resource consumption (bottom) when considering a
pollution factor of 10%. Highlighted are the best (green) and worst (red) configurations.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 3.85 2.63 2.85 6.20 2.23 3.53 4.79 6.65 8.82 11.30
2000 7.17 8.13 11.58 7.67 14.76 23.25 5.84 8.12 10.61 13.62
3000 11.92 8.85 13.39 8.25 16.14 26.53 40.45 8.63 11.34 14.41
4000 13.01 9.48 14.21 8.84 17.36 29.62 44.38 8.99 12.35 15.05
5000 21.04 24.67 14.42 38.85 17.62 30.43 48.44 69.10 11.99 15.06
6000 23.08 27.08 16.03 42.15 19.11 33.19 53.10 74.37 103.45 16.58
7000 23.97 28.36 16.29 45.02 19.46 34.96 54.99 79.57 109.13 17.02
8000 25.21 30.00 57.10 47.52 19.90 35.38 57.50 84.73 114.60 17.47
9000 40.21 30.51 59.11 49.05 25.36 35.58 59.04 87.84 121.32 161.40

10,000 42.14 32.03 61.72 50.38 29.03 37.30 61.05 91.10 125.72 165.43
Num. of

connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 173 180 190 185 199 210 197 215 205 202
2000 348 356 384 381 383 422 435 432 412 414
3000 508 531 539 577 545 575 629 660 633 601
4000 680 728 719 810 751 744 807 896 904 854
5000 797 863 873 937 930 876 922 1009 1069 988
6000 1012 1072 1146 1143 1181 1107 1119 1201 1314 1324
7000 1189 1225 1331 1302 1384 1326 1315 1359 1518 1574
8000 1340 1373 1521 1452 1598 1531 1486 1543 1667 1825
9000 1467 1514 1669 1600 1818 1700 1699 1709 1807 1962

10,000 1688 1747 1860 1815 2071 1940 1904 1915 1959 2170

5.3. Experiment 3: Distribution and Recovery Time of Malicious Connections

This experiment provides a triplet of additional key remarks derived from the ex-
periment of Section 5.2. First, we demonstrate that all the static splitting factor strategies
uphold the normal distribution throughout the simulation. Second, we prove that resource
utilization grows as the splitting factor increases. Third, we show that the proposed scheme
leads to high resilience; this is confirmed by the relatively brief time required for the
system to recover. We opt to visually confirm these observations through the best time-
and resource-wise performers as derived from the experiments of Section 5.2, namely, the
splitting factors of 10 and 2, respectively. Particularly, the first observation is illustrated in
Figures 5 and 6, the second in Figures 7 and 8, while the third one in Figure 9.

Specifically, Figures 5 and 6 depict the distribution of connections across replica
nodes. The x-axis denotes time in epochs, and the y-axis represents the number of con-
nections each node includes. Each vertical bar in the figure corresponds to a node. The
red and green portions of each node indicate the malicious and healthy connection per-
centages, respectively. Note that both figures depict the condition at the end of the epochs,
namely, after the evaluation has been completed and the healthy nodes have been dis-
carded. Put simply, all the depicted nodes contain malicious connections. Indicatively, both
Figures 5 and 6 pertain to the scenario where the total number of connections was 10K
and the pollution factor was 10%, while the employed strategies include the ones with
splitting factors of 2 and 10, respectively. Epochs 4 to 8 in Figure 5 have been selected to



Future Internet 2024, 16, 137 16 of 31

provide a balanced representation for the case of a splitting factor of 2. This decision was
based on the fact that the rightmost epochs (5 to 14) encompass a vast number of nodes,
whereas the leftmost epochs (1 to 3) involve significantly fewer nodes, offering less distinct
and visible information to the reader. In contrast, in the case of a splitting factor of 10, the
simulation only takes 4 epochs, so we chose to depict epochs 2 to 4 in Figure 6. The first
epoch was deliberately skipped as the number of nodes is significantly smaller and the
connections per node are significantly more than the subsequent epochs, upsetting the
clarity of Figure 6.

Figure 5. Snapshot of the connections’ distribution over simulation epochs. This case considers a
connections’ pool of 10K, a pollution factor of 10%, and a splitting factor of 2. In the parenthesis are
the total nodes for that epoch.

Figure 6. Snapshot of the connections’ distribution over simulation epochs. This case considers a
connections’ pool of 10K, a pollution factor of 10%, and a splitting factor of 10. In the parenthesis are
the nodes that exist at the end of each epoch.

(a) (b)

Figure 7. Snapshot of the distribution of malicious connections over replicas in selected epochs.
This case considers a connections’ pool of 10K, a pollution factor of 10%, and a splitting factor of 2.
(a) Epoch 6 out of 14; (b) Epoch 8 out of 14.



Future Internet 2024, 16, 137 17 of 31

(a) (b)

Figure 8. Snapshot of the distribution of malicious connections over replicas in selected epochs.
This case considers a connections’ pool of 10K, a pollution factor of 10%, and a splitting factor of 10.
(a) Epoch 2 out of 4; (b) Epoch 3 out of 4.

Observing Figures 5 and 6, it is evident that the assumed normal distribution at the
start of the experiments is maintained over time. Noteworthy, this desirable property is
retained by our partition strategy, irrespective of which of the strategies of Section 5.2 is
employed, as confirmed by Figures 5 and 6. Note that, as the number of nodes increases, the
dispersion of malicious connections across the nodes widens. It is also straightforward that
as the splitting factor increases this dispersion process is accelerated. This is because the
partitioning process is applied uniformly to all nodes, irrespective of their maliciousness.
Consequently, even nodes situated at the mean of the distribution are divided into two,
leading to a halving (splitting factor equals two) of the amplitude of the distribution. The
same stands for a splitting factor of 10, but instead, the amplitude in each epoch is divided
by 10. Additionally, the number of nodes per epoch is increased according to the splitting
factor. For example, when using a splitting factor of 2, epoch 4 only spans 6 nodes, while in
the same epoch, 1000 nodes are spanned in the case of a splitting factor of 10.

In the same vein, Figures 7 and 8 illustrate the resource utilization over time. Precisely,
the x-axis represents the replica nodes encompassed by an epoch at its conclusion, while
the y-axis denotes the pollution rate of each of these nodes. As with Figures 5 and 6,
each vertical bar stands for a node. Regarding the splitting factor of 2, epochs 6 and 8
were magnified, while epochs 2 and 3 were selected in the case of a splitting factor of 10.
This selection aims to assist readers in discerning the rate of nodes’ increase over time,
facilitating a comparison of resource utilization based on the splitting factor.

It is clear that employing a splitting factor of 2 results in a gradual yet steady increase
in the number of nodes per epoch. Specifically, regarding Figure 7, by the conclusion
of epoch 6, only 18 nodes remain, whereas 63 nodes are present at the end of epoch 8.
Conversely, when employing a splitting factor of 10, resource utilization escalates at a
much faster pace. Particularly, epoch 2 ends with 27 nodes, while epoch 3 with 198 nodes,
exceeding even the node count observed in epoch 8 with a splitting factor of 2.

Figure 9 illustrates the resilience curve of the proposed scheme, with the x-axis de-
noting the percentage of the connections saved, and the y-axis indicating the time spent
per epoch. Similarly to Figures 5 and 6, this figure applies to the scenario where the total
number of connections was 10K, the pollution factor was 10%, while the employed strategy
involved a static splitting factor equal to 2 and 10. With reference to Section 5.2, the par-
ticular scenarios were adroitly selected, as they were the best performers out of the static
splitting factors in terms of resources and time, respectively.



Future Internet 2024, 16, 137 18 of 31

Figure 9. Percentage of connections saved to time elapsed. The graph indicates the time required for
partial to full recovery of the system. In this case, we consider a pollution factor of 10% and splitting
factors of 2 and 10. Note that more than 80% of benign connections are saved within roughly 10 and
4 min, respectively.

Concerning a splitting factor of 2, the strategy requires a total of 14 epochs to reach
a complete solution. Specifically, precisely half of the benign connections are preserved
in the second epoch after 1.59 min, with over 80% of the malicious connections identified
within roughly 10 min, as detailed in Table 6. Nevertheless, our method exhibits a decline
in efficiency during the final four epochs, taking nearly an extra 35 min to attain complete
recovery; or in other words, identifying the remaining 10% of malicious connections.

Contrary to splitting factor of 2, the strategy that utilizes a factor of 10 only requires
4 epochs till achieving a full solution. This is rather anticipated, as the number of nodes
per epoch increases much faster and the malicious connections are more speedily isolated.
Particularly, 60% of the malicious connections are identified in only 1 min, while more than
80% of them are spotted in roughly 4 min, as depicted in Table 7. Similar to the splitting
factor of 2, the rest of the malicious connections (10%) need considerably more time to be
recognized, namely, an additional 25 min.

Table 6. Average connections saved and time elapsed per epoch for partitioning factor 2.

Partitioning Factor Average Connections Saved (%) Average Time Elapsed (m)

Epoch 1 0 1.01
Epoch 2 50 1.59
Epoch 3 50 1.93
Epoch 4 62.50 2.20
Epoch 5 68.75 2.44
Epoch 6 71.87 2.72
Epoch 7 74.21 3.13
Epoch 8 75.38 3.79
Epoch 9 77.72 4.95

Epoch 10 79.96 6.98
Epoch 11 82.75 10.56
Epoch 12 85.65 16.89
Epoch 13 88.73 26.93
Epoch 14 90 42.14

Takeaways: First, all static splitting factor strategies maintain a normal distribution
of connections across replica nodes, but with varying dispersion of malicious connections
across the replica nodes. A more targeted and efficient partitioning strategy could capitalize
on the normal distribution attributes and handle its various zones accordingly. Second,
the resource utilization rate increases with higher splitting factors, as evidenced by faster



Future Internet 2024, 16, 137 19 of 31

node accumulation. Despite this, our scheme demonstrates relative resilience, with higher
splitting factors enabling quicker recovery times, albeit at the cost of increased resource
utilization. As mentioned in Section 5.2, refined schemes may better balance the time
and resources.

Table 7. Average connections saved and time elapsed per epoch for partitioning factor 10.

Partitioning Factor Average Connections Saved (%) Average Time Elapsed (m)

Epoch 1 60 1.08
Epoch 2 73 1.59
Epoch 3 80.20 3.99
Epoch 4 90 29.04

5.4. Experiment 4: Static Splitting Factors with Stopping Criteria

The purpose of the current experiment is to assess the effectiveness of our splitting
scheme across various static splitting factors while introducing three distinct stopping
criteria. Recall from Section 3.3, that the metrics that are used in case a stopping criterion
is applied are the time elapsed, resources consumption, and the detection rate, depending on
the criterion in force. Particularly, in Section 5.4.1, the simulation is conducted with a time
constraint of 15 min. This value is determined by rounding the median time (16.79 min)
taken by the time-wise best-performing splitting factor of 10 when considering a pollution
factor of 10%. Regarding the time criterion, the meaningful metrics are the resources
consumption and the detection rate.

Next, in Section 5.4.2, the simulation is performed with a resource constraint of
1000 replicas. Similarly, this value is derived from rounding the median of replica nodes
(920.2 nodes) taken by the resource-wise best-performing splitting factor of 2, when consid-
ering a pollution factor of 10%. For the resource criterion, the relevant metrics are the time
elapsed and detection rate.

Last, in Section 5.4.3, the simulation is executed with a connection saved percentage
constraint of 80%. This percentage was decided from Tables 6 and 7, where for both curves
of Figure 9 the critical point is when they have achieved to save approximately 80% of
the benign connections, specifically in epochs 11 (10.56 min) and 3 (3.99 min) for splitting
factors of 2 and 10, respectively. When the connection saved percentage criterion is applied,
the appropriate metrics are the time elapsed and resources consumption.

5.4.1. Time Criterion

Upon analyzing the simulation outcomes, it becomes evident that low to medium-
splitting factors result in more effective solutions. Another key (and anticipated) remark is
that as the pollution factor increases the success rates of the employed splitting strategies
are dropping. Moreover, despite the high splitting factors typically leading to low success
percentages, they demonstrate considerably fewer demands for resources, given the 15 min
constraint. The results are illustrated in Figure 10 and detailed in Tables 8–10.

Figure 10. Cont.



Future Internet 2024, 16, 137 20 of 31

Figure 10. Comparison of the efficiency of the proposed scheme when considering various splitting
steps. The pollution factors considered are 1% (top), 5% (middle), and 10% (bottom). This case
considers a time criterion set to 15 min.

Table 8. Detection rate (top) and resources consumption (bottom) when considering a pollution
factor of 1%. Highlighted are the worst (red) configurations. Empty cells indicate that all benign
connections (99% of all connections) were saved

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000
3000
4000
5000
6000 98.9
7000 98.2 98.6
8000 97.8 98.0 98.5
9000 96.9 97.8 98.2 98.7

10,000 96.3 97.4 98.2 98.5
Num. of

connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000
3000
4000
5000
6000 662
7000 597 684
8000 510 610 749
9000 667 729 760 1002

10,000 699 750 821 1010



Future Internet 2024, 16, 137 21 of 31

Table 9. Detection rate (top) and resources consumption (bottom) when considering a pollution factor
of 5%. Highlighted are the best (green) and worst (red) configurations. Empty cells indicate that all
benign connections (95% of all connections) were saved.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000 89.3
3000 90.9 94.4
4000 90.6 92.7
5000 94.7 88.6 88.9 91.6 88.2
6000 94.7 93.8 88.9 88.4 90.8 87.6 89.8
7000 94.3 92.4 87.5 94.8 87.7 90.4 85.2 84.1
8000 93.6 91.9 89.7 87.2 94.5 86.9 89.4 84.2 83.2
9000 90.7 90.8 88.3 87.7 94.7 85.9 88.2 83.8 83.5 82.2

10,000 89.8 89.9 86 87.4 94.4 85 87.8 83.2 82 81.3
Num. of

connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000 386
3000 404 516
4000 543 624
5000 615 730 621 710 824
6000 659 711 833 719 764 852 965
7000 721 823 884 857 726 785 870 936
8000 728 863 945 825 899 753 795 824 978
9000 757 834 964 853 917 719 775 910 943 1084

10,000 784 879 928 876 928 769 787 852 982 1090

Table 10. Detection rate (top) and resources consumption (bottom) when considering a pollution
factor of 10%. Highlighted are the best (green) and worst (red) configurations. Empty cells indicate
that all benign connections (90% of all connections) were saved.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000 89.3
3000 89.5 87.3 89.4
4000 88.8 86 88
5000 88.8 88.8 88.9 87.6 85.1 86.8 87.7
6000 86.3 87.6 81.9 87.5 87.9 83.2 85.6 86.5 84.3 89.3
7000 85.2 87.2 82 87.2 87.8 83.3 85.3 86.2 83 88.9
8000 83.6 86.5 82 86.4 86.9 83.1 84.9 86.6 83.1 88.9
9000 83.4 86.2 81.6 86 86.4 82.7 84.3 85.9 83.7 77.7

10,000 82.5 85.4 80.9 85.4 86.1 81.8 83.9 85.4 84.9 77
Num. of

connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000 386
3000 460 498 569
4000 578 673 727
5000 710 766 910 601 725 802 936
6000 755 813 878 953 790 671 832 955 1000 1166
7000 824 815 842 991 780 721 908 975 1094 1186
8000 774 974 886 982 810 807 871 980 1070 1106
9000 780 823 891 993 832 831 887 979 1081 1144

10,000 813 789 861 962 876 862 856 973 1095 1182

Specifically, with regard to Figure 10 and Table 8, when examining a pollution factor
of 1%, splitting factors ranging from 2 to 12 achieve complete solutions within the 15 min
constraint across all tested connection pools. Consequently, the corresponding cells in
Table 8 remain empty as they exhibit identical values for time and resources as Table 3
from the experiment conducted without no criteria applied, as discussed in Section 5.2.
On the other hand, splitting factors ranging from 14 to 20 occasionally yield suboptimal



Future Internet 2024, 16, 137 22 of 31

solutions for over 6K connection pools. For example, utilizing a splitting factor of 14 leads
to complete solutions up until the number of connections becomes equal or greater than
8K where the succession rate diminishes to 97.8% or lower, depending on the considered
connection pool. However, in case the simulation concludes with a partial solution, it is
apparent that the resource utilization is reduced. Indicatively, using a splitting factor of
20, connection pools of 9K and 10K connections yielded partial solutions with 98.7% and
98.5% succession rates. Despite this, they spawned 1002 and 1010 nodes, which is slightly
fewer than the 1040 and 1061 nodes spawned in the experiment of Section 5.2, where no
criteria were applied.

Contrarily, with reference to Figure 10 and Table 9, when considering a pollution factor
of 5% none of the employed splitting factors achieve optimal solutions for every tested
connection pool. Particularly, for small connection pools, i.e., 1K to 4K, splitting factors 2 to
10 and 20 indeed attain a complete solution. For medium-sized connection pools, spanning
from 5K to 7K, only the splitting factor of 6 and 20 results in a complete solution, followed
by the splitting factor of 10, which succeeds partially (94.8%) only for a connection pool
of 7K. Finally, in connection pools ranging from 8K to 10K, a splitting factor of 20 attains
an optimal solution when the number of connections equals 8K. However, for connection
pools of 9K and 10K, the same factor achieves 82.2% and 81.3%, respectively, marking
these as the least effective performances for these pool sizes. Notwithstanding, in the same
scenario 1084 and 1090 nodes are spawned. Recall from the experiment with no criteria of
Section 5.2, that the same strategy needs 1653 and 1953 nodes to reach a complete solution,
which translates to ≈34% and 44% less resource utilization at the expense of sacrificing a
percentage of 12.8% and 13.7% benign connections, respectively. Significantly, for the same
connection pools, the best-performing splitting factor of 10 only sacrifices 0.3% and 0.6% of
the benign connections, but with ≈23% and 31% fewer nodes spawned, compared to the
brute force experiment of Section 5.2.

The simulation resulted in analogous results when considering a pollution factor of
10%, as illustrated in Figure 10 and outlined Table 10. Remarkably, for small connection
pools only splitting factors of 10, 12, and 14 do not attain complete solutions. For medium-
sized connection pools, splitting factors of 6, 18, and 20 achieve optimal solutions for 5K
connections, while for 6K to 7K connections, the splitting factor of 20 is the top performer
obtaining an 88.9% success percentage. Finally, in connection pools ranging from 8K
to 10K, in terms of the best performers, the results are identical with a pollution factor
of 5%. Regarding resource utilization, the same observation was derived: suboptimal
solutions lead to fewer nodes spawned. Indicatively, for a connection pool of 10K, the best-
performing splitting factor of 10 sacrifices 3.6% of the benign connections, but with ≈57%
less resource utilization. As for the worst-performing splitting factor of 20, it sacrifices 13%
of the benign connections, but with ≈49% less resource utilization.

5.4.2. Replica Nodes Criterion

Based on the derived results, it can be said that when applying a stopping criterion of
1000 replica nodes, low-to-medium splitting factors outperform the high ones. Furthermore,
as with the time criterion experiment, as the pollution factor increases, the success rates of
our scheme are dropping. Additionally, we observed that high partitioning factors lead
to substantial improvements in time and resource efficiency. However, this comes at the
cost of significant sacrifices in terms of benign connections. It is also noteworthy that
considering a low pollution factor of 1%, regardless of the partition factor, our scheme leads
to a complete solution. In this context, the results for pollution factors of 5% and 10% are
illustrated in Figure 11 and detailed in Tables 11 and 12, respectively.



Future Internet 2024, 16, 137 23 of 31

Figure 11. Comparison of the efficiency of the proposed scheme when considering various splitting
steps. The pollution factors considered are 5% (top) and 10% (bottom). This case considers a resource
criterion set to 1000 replica nodes.

Table 11. Time elapsed in minutes (top) and detection rate (bottom) when considering a pollution
factor of 5%. Highlighted are the best (green) and worst (red) configurations. Note that empty cells
indicate that all benign connections (95% of all connections) were saved.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000
3000
4000
5000
6000 48.86 14.94
7000 44.88 50.86 14.98
8000 18.74 20.94 22.46 17.48 28.34 34.84 46.98 51.53 15.88
9000 20.48 19.23 21.03 22.95 16.99 28.65 35.62 47.68 51.66 25.54

10,000 21.88 19.99 21.13 23.15 17.13 28.95 39.77 48.59 51.80 27.12

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000
3000
4000
5000
6000 90.2 81.2
7000 91.4 88.2 80.5
8000 94.6 90.2 92.3 94.8 93.1 93.2 90.2 89.6 80
9000 94.8 94.1 89.3 92 94.9 91.2 88.5 89.2 88.6 80

10,000 94.7 93.8 88.3 91.2 94.9 88 88 87.2 86.1 79.5



Future Internet 2024, 16, 137 24 of 31

Table 12. Time elapsed in minutes (top) and detection rate (bottom) when considering a pollution
factor of 10%. Highlighted are the best (green) and worst (red) configurations. Note that empty cells
indicate that all benign connections (90% of all connections) were saved.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000
3000
4000
5000 9.65
6000 15.75 41.12 18.34 50.01 64.91 14.89 13.18
7000 19.95 25.41 15.53 44.05 19.22 29.55 52.71 65.39 15.47 13.80
8000 18.32 26.65 16.12 44.33 18.80 30.68 53.23 66.20 16.03 14.15
9000 19.29 26.90 16.79 46.58 20.15 31.55 50.23 67.05 16.18 14.63

10,000 21.69 28.70 17.98 47.78 20.70 32.45 51.93 68.01 16.59 14.77

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000
2000
3000
4000
5000 89.2
6000 82.1 88.1 88.2 87.5 87.8 78.7 88.4
7000 89 88.9 82 88 88.4 83.8 85.5 87.4 79.3 88.4
8000 87.2 87.2 82.7 86.5 87.9 82.9 85.4 87.2 75.6 88.7
9000 85.7 85.8 82.2 86 87.4 82.9 84.5 86.7 77.4 77.2

10,000 85.4 86 81.9 85.4 87.2 82.6 84.1 86.3 77.4 76.7

Particularly, as seen from Figure 11 and Table 11, in the case of a pollution factor of
5%, our scheme achieves an optimal solution for every splitting factor for connection pools
up to 5K. Furthermore, within the range of low-to-medium partitioning factors, spanning
from 2 to 14, complete solutions are also achieved for connection pools of 6K and 7K.
Additionally, a partitioning factor of 2 also yields such a solution for connection pools of 8K.
Last, for large connection pools of 9K and 10K, the best performer is the splitting factor of
10; it takes roughly 17 min and has 94.9% of success for both these pools. This translates as
follows. For both the connection pools of 9K and 10K, only 0.1% of the benign connections
are sacrificed, while 1.87 and 2.78 fewer min are spent and 202 and 364 fewer nodes are
spawned compared to the brute force experiment of Section 5.2. Conversely, the splitting
factor of 20 exhibits the poorest performance, preserving only 80% and 79.5% of benign
connections. Nevertheless, it consumes notably 64.74 and 70.8 min less, also generating 653
and 953 fewer nodes.

Likewise, as depicted in Figure 11 and Table 12, in the scenario of a 10% pollution
factor, our scheme reaches a complete solution for every splitting factor for connection
pools up to 4K. Again, within the range of low-to-medium partitioning factors, complete
recovery is also accomplished for connection pools of 5K, while splitting factors of 2, 4, and
12 generate identical outcomes for connection pools of 6K. Finally, within the spectrum
of 9K and 10K connections, for yet another time, splitting factors of 10 and 20 appear
as the best (87%) and worst (77%) performing ones, respectively. Nevertheless, for 10K
connections, the first consumes 8.33 min less and spawns 1071 fewer nodes; this translates
as ≈28% less time and ≈51% less resource utilization. Similarly, the latter needs 150.66 min
less and 1170 fewer nodes, meaning a significant decrease in time (≈91%) and resource
(≈54%) requirements.

5.4.3. Connections Saved Criterion

Examining the results of this experiment given in Figure 12 and Tables 13–15, we argue
that medium splitting factors surpass low and high ones in performance when the stopping
criterion is set to at least 80% of connections to be saved. Moreover, from the same Figure,
it is apparent that both time and resource requirements are essentially reduced as opposed



Future Internet 2024, 16, 137 25 of 31

to all the previous experiments. Recall that this cutback has been also observed from the
experiment of Section 5.3 and Figure 9, where it was corroborated that more than 80% of
the connections have been saved in roughly 10 and 4 min for splitting factors of 2 and
10, respectively. Significantly, the execution time of our scheme is bounded by an 18 min
barrier. Resource-wise the same low bound holds for pollution factor 1% and 5%, where
the most nodes that have been spawned are 638. However, in the case of a 10% pollution
factor, high splitting factors still spawn a substantial number of nodes, often exceeding a
total of 1000.

Figure 12. Comparison of the efficiency of the proposed scheme when considering various splitting
steps. The pollution factors considered are 1% (top) 5% (middle) and 10% (bottom). In this case, we
consider a connections saved criterion set to 80%.

From this standpoint, as observed from Figure 12 and Table 13, when considering a
pollution factor of 1%, medium splitting factors are optimal. Specifically, for connection
pools exceeding 5K, a splitting factor of 10 demonstrates optimal performance, requiring
approximately 1.5 min to retain 80% of the benign connections, with a maximum expense
of 46 nodes. Conversely, employing a splitting factor of 2 takes around 3 min, while
a factor of 20 results in the creation of 134 nodes, making these two setups the least
efficient in terms of time and resource utilization, respectively. To highlight the reduction



Future Internet 2024, 16, 137 26 of 31

in time and resource requirements, we focus on the best-performing splitting factor of each
experiment and a connection pool size of 10K. Compared to the experiments detailed in
Sections 5.2, 5.4.1 and 5.4.2, where the best performer was the splitting factor of 10, our
approach needs 8.1 min less and generates 873 fewer nodes, albeit at the expense of
sacrificing at most 19% of the benign connections. Recall that the simulation concludes
when at least 80% of the 99% benign connections are preserved.

Table 13. Time elapsed in minutes (top) and resources consumption (bottom) when considering a
pollution factor of 1%. Highlighted are the best (green) and worst (red) configurations.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 0.62 0.38 0.42 0.47 0.52 0.27 0.29 0.31 0.32 0.34
2000 0.79 0.49 0.53 0.57 0.62 0.77 0.84 0.40 0.42 1.21
3000 1.13 0.85 0.64 0.68 0.72 0.87 1.06 1.14 1.22 1.31
4000 1.53 0.97 0.74 0.78 0.90 0.97 1.15 1.23 1.32 1.58
5000 2.03 1.62 1.35 1.87 1.09 1.17 1.25 1.33 1.41 1.84
6000 2.23 1.77 1.47 2.04 1.20 1.27 1.35 1.43 1.66 1.94
7000 2.42 1.90 1.58 2.14 1.21 1.37 1.45 1.53 1.77 2.03
8000 2.56 1.99 1.64 2.18 1.22 1.37 1.55 1.63 1.86 2.15
9000 2.74 2.10 1.80 2.28 1.41 1.47 1.65 1.72 1.96 2.26

10,000 2.93 2.23 1.89 2.39 1.42 1.57 1.74 1.82 2.00 2.42
Num. of

connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 8 10 16 22 28 12 14 16 18 20
2000 8 10 16 22 28 45 53 16 18 96
3000 12 22 16 22 28 45 66 76 86 96
4000 19 22 16 22 37 45 66 76 86 115
5000 33 61 56 113 46 56 66 76 86 134
6000 34 64 56 120 46 56 66 76 103 134
7000 34 64 56 120 37 56 66 76 103 134
8000 32 61 56 113 28 45 66 76 103 134
9000 32 61 56 113 37 45 66 76 103 134

10,000 32 61 56 113 28 45 66 76 103 134

Table 14. Time elapsed in minutes (top) and resources consumption (bottom) when considering a
pollution factor of 5%. Highlighted are the best (green) and worst (red) configurations.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 0.78 0.61 0.92 0.47 0.60 0.77 0.86 0.94 1.18 1.29
2000 1.16 0.72 1.03 0.58 0.71 0.88 0.96 1.04 1.29 1.39
3000 1.66 1.38 1.14 1.65 2.61 0.98 1.06 1.14 1.23 1.48
4000 3.57 3.57 3.91 2.10 3.22 4.65 6.40 3.69 1.62 1.74
5000 3.70 3.63 3.91 2.14 3.15 4.54 6.49 3.99 1.74 1.84
6000 3.94 3.78 4.14 2.04 3.00 4.64 6.50 4.02 1.76 1.77
7000 4.10 3.90 4.04 2.42 3.44 4.74 6.45 5.55 1.77 2.04
8000 4.50 4.35 4.45 2.59 3.72 5.25 7.27 5.34 1.88 2.21
9000 4.57 4.29 4.39 2.62 3.73 5.15 7.14 6.02 2.04 2.40

10,000 4.59 4.24 4.41 2.89 3.66 5.28 7.11 5.98 2.48 2.61
Num. of

connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 12 22 56 22 37 56 66 76 103 115
2000 19 22 56 22 37 56 66 76 103 115
3000 32 61 56 113 217 56 66 76 86 115
4000 123 235 306 148 271 430 625 217 120 134
5000 120 229 296 141 253 408 625 428 103 134
6000 122 229 296 120 226 408 625 428 103 115
7000 122 232 286 148 262 408 599 408 103 134
8000 135 259 316 155 280 452 677 510 120 134
9000 128 244 301 148 271 430 651 510 120 134

10,000 128 229 291 134 253 452 638 510 120 134



Future Internet 2024, 16, 137 27 of 31

Table 15. Time elapsed in minutes (top) and resources consumption (bottom) when considering a
pollution factor of 10%. Highlighted are the best (green) and worst (red) configurations.

Num. of
connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 1.29 1.14 0.92 1.45 0.61 0.77 0.86 0.94 1.03 1.28
2000 2.12 1.37 1.08 1.75 2.85 4.15 5.96 1.04 1.28 1.55
3000 2.35 1.52 3.64 1.92 3.03 4.35 6.07 8.63 1.53 1.65
4000 3.60 3.65 3.86 2.10 3.23 4.56 6.40 9.00 12.05 15.51
5000 3.69 3.66 3.91 2.00 3.24 4.65 6.62 8.95 11.98 16.83
6000 6.02 4.05 4.27 9.74 3.43 5.07 7.08 9.88 13.02 17.27
7000 6.25 4.18 4.55 10.11 3.70 5.26 7.53 9.98 13.56 17.38
8000 6.50 4.33 4.59 10.29 3.80 5.36 7.62 10.07 13.81 17.65
9000 10.54 11.79 4.86 10.94 3.87 5.56 7.85 10.72 14.38 17.90

10,000 10.51 11.72 4.77 10.63 3.97 5.56 7.58 10.40 13.70 18.00
Num. of

connections SF = 2 SF = 4 SF = 6 SF = 8 SF = 10 SF = 12 SF = 14 SF = 16 SF = 18 SF = 20

1000 32 61 56 113 37 56 66 76 86 115
2000 65 70 61 134 253 397 444 76 103 134
3000 67 73 291 141 262 408 599 659 120 134
4000 125 241 301 148 271 419 625 895 881 854
5000 119 232 296 127 262 419 638 901 1070 1304
6000 240 256 321 897 271 452 677 991 1344 1380
7000 243 256 336 925 289 463 716 991 1395 1606
8000 246 259 331 932 289 463 716 991 1412 1844
9000 366 892 346 988 289 474 729 1051 1463 1863

10,000 354 877 326 946 289 463 690 1006 1378 1863

Interestingly, when dealing with a pollution factor of 5%, high splitting factors out-
perform low and medium ones, as also confirmed by Figure 12 and Table 14. Specifically,
a splitting factor of 18 emerges as the top performer for connection pools exceeding 4K,
taking roughly 1.6 to 2.5 min and utilizing 100 to 120 nodes to preserve 80% of the benign
connections. In contrast, a medium splitting factor of 14 demands 6.4 to 7.1 min and over
600 nodes to achieve the same preservation rate. This unexpected outcome can be explained
as follows: higher splitting factors necessitate the same resource allocation regardless of
whether the pollution factor is 1% or 5%. However, low and medium splitting factors
require an order of magnitude more time and nodes to salvage 80% of the benign connec-
tions, entailing the execution of an extra epoch during the simulation. And, normally, an
extra epoch, besides spawning a greater number of nodes based on the splitting factor,
also imposes substantially more connection migrations and node evaluations, thereby
considerably increasing the total time.

Regarding the efficiency of our scheme compared to previous experiments of
Sections 5.2, 5.4.1 and 5.4.2 we opt to concentrate on the best-performing splitting fac-
tor and a connection pool size of 10K. Under these conditions, the simulation achieves
the preservation of 80% of benign connections in 2.48 min using 120 nodes. Contrasting
this with the experiment outlined in Section 5.2, where no criteria were imposed, and the
optimal splitting factor was 10, the requirements in terms of time and nodes increase by
87.5% and 91.2%, respectively. In the experiment detailed in Section 5.4.1, where a 15 min
constraint was enforced, and the best performer remained the splitting factor of 10, the
simulation requires 83.4% more time and 87% more nodes. Lastly, in the experiment given
in Section 5.4.2, where a 1000-node criterion was set, and the optimal factor was 10, the
simulation necessitates 85.5% more time and 88% more nodes. Recall that the simulation
concludes when at least 80% of the 95% benign connections are preserved, meaning that at
most 15% of the benign connections are sacrificed.

Finally, when applying a pollution factor of 10%, low to medium splitting factors are
proved to be the more efficient. In detail, as observed from Figure 12 and Table 15, in terms
of time requirements, for small-sized connection pools of 1K to 4K, the best performing
splitting factors are 4, 8, and 10, requiring from approximately 0.6 to 2 min to save 80% of the
benign connections. In terms of nodes spawned, in the same spectrum of connections, the
best-performing splitting factors are 2 and 6, necessitating from 32 to 125 nodes. Moreover,



Future Internet 2024, 16, 137 28 of 31

for medium- and large-sized connection pools, namely, from 6K to 10K, the splitting factor
of 10 is consistently optimal concerning time demands. Precisely, the simulation takes
from roughly 3.4 to 4 min to achieve an 80% of success. For the same connection pools, the
splitting factors of 2 and 10 are the most effective in terms of resource utilization. Namely,
for 6K to 8K connections, the factor of 2 needs around 240 nodes, while for 9K and 10K
connections, the factor of 10 requires exactly 289 nodes. On the other hand, high splitting
factors steadily exhibit the worst performance. Indicatively, for connection pools spanning
from 5K to 10K, the splitting factor of 20 has the most requirements both in time and nodes,
taking ≈15 to 18 min, and demanding from around 1300 to 1850 nodes to preserve 80% of
the benign connections.

To examine the efficiency of our scheme compared to previous experiments of
Sections 5.2, 5.4.1, and 5.4.2, we once again focus on the best-performing splitting fac-
tor and a connection pool size of 10K. Note that in this scenario the best-performing factor
is 10 for all the experiments regardless of the criterion applied. In this context, the simula-
tion obtains 80% of benign connections in 3.97 min using 289 nodes. Comparing this to the
experiment detailed in Section 5.2, there is an 86.3% increase in time and an 86% increase in
node requirements. In the experiment specified in Section 5.4.1, with a 15 min constraint
enforced, the simulation requires 73.5% more time and 67% more nodes. Finally, in the
experiment given in Section 5.4.2, with a 1000-node criterion established, the simulation
requires an 80.8% increase in time and a 71.1% increase in nodes. Recall that the simulation
terminates once at least 80% of the 90% benign connections are maintained, indicating that
a maximum of 10% of the benign connections are sacrificed.

Takeaways: The experiments of this Section systematically evaluated the performance
of our splitting scheme under various stopping criteria, including time constraints, resource
constraints, and connection saved percentage constraints. Across all experiments, it was
observed that low-to-medium splitting factors, generally outperformed high ones, in terms
of both success rates, time demands, and resource utilization. However, as a general
remark, we observed that as the pollution factor increased, success rates decreased, with
even the best-performing splitting factors experiencing limitations. Notably, applying
stopping criteria based on connections saved percentage, such as preserving at least 80%
of connections, yielded substantial reductions in both time and resource requirements
compared to the rest of this Section’s experiments. On the flip side, saving 80% translates as
19%, 15%, and 10% sacrifice of the benign connections, respectively, for 1%, 5%, and 10% of
pollution factors. At the same time, the application of time or resource constraints achieves
better success rates but at the expense of either heightened time or resources. Overall, in
real-time scenarios, adjusting the criteria based on the system’s urgency for recovery and
its available resources can lead to acceptable success rates, even with static splitting factors.
However, more sophisticated schemes may better balance the time and resources.

6. Conclusions and Future Work

LDoS attacks constitute a substantial threat to a diversity of stakeholders, including
contemporary data centers and critical infrastructures. While such attacks exhibit a high de-
gree of stealthiness and expose a tiny network footprint, they may be particularly effective,
ultimately bringing the target network to a grinding halt. Clearly, from a defender’s view-
point, the inherent characteristics of LDoS make them challenging to detect and confront
using standard network perimeter controls, including IDS and firewalls. Contributing to the
confrontation of this threat, this work introduces a novel MTD strategy that requires zero
knowledge of the attack attributes. Essentially, the proposed scheme hinges on iteratively
splitting the initial volume of the connections into replica servers to isolate the malicious
connections. Through an extensive evaluation process, we demonstrate that by craftily
selecting a splitting factor and determining stopping conditions, our strategy can reach an
adequate percentage of success, salvaging 80% of the benign connections in less than 5 min.
Another key remark is the zero-sum situation between time and resource requirements,
meaning that none of the rudimentary splitting schemes we examine is simultaneously



Future Internet 2024, 16, 137 29 of 31

effective in both terms. For instance, employing a small splitting factor of 2 necessitates a
maximum of 1688 replica nodes, whereas opting for a medium factor of 10 consumes up to
29.03 min to attain a complete solution.

An interesting avenue for future work includes devising more advanced partitioning
schemes that could potentially incorporate machine learning methods to better balance time
and resource utilization. Furthermore, despite that the majority of the evaluated schemes
require less than 2000 replicas, replica recycling techniques could be implemented to further
reduce resource utilization. Another intriguing direction for future research involves the
evaluation of the proposed scheme under real-life attacks, say, Slowloris. In a similar vein,
as future work, we aim to explore the behavior of our strategy while considering variant
volumes of real-life attack traffic to assess its scalability.

Author Contributions: Conceptualization, C.K., V.K. and G.M.M.; methodology, C.K. and V.K.;
software, V.K. and G.M.M.; validation, V.K. and G.M.M.; writing—original draft preparation, C.K.,
V.K. and G.M.M.; writing—review and editing, C.K., V.K. and G.M.M.; supervision, C.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: We have made available all data, code and experimental procedures.
Zenodo reference with all the data: https://zenodo.org/records/10963325 Code for Experimental
Part: https://github.com/georgemakrakis/conn_transfer Code for Simulation Part: https://github.
com/byrkam/Partitioning-Defense-Strategy-Simulato all accessed on 3 April 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

APT Advanced Persistent Threats
C&C Command and Control servers
DDoS Distributed Denial of Service
DoS Denial of Service
GSM Graphical Security Models
HTTP Hypertext Transfer Protocol
IDS Intrusion Detection Systems
IPS Intrusion Prevention System
LDoS Low-rate Denial of service
LB Load Balancer
MPTCP Multi-Path TCP
MTD Moving Target Defense
OS Operating System
QoS Quality of Service
RAM Random-Access Memory
SAP Shuffle Assignment Problem
SF Splitting Factor
SIEM Security Information and Event Management
TCP Transmission Control Protocol
TRM Traffic-Redirection virtual machine Migration
VPLS Virtual Private LAN Service
VLAN Virtual Local Area Network
VM Virtual Machines
WAN Wide-Area Network

https://zenodo.org/records/10963325
https://github.com/georgemakrakis/conn_transfer
https://github.com/byrkam/Partitioning-Defense-Strategy-Simulato
https://github.com/byrkam/Partitioning-Defense-Strategy-Simulato


Future Internet 2024, 16, 137 30 of 31

References
1. Zhijun, W.; Wenjing, L.; Liang, L.; Meng, Y. Low-rate DoS attacks, detection, defense, and challenges: A survey. IEEE Access 2020,

8, 43920–43943. [CrossRef]
2. Yan, Y.; Tang, D.; Zhan, S.; Dai, R.; Chen, J.; Zhu, N. Low-rate dos attack detection based on improved logistic regression. In

Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Zhangjiajie, China, 10–12 August 2019; pp. 468–476.

3. Tang, D.; Tang, L.; Dai, R.; Chen, J.; Li, X.; Rodrigues, J.J. MF-Adaboost: LDoS attack detection based on multi-features and
improved Adaboost. Future Gener. Comput. Syst. 2020, 106, 347–359. [CrossRef]

4. Liu, L.; Wang, H.; Wu, Z.; Yue, M. The detection method of low-rate DoS attack based on multi-feature fusion. Digit. Commun.
Netw. 2020, 6, 504–513. [CrossRef]

5. Tang, D.; Tang, L.; Shi, W.; Zhan, S.; Yang, Q. MF-CNN: A new approach for LDoS attack detection based on multi-feature fusion
and CNN. Mob. Netw. Appl. 2021, 26, 1705–1722. [CrossRef]

6. Delio, M. New Breed of Attack Zombies Lurk. 2022. Available online: https://www.wired.com/2001/05/new-breed-of-attack-
zombies-lurk/ (accessed on 6 April 2024).

7. Zhu, Q.; Yizhi, Z.; Chuiyi, X. Research and survey of low-rate denial of service attacks. In Proceedings of the 13th International
Conference on Advanced Communication Technology (ICACT2011), Gangwon-Do, Republic of Korea, 13–16 February 2011;
pp. 1195–1198.

8. Alavizadeh, H.; Kim, D.S.; Jang-Jaccard, J. Model-based evaluation of combinations of shuffle and diversity MTD techniques on
the cloud. Future Gener. Comput. Syst. 2020, 111, 507–522. [CrossRef]

9. Yang, Y.; Misra, V.; Rubenstein, D. A modeling approach to classifying malicious cloud users via shuffling. ACM Sigmetrics
Perform. Eval. Rev. 2019, 46, 6–8. [CrossRef]

10. Hong, J.B.; Yoon, S.; Lim, H.; Kim, D.S. Optimal network reconfiguration for software defined networks using shuffle-based
online MTD. In Proceedings of the 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS), Hong Kong, 26–29
September 2017; pp. 234–243.

11. Stavrou, A.; Fleck, D.; Kolias, C. On the Move: Evading Distributed Denial-of-Service Attacks. Computer 2016, 49, 104–107.
[CrossRef]

12. Jia, Q.; Wang, H.; Fleck, D.; Li, F.; Stavrou, A.; Powell, W. Catch Me If You Can: A Cloud-Enabled DDoS Defense. In Proceedings
of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Atlanta, GA, USA, 23–26
June 2014; pp. 264–275. [CrossRef]

13. Bicakci, M.V.; Kunz, T. TCP-Freeze: Beneficial for virtual machine live migration with IP address change? In Proceedings of the
2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol, Cyprus, 27–31 August
2012; pp. 136–141. [CrossRef]

14. Qin, J.; Wu, Y.; Chen, Y.; Xue, K.; Wei, D.S.L. Online User Distribution-Aware Virtual Machine Re-Deployment and Live Migration
in SDN-Based Data Centers. IEEE Access 2019, 7, 11152–11164. [CrossRef]

15. Wood, T.; Ramakrishnan, K.; Shenoy, P.; Van der Merwe, J.; Hwang, J.; Liu, G.; Chaufournier, L. CloudNet: Dynamic pooling of
cloud resources by live WAN migration of virtual machines. IEEE/ACM Trans. Netw. 2014, 23, 1568–1583. [CrossRef]

16. Chaufournier, L.; Sharma, P.; Le, F.; Nahum, E.; Shenoy, P.; Towsley, D. Fast Transparent Virtual Machine Migration in Distributed
Edge Clouds. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, SEC ’17, New York, NY, USA, 12–14
October 2017. [CrossRef]

17. Chen, A.; Sriraman, A.; Vaidya, T.; Zhang, Y.; Haeberlen, A.; Loo, B.T.; Phan, L.T.X.; Sherr, M.; Shields, C.; Zhou, W. Dispersing
Asymmetric DDoS Attacks with SplitStack. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, Atlanta, GA,
USA, 9–10 November 2016; pp. 197–203. [CrossRef]

18. Bernaschi, M.; Casadei, F.; Tassotti, P. SockMi: A solution for migrating TCP/IP connections. In Proceedings of the 15th
EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP’07), Napoli, Italy, 7–9
February 2007; pp. 221–228. ISSN: 1066-6192. [CrossRef]

19. Araujo, F.; Hamlen, K.W.; Biedermann, S.; Katzenbeisser, S. From Patches to Honey-Patches: Lightweight Attacker Misdirection,
Deception, and Disinformation. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, 3–7 November 2014; pp. 942–953. [CrossRef]

20. Bandi, N.; Tajbakhsh, H.; Analoui, M. FastMove: Fast IP switching Moving Target Defense to mitigate DDOS Attacks. In
Proceedings of the 2021 IEEE Conference on Dependable and Secure Computing (DSC), Aizuwakamatsu, Fukushima, Japan, 30
January–2 February 2021; pp. 1–7. [CrossRef]

21. Cho, J.H.; Sharma, D.P.; Alavizadeh, H.; Yoon, S.; Ben-Asher, N.; Moore, T.J.; Kim, D.S.; Lim, H.; Nelson, F.F. Toward proactive,
adaptive defense: A survey on moving target defense. IEEE Commun. Surv. Tutor. 2020, 22, 709–745. [CrossRef]

22. Rios, V.D.M.; Inácio, P.R.; Magoni, D.; Freire, M.M. Detection and mitigation of low-rate denial-of-service attacks: A survey. IEEE
Access 2022, 10, 76648–76668. [CrossRef]

23. Sikora, M.; Fujdiak, R.; Kuchar, K.; Holasova, E.; Misurec, J. Generator of Slow Denial-of-Service Cyber Attacks. Sensors 2021,
21, 5473. [CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2020.2976609
http://dx.doi.org/10.1016/j.future.2019.12.034
http://dx.doi.org/10.1016/j.dcan.2020.04.002
http://dx.doi.org/10.1007/s11036-019-01506-1
https://www.wired.com/2001/05/new-breed-of-attack-zombies-lurk/
https://www.wired.com/2001/05/new-breed-of-attack-zombies-lurk/
http://dx.doi.org/10.1016/j.future.2019.10.009
http://dx.doi.org/10.1145/3305218.3305222
http://dx.doi.org/10.1109/MC.2016.85
http://dx.doi.org/10.1109/DSN.2014.35
http://dx.doi.org/10.1109/IWCMC.2012.6314191
http://dx.doi.org/10.1109/ACCESS.2019.2891115
http://dx.doi.org/10.1109/TNET.2014.2343945
http://dx.doi.org/10.1145/3132211.3134445
http://dx.doi.org/10.1145/3005745.3005773
http://dx.doi.org/10.1109/PDP.2007.77
http://dx.doi.org/10.1145/2660267.2660329
http://dx.doi.org/10.1109/DSC49826.2021.9346278
http://dx.doi.org/10.1109/COMST.2019.2963791
http://dx.doi.org/10.1109/ACCESS.2022.3191430
http://dx.doi.org/10.3390/s21165473
http://www.ncbi.nlm.nih.gov/pubmed/34450915


Future Internet 2024, 16, 137 31 of 31

24. Fielding, R.; Reschke, J. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. 2014. Available online:
https://datatracker.ietf.org/doc/html/rfc7230 (accessed on 6 April 2024).

25. Criu. Criu. 2024. Available online: https://criu.org/Main_Page (accessed on 6 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://datatracker.ietf.org/doc/html/rfc7230
https://criu.org/Main_Page

	Introduction
	Related Work
	Resources Migration
	Shuffling Schemes

	Problem Formulation & Terminology
	Threat Model & Assumptions
	Definitions
	Evaluation Metrics

	Proposed Solution
	Toy Examples
	Advantages

	Experiments
	Experiment 1: Two Extreme Cases
	Experiment 2: Static Splitting Factor with No Stopping Criteria
	Experiment 3: Distribution and Recovery Time of Malicious Connections
	Experiment 4: Static Splitting Factors with Stopping Criteria
	Time Criterion
	Replica Nodes Criterion
	Connections Saved Criterion


	Conclusions and Future Work
	References

