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Abstract: The ever-increasing diversity of Internet applications and the rapid evolution of network
infrastructure due to emerging technologies have made network management more challenging.
Effective traffic classification is critical for efficiently managing network resources and aligning with
service quality and security demands. The centralized controller of software-defined networking pro-
vides a comprehensive network view, simplifying traffic analysis and offering direct programmability
features. When combined with deep learning techniques, these characteristics enable the incorpora-
tion of intelligence into networks, leading to optimization and improved network management and
maintenance. Therefore, this research aims to develop a model for traffic classification by application
types and network attacks using deep learning techniques to enhance the quality of service and
security in software-defined networking. The SEMMA method is employed to deploy the model,
and the classifiers are trained with four algorithms, namely LSTM, BiLSTM, GRU, and BiGRU, using
selected features from two public datasets. These results underscore the remarkable effectiveness
of the GRU model in traffic classification. Hence, the outcomes achieved in this research surpass
state-of-the-art methods and showcase the effectiveness of a deep learning model within a traffic
classification in an SDN environment.

Keywords: traffic classification; SDN; deep learning; recurrent neural network; GRU; BiGRU; LSTM;
BiLSTM

1. Introduction

In an increasingly digital world characterized by the rapid proliferation of smart
devices and emerging technologies, data traffic is experiencing exponential growth. Conse-
quently, network infrastructures are becoming progressively more diverse and complex
to efficiently handle traffic distribution and the management of numerous devices [1]. A
typical production network comprises multiple devices, operates protocols, and supports
various applications. The heterogeneity of network infrastructures presents numerous
challenges regarding effective organization, resource optimization, and management [2].
The introduction of intelligence into networks has been proposed to address these chal-
lenges [3]. One approach suggested several years ago involves implementing a knowledge
plane (KP) that incorporates machine learning (ML) and deep learning (DL) techniques [4].
Likewise, recent advances in networking include network programmability facilitated
by software-defined networking (SDN) [5]. Thus, Internet Service Providers (ISPs) and
network administrators must adjust to these transformations by implementing the right
tools and methodologies to guarantee effective network management.

SDN is an emerging and dynamic architectural approach that separates the control
plane from the data plane. This technology is particularly well-suited to the constantly
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changing nature of modern applications. The centralized controller within SDN provides a
comprehensive network view, enabling the monitoring, configuration, and control switches
to manage the traffic flows [6]. The SDN controller collects information about network flows
and offers real-time programmability, making it conducive to integrating ML models. This
integration can infuse intelligence into the SDN controller, enabling it to perform tasks such
as data analysis, traffic classification, resource management, security, and general network
services [7]. However, while the controller enables efficient flow control, it cannot achieve
distributed end-to-end QoS management and control attacks due to the lack of control of
end users. Hence, incorporating ML techniques into SDN has garnered significant interest
as it offers innovative data-driven approaches to tackle conventional network challenges.

Traffic classification is a complex endeavor that entails categorizing network traffic
into specific classes, serving various objectives, including network management, service
measurement, and network monitoring. Additionally, it plays a crucial role in enabling
efficient resource allocation and configuring access controls, quality of service (QoS), and
other network security parameters. Commonly utilized traffic classification methods
include the port-based method [8], statistical approach [9] and Deep Packet Inspection
(DPI) [10,11]. Nevertheless, these traditional techniques have become less effective, with
most applications now operating on dynamic ports and network traffic encryption. Hence,
there is a need to develop a novel classification technique that is better suited to the current
operational conditions.

Artificial Intelligence (AI) has become essential for analyzing and sorting network
traffic [12]. This technique collects data and applies machine learning algorithms to classify
and identify various types of network traffic. It observes patterns and features transmit-
ted within network packets, such as their size, duration, and frequency. Analyzing the
contextual information associated with the packets allows for categorizing traffic into spe-
cific groups, including encrypted traffic [13,14]. Therefore, software-defined networking
(SDN) and machine learning techniques represent a precise and efficient classification
method [15]. Recently, the integration of SDN and the use of Deep Learning (DL) methods
have provided viable alternatives that have improved the classification of traffic flows
by application type [16,17]. As a result, this enhances the user experience and optimizes
network performance by assigning priority based on quality of service (QoS) and network
security requirements.

Despite the numerous studies on traffic classification using deep learning (DL) in
software-defined networking (SDN) environments, challenges still need to be addressed.
These include classifying new traffic categories, optimizing classification approaches, and
fine-tuning hyperparameter settings. DL is a practical approach that offers various al-
gorithms that have proven highly effective in traffic classification tasks. Therefore, this
research aims to design a traffic classification model using DL algorithms, explicitly fo-
cusing on classifying traffic flows by application type and network attacks. The main
contributions of this work can be summarized as follows:

• We have developed four classifiers with DL algorithms to evaluate which offers better
results based on two open datasets. Specifically, we used the Gated Recurrent Unit
(GRU), Bidirectional Gated Recurrent Unit (BiGRU), Long Short-Term Memory(LSTM),
and Bidirectional Long Short-Term Memory (BiLSTM) algorithms. In related work, we
observed a lack of classifiers that specifically use GRU, BiGRU, and BiLSTM algorithms
for multiclass traffic classification in SDNs.

• The classifiers aim to improve the SDN performance and security by using the traffic
flow to identify application types and attacks in five classes: Multimedia, VoIP, Instant
message, File transfer, and Attacks. One of the main innovations of our approach lies
in integrating attack detection into the classification process, thus addressing a gap
identified in the related work. The experiments demonstrate the accuracy of detecting
different application types and attacks, such as Denial of Service (DoS), Distributed
Denial of Service (DDoS), Brute-force-attack, Exploitation (R2L), Web_attack, Botnet,
and Probe.
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• The selection of features based on analysis of the SDN controllers and sequence length
enabled an appropriate generalization of deep learning models. This choice facilitates
implementing classifiers in SDN with any controller because northern interfaces can
obtain the selected features, thus reducing the complexity of model training, improving
traffic classification accuracy, and decreasing the associated computational cost.

The paper is structured as follows: Section 2 discusses related work, Section 3 presents
the proposed methodology, Section 4 shows the results and discussion, and finally, Section 5
explains the conclusions and lines of future work.

2. Related Work

In recent times, researchers have been attempting to apply statistical methods for DL
traffic classification. These methods utilize payload-independent parameters such as packet
length, inter-arrival time, and flow duration. This section will analyze and discuss previous
work based on DL techniques in SDN for traffic classification. We have summarized the
outcomes of these studies in Table 1.

Table 1. Deep learning-based traffic classification in SDN.

Ref. Classification Objective Model Input Model Output Accuracy

[18] QoS-aware Automatic by algorithm 15 applications MLP: 97.14%
SAE: 99.14%
CNN: 99.30%

[19] QoS-aware Automatic by algorithm 10 classes SAE: >90.00%
[20] Application-aware Automatic by algorithm 8 applications ML-LSTM: 97.14%

[21] Application-aware 4 features 6 applications
CNN: 93.35%
MLP: 93.21%
SAE: 93.13%

[22] QoS-aware 23 features 3 classes CNN: 96.00%
DNN: 94.00%

[23] Application-aware Flow features selected
by autoencoders 24 applications

CNN+autoencoder:
97.42%
CNN: 96.03%
DNN: 94.36%

[24] Application-aware Automatic by algorithm 15 applications GAN: 93.18%
CNN: 93.30%

[25] Application-aware Automatic by algorithm 5 classes CNN: 98.85%
LSTM: 99.22%
SAE: 98.74%

[26] QoS-aware Automatic by algorithm 20 applications MLP, CNN and SAE: >90.00%
[27] QoS-aware 20 features 8 classes ResNet: 97.24%
[28] QoS-aware 6 features 6 classes VAE: 89.00%

The first study mentioned in Table 1 is by Wang et al. [18]. They introduced an ap-
proach called SDN-HGW, which enhances the management of distributed smart home
networks. The approach supports the core network controller and extends control to the
access network, allowing for more effective end-to-end network management. This frame-
work is of great importance in smart home networks. It enables awareness of distributed
applications using data traffic classification within the network. To achieve this, the authors
developed encrypted classifiers called DataNets. These classifiers are designed using three
deep learning algorithms: Multilayer Perceptron (MLP), Stacked Autoencoder (SAE), and
Convolutional Neural Networks (CNNs). The classifiers are trained using an open dataset
that includes data from 15 applications, encompassing over 200,000 encrypted data samples.
The study’s results demonstrate the applicability of these classifiers in a smart home SDN
environment, enabling distributed application awareness.

Zhang et al. [19] introduced a novel classification approach, as outlined in their re-
search. This approach relies on a hybrid deep neural network for application classification.
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Notably, it automatically derives flow features from the Stacked Autoencoder (SAE) al-
gorithm, eliminating the need for manual feature selection. In conjunction with this, a
centralized SDN controller efficiently acquires and processes extensive network traffic,
leveraging its substantial computing capabilities. The findings from their study indicate
that this novel classification method outperforms the traditional Support Vector Machine
(SVM)-based approach in terms of accuracy.

Lim et al. [20] presented a schema for traffic classification in SDN using DL models.
They prepared a dataset by preprocessing network traffic flows. They developed two DL
classifiers: the Multi-layer Long Short-term Memory (ML-LSTM) model and a combination
of a CNN and single-layer LSTM. The hyperparameters of the models were adjusted
using a fitting procedure. As indicated by the F1 score, performance analysis revealed the
ML-LSTM model’s superiority in network packet classification.

Chang et al. [21] introduced a novel application-aware traffic classification model
within an SDN testbed for online and offline usage. This model is integrated into the SDN
controller and uses three DL algorithms: MPL, CNN, and SAE. An open dataset of samples
from the seven most popular applications was used to train the model. The results showed
that the model achieved an impressive accuracy of over 93.00% during offline training and
maintained a notable 87.00% accuracy during online testing.

Abdulrazzaq and Demirci [22] have developed an engineering system that manages
traffic in software-defined networking (SDN) to enhance bandwidth allocation for various
applications. Their system is based on a classifier built using deep neural network (DNN)
and 1D-CNN algorithms. The Synthetic Minority Over-Sampling Technique (SMOTE)
addresses imbalanced class distribution within the dataset. The main goal of this system is
to improve service quality by assigning different priority queues based on the classification
of traffic flows that originate from other applications. Their research shows that DNN and
1D CNN algorithms offer higher accuracy when dealing with traffic data captured within
5 s and 10 s timeouts.

Chiu et al. [23] introduced a system known as the Convolutional Autoencoder Packet
Classifier (CAPC), designed to promptly categorize incoming packets in both fine-grained
and coarse-grained manners, distinguishing individual applications and broader categories,
respectively, using DL. CAPC is a packet-based deep learning model comprising a 1D con-
volutional neural network and an autoencoder, enabling it to effectively manage dynamic
ports, encrypted traffic, and even group similar applications. The classifier is evaluated
using a privately collected traffic dataset and a publicly available VPN dataset, highlighting
its exceptional performance. CAPC exhibits an accuracy exceeding 97.00% when classifying
service traffic types on the public dataset containing 24 services.

Wang et al. [24] developed a semi-supervised traffic classification technique in SDN
called ByteS-GAN, which utilizes Generative Adversarial Networks (GAN). ByteS-GAN
was created to achieve high accuracy, even with limited labeled samples and many un-
labeled data. The approach involved modifying the structure and loss function of the
traditional GAN discriminator network to enable fine-grained traffic classification. The
research results show that ByteS-GAN significantly improves the classifier’s performance,
outperforming supervised methods such as CNN.

In their work, Wu et al. [25] have presented a framework that uses a deep learning
algorithm to classify encrypted network traffic. The framework comprises three modules,
with the first module responsible for preprocessing the network flows, the second module
focusing on training the classifier, and the third module dealing with testing the CNN
model. According to their findings, this encrypted network traffic classification framework
performs effectively and uses low resources.

Setiawan et al. [26] introduced a framework to enhance the security of the SDN con-
troller while improving the management of smart home networks. This framework, named
SDN Home GateWay for Congestion (SDNHGC), is based on DL algorithms. SDNHGC
conducts real-time traffic analysis to facilitate the regulation of network capacity and re-
source allocation. The classifier within the framework was trained and tested using samples
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from 20 applications sourced from an open database, employing algorithms such as SAE,
MLP, and CNN. The results demonstrate that this approach achieves a level of accuracy
superior to other existing solutions.

Anh et al. [27] sought to tackle the challenge of interpretability in DL-based traffic
classification by introducing an explanatory method incorporating a genetic algorithm.
They designed a traffic classifier based on the ResNet model and employed the genetic
algorithm to create optimal feature selection masks. This innovative approach yielded an
impressive accuracy rate of around 97.24%. Notably, by quantifying the significance of
individual features and calculating their dominance rate, the authors provided valuable
insights into how the classifier operates for various Internet services, shedding light on its
underlying mechanisms.

Jang et al. [28] tackled the challenge of traffic classification within SDN environments
by introducing an innovative approach that leverages a variational autoencoder (VAE).
Their objective was to effectively categorize different classes of Internet services and ensure
the quality of service. To achieve this, the VAE was trained using six statistical features,
enabling the extraction of latent feature distributions for flows within each service class. The
classification of query traffic was accomplished by comparing its latent feature distribution
with the previously learned distributions. The experimental results demonstrated the
efficacy of this method, with an average accuracy of 89.00%, surpassing the performance of
conventional statistics-based and machine learning-based approaches.

In the literature review, the authors propose traffic classification models with DL
techniques, which were analyzed based on accuracy, number of input features, and number
of classes identified in the model output. Although the models demonstrate good accuracy,
problems such as multiclass imbalance, training time, computational cost, and availability
of the training dataset persist. In addition, with the exponential growth of applications and
the constant change in network attack signatures, another challenge arises in network traffic
classification, known as concept drift. Variations in the environment and data distribution
occur due to temporal location fluctuations.

Identifying all applications and all network attacks is a complex and impractical task.
Therefore, the present research proposes developing a DL-based classifier that identifies
applications and the most common network attacks into classes based on specific traffic
flow characteristics. With this proposal, different applications and attacks can be grouped
into classes. This classification of application and attack traffic flows is more efficient
than classifying them individually, facilitating assigning QoS policies or restrictions to the
network traffic.

3. Materials and Methods

This section details the SEMMA methodology used to develop the research [29]. Each
of the SEMMA stages must be performed sequentially to generate a precise traffic classifier:
sampling, exploration, modification, modeling, and assessment. It is important to note that
the structure of this methodology aligns with our research objective, which is to efficiently
build a traffic classification model in SDN with deep learning techniques. Figure 1 illustrates
the flowchart of the improved SEMMA data science methodology.

BEGIN SAMPLE EXPLORE MODIFY MODEL ASSESS END

Select a representative 

data sample based 

on specific objective 

Conduct exploratory  

analysis to understand 

data patterns and

 relationships 

 

Preprocess data by 

handling missing values, 

outliers, and normalizing 

variables 

Apply machine learning

 models to construct  

patterns and insights 

Evaluate model accuracy 

and effectiveness using 

appropriate metrics

Figure 1. SEMMAprocess.
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3.1. Sample

In this phase, the initial dataset is selected. At this point, the researcher can choose
to work with the entire dataset, or they can choose to select a representative sample of
the original dataset. The data came from two public datasets, InSDN [30] and ISCX-VPN-
NoVPN [31]. The InSDN dataset is developed over a specific SDN network to generate
regular and attack traffic, essential for evaluating performance or creating new intrusion
detection systems. The logs for each traffic type are in CSV files, which are approximately
1.88 GB and 3.58 GB in size, respectively. The ISCX-VPN-NoVPN dataset has different
kinds of application traffic, allowing other aspects and scenarios to be addressed. Its files
are in PCAP format, indicating the data is unprocessed. The data are divided into five zip
files; three files are nonVPN, and two are VPN, totaling 28.00 GB of raw data.

The network flows from the PCAP files obtained from two datasets were extracted
using the CICFlowMeter tool [31]. The tool, developed by the Canadian Institute for
Cybersecurity (CIC) at the University of New Brunswick, Canada, is written in Java. It
can extract time-based features from network flows, which are essential for calculating
time-related statistics. The generated flows are computed bidirectionally. In the study
conducted by [32], the tool’s output was configured with a flow timeout of 15 s, extracting
83 features in CSV file format. The study [33] also used the time-base features of the InSDN
dataset. Based on this approach, Table 2 presents the details of the datasets after processing
the PCAP files with a flow timeout of 15 s.

Table 2. Preprocessed dataset.

Dataset Content Samples

ICSX
VPN–nonVPN

AIM chat 1033
BitTorrent 777
Email Client 6976
Facebook Audio 62,544
Facebook Chat 2285
Facebook Video 1226
FTPS 2045
Gmail Chat 1053
Hangouts Audio 72,397
Hangouts Chat 4033
Hangouts Video 2882
ICQ 1131
Netflix 2084
SCP 9546
SFTP 449
Skype Audio 27,756
Skype Chat 6703
Skype File 42,640
Skype Video 1594
Spotify 1498
Vimeo 1752
VoIP Buster 6217
YouTube 2962

InSDN

DDoS 121,942
DoS 53,616
Probe 98,129
Brute-force-attack 1405
Exploitation (R2L) 17
Web_attack 192
Botnet 164

3.2. Explore

The dataset for this research was organized into five traffic classes, created by com-
bining the two datasets detailed in Table 2. The ICSX VPN–nonVPN dataset excluded
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applications such as BitTorrent, Email Client, and Spotify since they could not be assigned
to any of the five classes or needed sufficient samples. On the other hand, in the InSDN
dataset, attacks with limited samples, such as Botnet, Web_attack, and Exploitation (R2L),
were not discarded. Ultimately, a random and equitable selection process of examples
was conducted for applications and attacks to balance the five classes. The result of this
sample selection process is presented in Table 3. In addition, Table 4 shows all the features
of the dataset.

Table 3. Dataset samples selection.

Class Content Total Samples Selected Samples

Multimedia Facebook Video, Hangouts Video, Skype Video, Netflix,
Vimeo, YouTube

12,500 10,000

VoIP Facebook Audio, Hangouts Audio, Skype Audio,
VoIP Buster

168,914 10,000

Instant message AIM Chat, Facebook Chat, Gmail Chat, Hangouts Chat,
ICQ, Skype Chat

16,238 10,000

File transfer FTPS, SCP, SFTP, Skype File 54,680 10,000

Attack DDoS, DoS, Probe, Brute-force-attack, Exploitation (R2L),
Web_attack, Botnet 275,515 10,000

Table 4. List of extracted features.

No. Feature Name No. Feature Name No. Feature Name

1 Flow ID 29 Fwd IAT Std 57 ECE Flag Cnt
2 Src IP 30 Fwd IAT Max 58 Down/Up Ratio
3 Src Port 31 Fwd IAT Min 59 Pkt Size Avg
4 Dst IP 32 Bwd IAT Tot 60 Fwd Seg Size Avg
5 Dst Port 33 Bwd IAT Mean 61 Bwd Seg Size Avg
6 Protocol 34 Bwd IAT Std 62 Fwd Byts/b Avg
7 Timestamp 35 Bwd IAT Max 63 Fwd Pkts/b Avg
8 Flow Duration 36 Bwd IAT Min 64 Fwd Blk Rate Avg
9 Tot Fwd Pkts 37 Fwd PSH Flags 65 Bwd Byts/b Avg

10 Tot Bwd Pkts 38 Bwd PSH Flags 66 Bwd Pkts/b Avg
11 TotLen Fwd Pkts 39 Fwd URG Flags 67 Bwd Blk Rate Avg
12 TotLen Bwd Pkts 40 Bwd URG Flags 68 Subflow Fwd Pkts
13 Fwd Pkt Len Max 41 Fwd Header Len 69 Subflow Fwd Byts
14 Fwd Pkt Len Min 42 Bwd Header Len 70 Subflow Bwd Pkts
15 Fwd Pkt Len Mean 43 Fwd Pkts/s 71 Subflow Bwd Byts
16 Fwd Pkt Len Std 44 Bwd Pkts/s 72 Init Fwd Win Byts
17 Bwd Pkt Len Max 45 Pkt Len Min 73 Init Bwd Win Byts
18 Bwd Pkt Len Min 46 Pkt Len Max 74 Fwd Act Data Pkts
19 Bwd Pkt Len Mean 47 Pkt Len Mean 75 Fwd Seg Size Min
20 Bwd Pkt Len Std 48 Pkt Len Std 76 Active Mean
21 Flow Byts/s 49 Pkt Len Var 77 Active Std
22 Flow Pkts/s 50 FIN Flag Cnt 78 Active Max
23 Flow IAT Mean 51 SYN Flag Cnt 79 Active Min
24 Flow IAT Std 52 RST Flag Cnt 80 Idle Mean
25 Flow IAT Max 53 PSH Flag Cnt 81 Idle Std
26 Flow IAT Min 54 ACK Flag Cnt 82 Idle Max
27 Fwd IAT Tot 55 URG Flag Cnt 83 Idle Min
28 Fwd IAT Mean 56 CWE Flag Count 84 Label

3.3. Modify

This phase involves modifying the dataset, including data cleaning, variable trans-
formation, and feature selection. Therefore, the following section will provide a detailed
overview of the process.
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3.3.1. Data Cleaning

Data cleaning is a crucial step in data analysis, ensuring the data’s quality and integrity.
Anomalies such as missing values and outliers can exist within datasets, and addressing
them helps improve the analysis’s reliability. According to Garcia et al. [34], there are three
types of missing values: Missing Completely At Random (MCAR), where values have a
high likelihood of missing in the dataset across various instances and attributes; Missing
At Random (MAR), where missing values are observed in any of the attributes; and Not
Missing At Random (NMAR), where values are absent because they depend on another
value that is also missing. During data inspection and visualization, we encountered four
MAR-type missing values for the “Flow Byts/s” feature. The present work utilized Python
as the primary programming language to address the issue by employing the Pandas
library’s mean() and fillna() functions. These functions allowed us to replace the null values
in the dataset with the corresponding means.

In a dataset, there are outliers, that is, data points that deviate from others, either
in terms of the data’s location, distinct behavior, or uncommon values within the same
feature. As indicated by Wang et al. [35], there are various methods for detecting these
values, including those based on statistical techniques, distance between observations,
density, clustering, and machine learning. We identified six records with infinite values
and subsequently removed them during data inspection.

3.3.2. Label Encoding

Transformation of the target variable labels from letters to integers was carried out
to enhance the distribution of the target variables and align with model requirements.
This numerical transformation allowed the models to operate more effectively using nu-
merical values instead of letter categories. This process employed two libraries, Keras’
to_categorical, and Scikit-learn LabelEncoder, working in tandem to take categorical labels
and prepare them for use in deep learning models. First, a LabelEncoder was created to map
categorical labels to numerical values. Labels such as “multimedia”, “voip”, “instantmes-
sage”, “filetransfer”, and “attack”, were assigned to each traffic class are allocated unique
numerical values. Subsequently, one-hot encoding was applied using the to_categorical
function. This transformation converts numerical values into binary vectors, where each
label is represented by a vector with a single active bit set to 1 and the remainder set to 0.
Ultimately, an encoded one-hot matrix was obtained and served as target labels in machine
learning models. It is important to emphasize that this process is crucial for enabling
models to understand and classify categories in classification problems effectively.

3.3.3. Data Scaling

Standardization is a process that transforms the features of a dataset in such a way
that they have a uniform scale and follow a standard normal distribution with a mean of
zero and a standard deviation of one. Equation (1) represents the mathematical formulation
of the z-score scaling standardization transformation, which was used in this process. Nor-
malization is a fundamental technique in developing deep learning models, as it eliminates
differences in feature scales, ensuring that all features have an equal impact and, thereby,
facilitating feature comparison and interpretation. We employed the StandardScaler library
from sci-kit-learn to perform the feature scaling transformation on the dataset.

Z =
(xi − mean(x))

stdev(x)
(1)

3.3.4. Feature Selection

This stage aims to select the most relevant features of a dataset to train a DL model. This
is done to improve the model’s accuracy, reduce the data’s dimensionality, and facilitate the
interpretation of the results. To this end, a thorough data analysis and feature engineering
techniques are applied. Initially, it is essential to understand the data and, from that
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understanding, to infer the information that can be derived from them. As a result, we
identified 12 features with constant values across all samples in the dataset: “Fwd PSH
Flags”, “Fwd URG Flags”, “CWE Flag Count”, “ECE Flag Cnt”, “Fwd Byts/b Avg”, “Fwd
Pkts/b Avg”, “Fwd Blk Rate Avg”, “Bwd Byts/b Avg”, “Bwd Pkts/b Avg”, “Bwd Blk Rate
Avg”, “Init Fwd Win Byts”, and “Fwd Seg Size Min ”. Consequently, we discarded these
features as they did not provide meaningful information for classifier training.

In the second stage, feature engineering was performed, which involved the applica-
tion of the mutual information function. This function calculates the mutual information
between each feature and the target variable in a classification problem. The function is
based on the concepts of entropy and information theory. It means that a feature with
a high mutual information score with the target variable provides valuable information
for the classification task [36]. Two libraries, SelectKBest and mutual_info_classif from
Scikit-learn [37], were utilized to conduct this analysis. A threshold of 0.40 was considered
for feature selection, focusing on selecting the best features contributing to the model’s
classification. The result of this process is depicted in Figure 2, with feature score values in
descending order to visualize the most important features.

Figure 2. Mutual information score.

The previous sections aimed to evaluate the impact of each feature on the multiclass
classification results. Therefore, analyzing the information obtained from SDN controllers
using northbound interfaces is necessary, focusing explicitly on the study of APIs provided
by the Ryu controller. This analysis is crucial in feature selection because classifiers can be
implemented at the application layer of the SDN architecture. Although more features can
be obtained from the controller, these should be evaluated and compared with the mutual
information analysis performed before making the final decision. As a final result, five
relevant features were obtained, which were used to train different DL models. The final
selection of features is presented in Table 5.
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Table 5. Description of features.

No. Feature Name Description

1 Flow Duration Duration of the flow in Microsecond
2 Flow Pkts/s Number of flow bytes per second
3 Flow Byts/s Number of flow packets per second
4 Fwd Pkts/s Number of forward packets per second
5 Bwd Pkts/s Number of backward packets per second

Table 6 shows the results of the descriptive statistics for the five selected features. This
information provides a detailed view of the features of the standardized data. It is observed
that measures of central tendency, such as the mean, are very close to zero for most of the
features, suggesting a distribution centered around zero after standardization. Standard
deviations close to one indicate similar dispersion across all features after standardization.
Ranges and percentiles reveal variability in the data, with some features, such as “Flow
Duration”, showing a much more comprehensive range than others. In addition, the
presence of high values in “Flow Pkts/s” and “Bwd Pkts/s” is noted, with their maximum
values significantly higher than the (75.00%) percentiles; however, these values are expected,
as these are values in milliseconds. Overall, these results provide an in-depth understanding
of the distribution and variability of the features.

Table 6. Descriptive statistics.

Flow Duration Flow Pkts/s Flow Byts/s Fwd Pkts/s Bwd Pkts/s

count 5.000000 × 104 5.000000 × 104 5.000000 × 104 5.000000 × 104 5.000000 × 104

mean −2.387424 × 10−17 1.136868 × 10−18 −5.400557 × 10−18 −7.389644 × 10−18 −2.273737 × 10−18

std 1.000010 × 100 1.000010 × 100 1.000010 × 100 1.000010 × 100 1.000010 × 100

min −5.253012 × 10−1 −1.000130 × 10−1 −4.345196 × 10−2 −5.722901 × 10−2 −1.127359 × 10−1

25% −5.200939 × 10−1 −9.993990 × 10−2 −4.344642 × 10−2 −5.722901 × 10−2 −1.126813 × 10−1

50% −4.405559 × 10−1 −9.982524 × 10−2 −4.342988 × 10−2 −5.714464 × 10−2 −1.125122 × 10−1

75% −4.341171 × 10−1 −9.591224 × 10−2 −4.287239 × 10−2 −5.707213 × 10−2 −1.089045 × 10−1

max 2.576183 × 100 4.561686 × 101 1.236910 × 102 3.544473 × 101 4.542805 × 101

3.4. Model

Various activities are carried out in this phase to construct and evaluate data models.
Thus, it involves using and applying a series of modeling algorithms to classify the prepro-
cessed data and assess their effectiveness in achieving the expected results. It focuses on
constructing and training DL models using the data prepared in the modification phase.

3.4.1. Hardware and Software Environment

The experiment was executed using the Ubuntu 18.04 64-bit operating system, Py-
Charm Professional for remote connection to the RIG server, Python 3.10 programming
language, and several libraries such as TensorFlow, Keras, NumPy, Pandas, and Scikit-
Learn. Table 7 provides detailed hardware information about the RIG server.

Table 7. Hardware description.

Component Description

Processor AMD Ryzen Threadrippe 2920X
Main board ASUS ROG Zenith Extreme Alpha

RAM 64 GB Crucial Ballistix DDR4-3000
GPU 16 GB Phantom Gaming X Radeon VII
SSD 500 GB Crucial SSD M.2 NVMe

HDD 3 TB Western Digital HDD Purple
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3.4.2. Deep Learning Model Selection

The most commonly used DL algorithms for traffic classification in SDN are CNN,
SAE, MLP, and LSTM [12,38]. The dataset used in this study exhibits temporal evolution
in communication patterns over time. RNN algorithms perform better when dealing
with time series problems and sequences, such as anomaly detection and network traffic
classification. However, an RNN has different characteristics than other networks like
CNN; its focus is on time series data. In other words, an RNN has directional connections
that allow it to calculate the next step based on the previous steps [39]. Nevertheless, a
simple RNN needs help to learn long-term relationships in data sequences. Therefore, for
the development of the traffic classifier, four RNN-derived algorithms were employed:
LSTM, BiLSTM, GRU, and BiGRU. These algorithms are designed to learn meaningful
connections in longer sequences.

• GRU: These are variants of LSTM networks that incorporate a forgetting gate. Unlike
LSTMs, GRUs have fewer parameters due to the absence of an output gate. Despite
this difference, GRUs offer similar accuracy to LSTMs [40]. In addition, it has been
observed that GRUs can offer computationally more efficient performance in certain
scenarios. Figure 3 shows the architecture of the GRU model.

Figure 3. GRU model architecture.

• BiGRU is a model that adds a future layer in the opposite direction of the data sequence.
This network uses two hidden layers to extract past and future information connected
to a single output layer. This bidirectional structure aids an RNN in removing more
information, consequently enhancing the learning process’s performance [41]. Figure 4
shows the architecture of the BiGRU model.

Figure 4. BiGRU model architecture.
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• LSTM: It is a variant of RNNs that can perform computations based on time sequences,
allowing the processing of recent data and data that occurred at distant time steps in
the series. Unlike a simple RNN algorithm, LSTMs can assess the significance of data,
even when there are many time steps between them, making them ideal for learning
long-term relationships [42]. Figure 5 shows the architecture of the LSTM model.

Figure 5. LSTM model architecture.

• BiLSTM: This model employs two LSTMs, one of which processes the sequence
forward and the other in reverse. Through this bidirectional process, BiLSTM increases
the amount of information available to the network, which can be valuable in traffic
classification problems where comprehending relationships between various traffic
features is essential [43]. Figure 6 shows the architecture of the BiLSTM model.

Figure 6. BiLSTM model architecture.

3.4.3. Definition of Hyperparameters

Once the DL models were defined, the dataset was split into 70.00% for training,
15.00% for validation, and 15.00% for testing. Next, optimal performance was evaluated
through hyperparameter tuning. To define an RNN, a sequential network is created, which
can be either unidirectional or bidirectional, followed by additional layers for multiclass
classification. In particular, a layer with 64 neurons was added to the model, configured
to return all sequences instead of a single value. A dropout layer with a dropout rate of
20.00% was included to prevent overfitting during training, as it randomly deactivates
20.00% of units at each step. A Global Max-Pooling 1D layer was introduced, extracting
the maximum value along the temporal dimension to reduce the output dimensionality of
the RNN layer. Then, a dense layer with five neurons, each corresponding to one of the
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predefined classes in the sample section, and a softmax activation function were added.
The softmax activation layer transforms the outputs into probability distributions for each
class. During the training stage for all models, the categorical_crossentropy loss function
was employed, with 20 training epochs and the ’adam’ optimizer, and model performance
was evaluated using the accuracy metric, given that it is a multiclass classification problem.
All parameters used during the experimentation are detailed in Table 8.

Table 8. Hyperparameter setup.

Activation
Function

Loss
Function Bath Size Optimization

Algorithm Input Layer No. Epochs

Sigmoid Categorical
crossentropy 16 Adam 64 20

3.5. Assess

It is the final phase of the SEMMA methodology. One of the most critical steps in
machine learning models is their evaluation, which means determining their performance.
Metrics provide information about the performance and accuracy of each model [44]. In
this section, the performance of the four models is evaluated using test data, which means
data that were not used during the training phase. Multiple metrics were employed to
measure their performance and assess their predictive capability. Different evaluation
metrics exist depending on the type of technique applied. In this case, the classification
metrics used were Accuracy (2), Precision (3), Recall (4), and F1-Score (5), which were used
to gain a broader understanding of each model’s behavior and how well it fits the data.

• Accuracy is the model’s precision in predicting accurate outcomes, calculated by
dividing the number of accurate predictions by the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision indicates how precise the model is in identifying positive cases. It is calculated
by dividing the number of correctly classified positive instances by the total number
of cases classified as positive.

Precision =
TP

TP + FP
(3)

• Recall is the proportion of positive cases correctly identified by dividing the number of
correctly classified positive instances by the total number of positive cases.

Recall =
TP

TP + FN
(4)

• F1-Score aims to achieve a balanced performance in classifying positive and negative
cases. It is a combined measure of precision and recall that balances both metrics. This
metric was helpful because there was an imbalance in the classes.

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

4. Results and Discussion

This section presents and interprets the results of deploying the four DL algorithms.
However, it is crucial to determine the sequence length to be fed into the algorithms before
applying them.
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4.1. Sequence Length Analysis Results

The analysis of sequence length was conducted by running several tests. Based
on these tests, three sequence length values were defined: sequence_length = 50, se-
quence_length = 75, and sequence_length = 115. Once these values were determined, the
four DL models were executed. The results of these tests are presented in Table 9.

Table 9. Sequence length analysis.

Algorithm Sequence
Length

Training
Accuracy Test Accuracy Training Time (s)

GRU 50 0.9711 0.9744 244
BiGRU 50 0.9824 0.9492 382
LSTM 50 0.9639 0.9582 229
BiLSTM 50 0.9607 0.6023 424

GRU 75 0.9894 0.9834 251
BiGRU 75 0.9900 0.9553 390
LSTM 75 0.9825 0.9782 317
BiLSTM 75 0.9859 0.8644 540

GRU 115 0.9927 0.9955 339
BiGRU 115 0.9904 0.9854 626
LSTM 115 0.9853 0.9951 382
BiLSTM 115 0.9843 0.8777 646

Table 9 presents each DL algorithm’s training accuracy, test accuracy, and training
times with different sequence lengths. During the training phase, it was observed that
GRU and BiGRU consistently yielded the highest evaluation accuracy. However, in the
evaluation phase, the best results were obtained with GRU and LSTM, while the lowest
performance was consistently observed with BiLSTM. Regarding the training times for
each DL algorithm in our model, it was noted that GRU was trained in 297 s and LSTM in
289 s. Consequently, it was determined that the optimal sequence length is 115.

4.2. Evaluation of the Classifiers

In this section, we present the results of traffic classification by the four selected DL
models, utilizing the established hyperparameters from the modeling phase and sequence
lengths defined in the previous section. The evaluation metrics include accuracy, precision,
recall, and F1 score. We present detailed results with all evaluation metrics in Table 10.

Table 10. Evaluation metrics of the proposed models.

Algorithm Accuracy Precision Recall F1-Score Training Time (s) GPU Utilization (%)

GRU 0.9965

Class 0: 1.00
Class 1: 1.00
Class 2: 1.00
Class 3: 1.00
Class 4: 1.00

Class 0: 0.94
Class 1: 0.99
Class 2: 0.93
Class 3: 0.99
Class 4: 0.98

Class 0: 0.97
Class 1: 0.99
Class 2: 0.96
Class 3: 1.00
Class 4: 0.99

339 28

BiGRU 0.9860

Class 0: 1.00
Class 1: 1.00
Class 2: 1.00
Class 3: 1.00
Class 4: 1.00

Class 0: 0.94
Class 1: 0.98
Class 2: 0.85
Class 3: 0.95
Class 4: 0.86

Class 0: 0.97
Class 1: 0.99
Class 2: 0.92
Class 3: 0.97
Class 4: 0.92

626 45
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Table 10. Cont.

Algorithm Accuracy Precision Recall F1-Score Training Time (s) GPU Utilization (%)

LSTM 0.9963

Class 0: 1.00
Class 1: 1.00
Class 2: 1.00
Class 3: 1.00
Class 4: 1.00

Class 0: 0.94
Class 1: 0.99
Class 2: 0.88
Class 3: 0.99
Class 4: 0.98

Class 0: 0.97
Class 1: 0.99
Class 2: 0.94
Class 3: 1.00
Class 4: 0.99

389 33

BiLSTM 0.9932

Class 0: 0.99
Class 1: 0.93
Class 2: 0.97
Class 3: 0.99
Class 4: 0.91

Class 0: 0.73
Class 1: 0.70
Class 2: 0.64
Class 3: 0.70
Class 4: 0.80

Class 0: 0.84
Class 1: 0.80
Class 2: 0.77
Class 3: 0.82
Class 4: 0.85

646 48

4.3. Discussion

After running each algorithm, this subsection presents the graphical analysis with
the defined hyperparameters and a sequence length of 115. The GRU, BiGRU, and LSTM
algorithms generalized correctly, as the training precision values obtained in each model
were close to their respective validation precision values.

4.3.1. GRU Model

Figure 7 shows that the accuracy achieved with GRU at 20 epochs in the training set is
(99.07%), while, in the validation set, it is (99.65%). Although there is a slight difference
between the accuracy of the training set and the validation set (0.58%), this gap is minimal,
indicating effective generalization of the model. The overall trend shows a steady increase
in accuracy and a decrease in loss across epochs, supporting the effectiveness of the training
and the ability of the model to learn and generalize to unseen data.

Figure 7. GRU accuracy.

The F1-score, which combines precision and recall, performed highly in all classes,
with values ranging from (96.00%) to (100%). Specifically, classes 1 and 3 had a perfect
F1-score of 1.00, while classes 0 and 2 had very high F1-scores of (97.00%) and (96.00%),
respectively. The precision per class was (100%), indicating no false positives for any class.
On the other hand, recall varied slightly between classes, with values ranging from (93.00%)
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to (99.00%). This suggests that, although the model correctly classified the vast majority of
instances of all classes, some instances of classes 0 and 2 needed to be correctly classified, as
indicated by the slightly lower recall for those classes. These results indicate exceptionally
high model performance on the multiclass classification task.

The training time of the model was 339 s. During the training process, (28.00%) of the
GPU was used, suggesting an efficient utilization of the available hardware resources to
speed up the training process. This moderate GPU usage also indicates that the model did
not require an intensive workload regarding computational resources, which benefits the
scalability and efficiency of training in resource-constrained production environments.

4.3.2. BiGRU Model

Figure 8 shows that the accuracy achieved with BiGRU at 20 epochs in the training
dataset is (99.34%); the model undergoes significant growth until reaching a final accuracy
of (98.60%) with the validation dataset. This increase in accuracy is accompanied by a
steady decrease in loss, indicating a continuous improvement in the model’s predictive
ability. Although some fluctuations in performance are observed during training, the model
manages to stabilize towards the end of the process, demonstrating effective learning and
an ability to generalize well to unseen data.

Figure 8. BiGRU accuracy.

The F1-score generally performed well in most classes, ranging from (92.00%) to
(99.00%). Specifically, classes 1 and 3 achieved F1 scores of (99.00%) and (97.00%), respec-
tively, indicating high precision and recall in classifying those classes. Class precision was
(100%), suggesting no false positives for any class. However, recall varied between classes,
with values ranging from (85.00%) to (98.00%), indicating that the model had difficulty
recovering all instances of classes 2 and 4 compared to the other classes. Overall, the model
showed good performance in most classes, although there could be room for improvement
in the recovery of some specific classes.

The total model training time was 626 s. During this process, (45.00%) of the GPU was
utilized, indicating a moderate but significant use of available hardware resources to accelerate
model training. This percentage of GPU utilization suggests efficient resource allocation.
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4.3.3. LSTM Model

Figure 9 shows that the accuracy achieved with LSTM at 20 epochs in the training
set is (98.86%), while in the validation set it is (99.63%). Although there is a difference
between the accuracy of the training set and the validation set (0.77%), this gap is minimal,
indicating effective generalization of the model. The overall trend shows a steady increase
in accuracy and a decrease in loss across epochs, supporting the effectiveness of the training
and the ability of the model to learn and generalize to unseen data. On the other hand,
loss shows a steady downward trend, indicating a continuous improvement in the model’s
ability to fit the data. These results suggest successful training, with the model achieving
high accuracy and low loss on both datasets.

The F1-score showed high performance in all classes, with values ranging from
(94.00%) to (100%). Specifically, classes 1, 3, and 4 achieved an F1-score of (99.00%) and
(100%), respectively, indicating high precision and recall in classifying those classes. The
precision per class was (100%), suggesting no false positives for any class. However, recall
varied between classes, with values ranging from (88.00%) to (99.00%), indicating that the
model had some difficulty recovering all instances of class 2 compared to the other classes.
Overall, the model performed well in most classes, with high accuracies, F1-score, and
recall, suggesting a robust ability to classify the different classes correctly.

The total training time of the model was 389 s. During this process, (33.00%) of
the graphics processing unit (GPU) was utilized, indicating a moderate use of available
hardware resources to accelerate model training. This percentage of GPU utilization
suggests efficient resource allocation and an appropriate workload for the training task.

Figure 9. LSTM accuracy.

4.3.4. BiLSTM Model

Figure 10 shows that the accuracy achieved with BiLSTM at 20 epochs in the training
set is (98.47%), while in the validation set, it is (99.32%). This increase in accuracy is
accompanied by a steady decrease in loss, indicating a continuous improvement in the
model’s ability to fit the data. These results suggest successful training, with the model
achieving high accuracy and low loss on both datasets.

The F1-score showed varying performance across the different classes, with values
ranging from (77.00%) to (85.00%). Classes 0 and 4 showed the highest F1-score, with
(84.00%) and (85.00%), respectively, while classes 1 and 2 had the lowest F1-score, with
(80.00%) and (77.00%), respectively. The precision by class also varied, ranging from



Future Internet 2024, 16, 153 18 of 23

(91.00%) to (99.00%). Class 0 had the highest precision (99.00%), followed by classes 3
and 2. Class 1 had the lowest precision (93.00%). As for the recall per class, the values
varied between (64.00%) and (80.00%). Class 4 had the highest recall (80.00%), while
class 2 had the lowest recall (64.00%). These metrics show that the model has generally
acceptable performance, although there may be room for improvement in some specific
classes, especially in classes 1 and 2, where the F1-score was lower.

The total model training time was 646 s. During this process, (48.00%) of the GPU
was utilized, indicating a considerable use of available hardware resources to accelerate
model training; this may result in a faster and more efficient training process than using
only the CPU.

Figure 10. BiLSTM accuracy.

4.4. Comparative Assessment of Model Performance

Figure 11 shows the four models, GRU, BiGRU, LSTM, and BiLSTM, which were
trained and evaluated with training and validation datasets. Based on the information
provided, the model that generalizes best is the GRU model. This model achieves very
high accuracy on the training set (99.07%) and the validation set (99.65%), with minimal
difference between the two sets. This minimal difference suggests that the GRU model can
generalize effectively to unseen data, indicating a robust ability to learn general patterns in
the data. Although the LSTM, BiGRU, and BiLSTM models also show high accuracy and
minimal difference between the training and validation sets, the GRU model slightly outper-
forms them regarding accuracy on the validation set. Therefore, regarding generalization,
the GRU model is the most effective of the four models evaluated.

The F1-score analysis shows different performance levels; the GRU model showed
high performance in all classes, with the F1-score ranging from (96.00%) to (100%), and
perfect precision in all classes. Although the BiGRU model also showed generally high
performance, with the F1-score ranging from (92.00%) to (99.00%), some difficulties in
instance recall were observed in certain classes, particularly in classes 2 and 4. On the
other hand, both the LSTM and BiLSTM models exhibited variability in performance across
classes, with some challenges in precision and recall in certain classes. All GRU and LSTM
models showed solid and consistent performance across all classes. In contrast, the BiGRU
and BiLSTM models showed some variability and possible areas for improvement, such as
recall in some specific classes.
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In the analysis of training time and GPU usage, we observed that all models efficiently
used the available hardware resources to accelerate the training process. The GRU and
LSTM models showed moderate GPU usage, with utilization percentages of (28.00%) and
(33.00%), respectively, indicating adequate resource allocation and appropriate workload for
the training task. However, the BiGRU and BiLSTM models demonstrated more significant
GPU utilization, with (45.00%) and (48.00%), respectively. While this might suggest a
more intensive utilization of hardware resources, it also indicates an efficient allocation of
resources to accelerate model training. Overall, all models obtained reasonable training
times and efficient GPU utilization; this demonstrates their ability to handle an efficient
workload and perform practical training in resource-constrained environments.

Figure 11. Accuracy and loss comparison of the algorithms.

4.5. Comparison with Previous Research

Table 11 compares the accuracy of the proposed models and other approaches devel-
oped by researchers. As can be seen, our GRU and LSTM models achieve higher accuracy
with fewer features than all methods using deep learning. Furthermore, our LSTM model
achieves higher accuracy than LSTM models [18,25], which use features selected auto-
matically by the algorithm. However, it is essential to note that the GRU model achieves
superior accuracy to LSTM. This accuracy highlights the efficiency and performance of
our model compared to other existing approaches, outperforming previously developed
LSTM models. Thus, the implementation of the GRU architecture can result in further
improvements in SDN traffic classification accuracy.

Table 11. Accuracy comparison with previous research on traffic classification.

Ref. Algorithm Accuracy Number of Features

Proposed

GRU
BiGRU
LSTM
BiLSTM

99.65%
98.60%
99.63%
99.32%

5

[18]
ML-LSTM
SAE
CNN

97.14%
99.14%
99.30%

Automatic by algorithm

[19] SAE >90.00% Automatic by algorithm
[20] ML-LSTM 97.14% Automatic by algorithm
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Table 11. Cont.

Ref. Algorithm Accuracy Number of Features

[21]
CNN
MLP
SAE

93.35%
93.21%
93.13%

4

[22] CNN
DNN

96.00%
94.00%

23

[23]
CNN+autoencoder
CNN
DNN

97.42%
96.03%
94.36%

Flow features selected
by autoencoders

[24] GAN
CNN

93.18%
93.30%

Automatic by algorithm

[25]
CNN
LSTM
SAE

98.85%
99.22%
98.74%

Automatic by algorithm

[26] MLP, CNN and SAE >90.00% Automatic by algorithm
[27] ResNet 97.24% 20
[28] VAE 89.00% 6

5. Conclusions

This research develops a model for traffic classification by application types and net-
work attacks using DL techniques to enhance QoS and security in SDN. The classifiers
identify application types and attacks in five classes: Multimedia, VoIP, Instant message,
File transfer, and Attacks. The SEMMA methodology was conducted to develop accu-
rate models and obtain reliable results. We trained the models with four derived RNN
algorithms, GRU, BiGRU, LSTM, and BiLSTM, which were evaluated during this process.
Each model performed traffic classification using two open datasets, VPN–nonVPN and
InSDN, extracting flows with a 15 s timeout with the CICFlowMeter tool. It resulted in
a dataset of 50,000 samples, with 10,000 samples per class representing different types of
applications and attacks. We selected five features to train the models based on analyzing
the features obtainable from the SDN controller’s northbound interface and conducting
mutual information analysis. We determined the length of the sequence through several
experiments. The accuracy results for each model were as follows: GRU (99.65%), BiGRU
(98.60%), LSTM (99.63%), and BiLSTM (99.32%). These results underscore the remarkable
effectiveness of the GRU model in traffic classification. These findings provide great poten-
tial for improving the security and QoS in SDN employing traffic classification, contributing
to network administration.

Although deep learning has been used to develop the classifiers, developing new
applications or attacks could affect their effectiveness. In addition, the datasets used may
only partially reflect the complexity of traffic in real environments. Therefore, as future
work, we will seek to implement the proposed classifiers in a real-time SDN environment
to instantaneously classify incoming flows based on the statistical information of the flows
and apply corresponding QoS, and security policies.
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CNN Convolutional Neural Network
CIC Canadian Institute for Cybersecurity
DPI Deep Packet Inspection
DNN Deep Neural Network
GAN Generative Adversarial Network
ISP Internet Service Providers
LSTM Long Short-Term Memory
BiLSTM Bidirectional Gated Recurrent Unit
GRU Gated Recurrent Unit
BiGRU Bidirectional Long Short-Term Memory
ML Machine Learning
DL Deep Learning
MLP Multilayer Perceptron
NFV Network Function Virtualization
QoS Quality of Service
RNN Recurrent Neural Network
SAE Stacked Autoencoder
SDN Software-Defined Networking
VAE Variational Autoencoder
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