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Abstract: This paper focuses on the obstacle avoidance trajectory planning problem for autonomous
vehicles on structured roads. The objective is to design a trajectory planning algorithm that can ensure
vehicle safety and comfort and satisfy the rationality of traffic regulations. This paper proposes a
path and speed decoupled planning method for non-split vehicle trajectory planning on structured
roads. Firstly, the path planning layer adopts the improved artificial potential field method. The
obstacle-repulsive potential field, gravitational potential field, and fitting method of the traditional
artificial potential field are improved. Secondly, the speed planning aspect is performed in the Frenet
coordinate system. Speed planning is accomplished based on S-T graph construction and solving
convex optimization problems. Finally, simulation and experimental verification are performed.
The results show that the method proposed in this paper can significantly improve the safety and
comfortable riding of the vehicle.

Keywords: trajectory planning; artificial potential field; speed planning; convex optimization

1. Introduction

The rapid development of autonomous driving technology can improve human quality
of life and transportation safety. Path planning, as one of the core components, is crucial for
realizing safe and efficient autonomous driving. With the increasing complexity of urban
traffic environments, traditional path planning algorithms face various challenges, such
as real-time obstacle avoidance in the face of dynamic obstacles, adaptation to complex
road conditions, and multi-objective optimization. Therefore, studying more intelligent
and flexible path planning algorithms has become a research hotspot in autonomous
driving. Traditional planning methods are classified into sampling-based, search-based,
and optimization-based methods [1]. Sampling-based methods are usually used for global
planning, and Dijkstra’s algorithm [2], proposed by Dutch computer scientists in 1959, is
used to find the shortest path in a network or node. A team of researchers at Stanford
University introduced the A* [3] algorithm in 1968, which guides the search process in the
direction most likely to reach the goal by incorporating heuristic information related to
the goal location. Representative search-based algorithms include the rapidly exploring
random tree (RRT) [4,5] and probabilistic map (PRM) [6,7] algorithms for fast path planning
by randomly sampling the space and expanding the tree structure along these sampling
points. Numerical optimization-based planning methods focus on the optimization of the
objective function. The cost is maximized or minimized according to different constraints.
For example, the artificial potential field method, first proposed by Khatib [8] in 1986, is a
typical numerical optimization algorithm usually applied to perform local path planning.
The core idea of this method is to map the natural environment into a virtual potential
field environment in which the target location generates an attractive force and the obstacle
generates a repulsive force. A combined potential field is formed by synthesizing the
vectors of these two forces. The self-driving vehicle plans its traveling path based on this
synthesized potential field to avoid obstacles and move towards the target.
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Therefore, the artificial potential field method, which does not rely on complex maps
or environment models, is suitable for various scenarios and environments. Its advantages
include simplicity, intuitiveness, strong real-time performance, effective obstacle avoidance,
robust local optimization capabilities, and broad applicability. As a result, it has garnered
widespread attention and research. Duan et al. [9] overcame the local minimum problem
by introducing a second virtual target attraction potential field. Park G et al. [10] proposed
an artificial potential field-based algorithm to compute the desired vehicle longitudinal
speed and vehicle traverse angle in real-time, which includes both repulsive fields for
avoiding the road boundary ahead and nearby obstacles and attractive fields for tracking
the appropriate lanes. Yuan et al. [11] proposed a longitudinal safe distance model based
on the analysis of the braking process, as well as under the constraint of the side deflection
angle. A lane change safety spacing model with the shortest lane change time was proposed
to solve the problem of the near-neighbor obstacles not reaching the target. Fan X. et al. [12]
proposed the positive hexagonal bootstrap method to improve the local minimum problem.
Meanwhile, a relative velocity method on moving object detection and avoidance was
proposed for dynamic environments. Tian et al. [13] proposed a local minima jumping
strategy based on smaller steering angles, which enables an intelligent vehicle to jump out
of the local minima by finding a smaller steering angle and setting a suitable jump-out
step size.

The main objective of this paper is to solve the problem of trajectory planning for static
and dynamic obstacle avoidance on structured roads. This trajectory satisfies the safety
and comfort requirements of an autonomous vehicle. This paper proposes a hierarchical
planning method that decomposes the trajectory into path and speed [14]. The path
planning layer improves the traditional artificial potential field method: the obstacle
potential field at the road boundary is established by using Gaussian and power functions;
the centerline of the road is taken as the reference path and discretized into equidistant
global target points; the exclusion potential field model is designed concerning a two-
dimensional normal distribution. Ellipses and deformed ellipses are introduced as the
range of action of the obstacle-repulsive potential field. In the speed planning layer, the
convex optimization problem of speed planning [15] is constructed and solved based
on the S-T graph, which opens the convex space for coarse planning through dynamic
planning to form a decision sequence. Finally, it optimizes it through the second planning
to create a smooth speed profile. The following section consists of four main parts. (1)
Improving the traditional artificial potential field method to complete the path to avoid
obstacles. (2) Avoiding dynamic obstacles and ensuring comfortable riding to match the
corresponding speed for the planned paths. Speed planning is performed in the Frenet
coordinate system. Constructing and solving dynamic and quadratic planning based
on the S-T graph completes the speed planning. (3) Constructing a Panosim simulation
environment for simulation validation, using the maximum lateral and longitudinal safety
distances, the path curvature and rate of change, the yaw angle and rate of change, and the
velocity as metrics to assess the merits of the planned trajectory. (4) Deploying the algorithm
into an ROS intelligent microvehicle for experimental validation in a road sandbox. The
planning results of the algorithm proposed in this paper, as well as the improved A-star
and improved RRT algorithm, are compared. It should be noted that the trajectory planning
algorithm proposed in this paper can autonomously plan a trajectory for obstacle avoidance
without human intervention. Therefore, it can be applied to Level 4–5 autonomous driving
technology in the autonomous driving classification mentioned in the literature [16].

2. Improvement of the Artificial Potential Field Method

Autonomous vehicles on structured roads need high-precision navigation to provide
global paths. At the same time, sensors are used to obtain real-time scenarios of the road
and to build road boundaries, obstacle repulsion potential fields, and gravitational potential
fields at the target point. This paper uses the global path and real-time scenario as known
conditions for constructing an artificial potential field for path planning.
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2.1. Road Boundary Repulsive Force Field

Unlike robots that move arbitrarily in space, vehicles must ensure they travel along
the center line of the road they are on as much as possible when traveling on structured
roads. When the front meets a moving vehicle, the ego vehicle can change lanes to overtake
or follow the vehicle. Based on the restrictions of traffic regulations, it can only change
lanes at the dashed lane line, and lane changing is prohibited at the solid line or double
yellow line. The total repulsive potential field of the structured road proposed in this paper
is obtained by superimposing multiple repulsive potential fields. It is divided into the
following two main categories: the dashed lane line potential field, and the potential field
of the solid lane line and the road boundary. Figure 1 is a schematic graph of the structured
road, where the width of a single lane Nlane,i (i = 1, 2, 3. . .) denotes the road number.
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Figure 1. Schematic graph of structured roads.

The dashed lane line potential field Uroad is used to prevent the vehicle from changing
lanes, guide the vehicle along the center line of the road, and ensure that the potential
field can be overcome when encountering obstacles. Therefore, the potential field must be
small enough. In this paper, a Gaussian function is used to construct the dashed lane line
potential field, as shown below:

Ulane =
Nlane

∑
i

Ulane,i (1)

Ulane,i = Alane exp

(
− (disti)

2

2σ2

)
(2)

where Alane is the peak value of the potential field the dashed lane line; disti is the distance
to the ith lane line, measured in m; σ is the rate of change in the potential field, which is
proportional to the width of the lane; Nlane is the number of imaginary lines.

The road boundary potential field Uroad, which is not allowed to be crossed by vehicles,
is defined to take an infinite value at the edge of the road and at the solid lane line and is
defined as follows for the road boundary potential field:

Uroad =
Nroad

∑
j

Uroad,j (3)

Uroad,j =
1
2

η

(
1

distj

)2

(4)

where η is the boundary road potential field factor; distj is the distance to the jth road
boundary, measured in m; Nroad is the sum of the number of road boundaries and the
number of solid lines.
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These two potential fields have specific roles in the vehicle traveling process. Moreover,
the two potential fields are added together to obtain the total potential field of the road, as
shown in Figure 2.

U = Ulane + Uroad (5)
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2.2. Gravitational Potential Field

The gravitational potential field to which the vehicle is subjected during motion is
defined using a power function with the following expression:

Uatt(p) =
1
2

dp pm
0 (6)

where dp is the gravitational gain coefficient; p0 is the relative distance between the vehicle’s
position and the position of the target point, measured in m, and the gravitational direction
is pointing from the vehicle’s position to the position of the target point; m is the exponent
of the power function of the gravitational potential field.

The gravitational potential field of the traditional artificial potential field method
is generated by the target point, which is a single-point gravitational field. Excessive
gravitational force is generated when the vehicle is far from the target. This reduces the
strength of the obstacle-repulsive potential field and increases the risk of collision. Under
steering conditions, such as right and left turns and curved roads, the direction of gravity is
not consistent with the direction of road travel. The single-point gravitational field leads to
vehicle planning failures, resulting in an unsafe factor. As shown in Figure 3, a single-point
gravitational field cannot provide effective guidance for path planning in long-range target
and steering conditions.

Improvement of the single-point gravitational field to the global gravitational field.
Using the perceived environmental information, the road centerline is used as the reference
path, which is discretized into equidistant global path points, and a global gravitational
field is established using each point. When planning the path, as shown in Figure 4, the
vehicle is only affected by the gravitational points in the influence area, and the influence
area rolls along with the vehicle as it moves forward.

The strength of the global gravitational field is consistent with the single-point grav-
itational field model and is not affected by the gravitational potential field at the target
point. In addition, the global gravitational field also considers the road traveling direction
problem during the construction process. Its distribution is related to the positive direction
of the road to guide the vehicle to travel along the positive direction of the road. At the
same time, in the reference trajectory, the change in the gravitational field is smaller than
the longitudinal direction in the horizontal direction, which is conducive to the vehicle
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traveling along the reference trajectory in a better way and the construction of the global
gravitational field is as follows:

Ep =

[
n

∑
i=1

k
(

(cos(αi)(x − xi) + sin(αi)(y − yi))
+(cos(αi)(y − yi)− sin(αi)(x − xi))

)]
(7)

where i is the path point number, the first number in the area range is 1, and the end point
is n; xi and yi are the path points numbered i; αi is the positive direction angle of the road
where the path points numbered i is located, measured in degrees; k is the gravitational
potential field gain coefficient.
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Figure 5 shows the planning results under the action of the global gravitational
potential field. Comparing Figure 5 with Figure 3, it is found that the path planned
under the action of the global gravitational potential field is the centerline of the road. It
avoids falling into a local optimum when encountering obstacles and also conforms to the
traffic rules.
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2.3. Obstacle-Repulsive Potential Field
2.3.1. Potential Field Model

The obstacle-repulsive potential field model is designed with reference to a two-
dimensional normal distribution as follows:

P(x, y) = H exp

[
−1

2

(
(x − µx)

2

σ2
xg

+

(
y − µy

)2

σ2
yg

)]
(8)

where ux and uy are the Cartesian coordinates of the obstacle, respectively; σxg and σyg are
the distribution factors of the repulsive potential field along the x-axis and axial direction,
respectively; H is the repulsive gain coefficient.

According to the nature of the normal distribution function, the shape and distribution
of the entire potential field can be adjusted by changing σxg, σyg, and H to obtain the ideal
repulsive potential field model accurately. Figure 6 shows the repulsive potential field map
under different parameters. The results show that, by changing the distribution factor, the
repulsive gain coefficient can change the influence range of the repulsive potential field
and the repulsive potential field value, which can specifically depict the distribution of the
repulsive potential field of the obstacle.
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2.3.2. Range of Repulsive Force Field

The range of the obstacle-repulsive potential field is an essential factor affecting the
planning results, and the range proposed in the literature [17] is circular. In the process of
structured road travel, the hazard coefficient in the longitudinal direction is higher than
that in the transverse direction. The transverse safety distance of the circular range is too
considerable to meet the vehicle travel characteristics. This paper introduces the safety
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ellipse as the range of the obstacle-repulsive potential field. It makes the influence of
obstacles on vehicles more in line with the characteristics of vehicle motion and ensures
that the planning path is the shortest and smoother at the same time.

Figure 7 shows the long and short semiaxes of the safety ellipse as the main factors
affecting the range of the repulsive potential field, defining the expression of the long
semiaxis as the following:

A =
L
2
+ vot +

mv2

2F
(9)

where L is the length of the vehicle; m is the mass of the vehicle, measured in s; v0 is
the relative speed between the ego vehicle and the obstacle, v0 = v for static obstacles,
measured in m/s; v is the ego vehicle speed, measured in m/s; t is the reaction time before
braking, measured in s; F is the maximum braking force, measured in N.
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The long half-axle is made up of the length of the vehicle and the distance traveled in
response to the driver’s braking. The expression for the short half-axle B is as follows:

B =
CW

2
(10)

where C is the expansion factor, measured in m; W is the vehicle width, measured in m.
The final repulsive potential field is modeled as follows:

P(x, y) =

 A exp
[
− 1

2

(
(x−µx)

2

σ2
xg

+
(y−µy)

2

σ2
yg

)]
x2

A + y2

B ≤ 1

0 x2

A + y2

B > 1
(11)

In Figure 8, the gray rectangles represent static obstacles and the dotted lines indicate
the collision range. The main content of the figure is to plan a path from the starting point
(blue point) to avoid obstacles and to reach the destination (green point). The comparison
reveals that the safety ellipse increases the longitudinal safety distance, avoiding obstacles
in advance to increase the safety of the traveling path. It also decreases the curvature of
the path and reduces redundant paths. However, due to the geometric characteristics of
the ellipse of obstacle repulsion, the vehicle will fall into the local optimal solution under
steering conditions. The vehicle cannot choose the ideal path to avoid obstacles optimally.

To address this problem, the safety ellipse is deformed. It is transformed into an
elliptical slot, as shown in Figure 9. And the whole elliptical slot is defined as a closed
figure consisting of arcs 1, 2, 3, and 4, where the difference between the radius of arc 1 and
the radius of arc 3 is 2 × A, the two arcs are concentric arcs, the radii of arcs 2 and 4 are
A, and the maximal arc of the whole elliptical slot is 2 × A, as shown by the dotted line in
the figure.
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2.4. Bezier Curves Fitting

The path planned by the artificial potential field exists where there are bending points.
For the folding point problem, n-order Bezier curves [18] are used to fit the path so as to
obtain a smooth path curve that can be tracked. The path points planned by the improved
artificial potential field method are used as the control points of the Bezier curve, and the
n-order Bezier curve functional equation is as follows:

P(t) =
n

∑
i=0

Bi,n(t)Pi, t ∈ [0, 1] (12)

where t is an independent variable; Pi is the control point of the motion of the Bezier curve,
such as P(0) = P0 and P(1) = P1; Bi,n(t) is an nth order Bernstein polynomial with the
expression as shown below:

Bi,n(t) = Ci
nti(1 − t)n−i =

n!
(n − 1)!i!

ti(1 − t)n−i, i = 0, 1, 2, · · ·, n (13)

Figure 10 shows the comparison of the paths before and after using Bezier fitting,
and the comparison shows that the paths are smoother after Bezier fitting and there is no
sudden change in the large curvature, which meets the requirements of vehicle travel.
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3. Speed Planning Based on the S-T Graph

In speed planning, dynamic and quadratic planning are performed based on the
S-T graph, and the Cartesian coordinate system is converted to the Frenet coordinate
system [19] for solving. The paths are matched for speed, and dynamic obstacle avoidance
is accomplished, i.e., accelerated overtaking or decelerated avoidance is performed.

The S-T graph is a two-dimensional relationship graph with the longitudinal distance
s as the vertical axis and time t as the horizontal axis. Based on a known reference curve,
dynamic obstacles are mapped onto the S-T graph to obtain their projection. The principle
of projection is that, when a dynamic obstacle intersects with the trajectory of the ego
vehicle, it implies a collision with the ego vehicle. The time and path distance of the
dynamic obstacle entering and leaving the trajectory of the ego vehicle are used as the
projection range. The projected area represents the region of collision, which is the infeasible
area. As shown in Figure 11, the blue vehicle represents the ego vehicle, while the red
vehicle represents the dynamic obstacle; s0 and s1 are the longitudinal distances on both
sides of the host vehicle and the dynamic obstacle, respectively; tin and tout are when
dynamic obstacles drive into and out of the ego vehicle trajectory, respectively. The shaded
area represents the region of collision, and the upper and lower lines represent different
decision behaviors.
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3.1. Dynamic Planning

In speed planning, the dynamic planning module mainly plays the role of decision
making, starting from the initial state, through the intermediate stages of decision-making
options, and finally reaching the end state. The decisions form a sequence of decisions
to determine the optimal route. It provides the determination of whether the vehicle is
accelerating to overtake or decelerating to avoid the vehicle during traveling, thus laying
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the foundation for more accurate speed planning later. Dynamic planning is coarse in
speed planning and de-determines the asymptotically optimal feasible space.

As shown in Figure 12, the S-T two-dimensional graph is discretized into equidistant
points whose horizontal coordinates are time and whose vertical coordinates are longi-
tudinal displacements. In the search process, starting from the calculation of the cost of
each discrete point at the moment of t1, the calculation of the optimal path of each node
is carried out sequentially in chronological order, and the optimal speed profile is finally
obtained. The endpoint of the speed profile can be any node in the last row or column, and
there is no need to take (tn,sn) as the endpoint. The blue line in Figure 12 shows the planned
time versus longitudinal displacement below the collision range, i.e., the decision to slow
down and avoid is made. Similarly, when the curve is above the shading, it represents that
the vehicle moves out of the collision range earlier and decides to accelerate to overtake.
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In order to describe the advantages and disadvantages of planning speed profiles, a
cost function is introduced for evaluation, and the evaluation metrics are the following:

(1) Obstacle Distance Cost Function

The shading is the range of collision. When the vehicle is far from the obstacle, its cost
is defined as 0. When the vehicle is closer to the obstacle, the cost of the obstacle gradually
increases. When the distance between the vehicle and the obstacle reaches a critical value,
its value reaches the maximum value, which indicates that the degree of danger at that
point is very high, and the cost function is as follows:

Cobs =


10000 |ds| <

∣∣∣dsa f e

∣∣∣
k/ds

∣∣∣dsa f e

∣∣∣ < |ds| < |da|
0 |ds| > |da|

(14)

where ds is the distance between the vehicle and the obstacle, measured in m; dsa f e is the
shortest allowable distance with the obstacle, measured in m; da is the initial distance at
which the obstacle has an impact on the vehicle, measured in m; k is the gain coefficient at
the cost of distance from the obstacle.

(2) Recommended Speed Cost Function

In order to limit the difference between the planning speed and the reference speed
from being too large, the cost of the deviation between the planning speed and the reference
speed is designed, where the reference speed is generated from the road speed limit and
the current speed, and its cost function is as follows:

Cv = wv

(
v − vre f

)2
(15)
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where vre f is the recommended vehicle speed, measured in m/s; v is the actual vehicle
speed, measured in m/s; wv is the recommended speed cost weight.

(3) Acceleration Cost Function

In order to ensure the comfort of vehicle travel and to avoid excessive acceleration, its
cost function is designed as follows:

Ca = wa

(
vi − vi−1

Ti − Ti−1

)2
(16)

where wa is the acceleration cost weight; vi and vi−1 are the speed of the vehicle at the
moment of Ti and Ti−1.

(4) The Jerk Cost Function

The jerk is also crucial for safety and comfort, with the following cost function:

Cj = wj

(
vi − 2vi−1 + vi−2

Ti − Ti−1

)2
(17)

where wj is the jerk cost weight coefficient; vi, vi−1, and vi−2 are the vehicle speeds at Ti,
Ti−1, and Ti−2 moments.

In summary, for dynamic planning in speed planning, the cost function is shown below:

Ct = Cobs + Cv + Ca + Cj (18)

3.2. Quadratic Planning

There are fluctuations in the speed curve calculated by dynamic planning. In order to
improve the ride comfort and reduce the difficulty of trajectory tracking, the quadratic plan-
ning problem is constructed based on the convex space opened up by dynamic planning,
and the final speed planning is completed by solving the quadratic planning problem.

The speed profile is a mapping relationship between position and time t. There are
two ways to optimize the speed profile: one is to optimize the longitudinal displacement
corresponding to each time point based on the time t, the other is to optimize the time
corresponding to each longitudinal displacement based on the longitudinal displacements.
In this paper, the first optimization method is chosen to facilitate the calculation of the
vehicle velocity, acceleration, and other parameters. The speed optimization problem is
transformed into a quadratic planning problem, where the optimization variable is the
vehicle position corresponding to a fixed time series.

3.2.1. Establishing the Cost Function

To describe the advantages and disadvantages of the speed optimization curve, three
evaluation metrics are introduced to form a cost function for evaluation, as follows:

(1) The Cost of Speed

The speed cost is a cost function to ensure that the vehicle travels at a specified speed
without the influence of the collision area, limiting the speed to the following certain range:

Cv = ωv

n

∑
i=1

(
.
si − vre f )

2 (19)

where ωv is the speed cost weighting factor;
.
si is the speed at the ith moment, measured in

m/s; vre f is the desired vehicle speed, measured in m/s.

(2) The Cost of Acceleration

Acceleration denotes the rate of change in speed and directly affects a vehicle’s accel-
eration, braking, and maneuverability. In order to ensure passenger comfort, the vehicle
should maintain a constant speed, hence the introduction of the following acceleration cost:
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Ca = ωa

n−1

∑
i=1

(

.
si+1 −

.
si

∆t
)

2

(20)

where ωa is the acceleration cost weighting factor.

(3) The Cost of Jerk

The first-order derivative of acceleration–jerk significantly impacts on the vehicle
driving, which is related to the ride comfort and dynamic performance, including smooth
acceleration, cornering stability, and emergency braking response. It is now used to improve
the driving experience and safety by controlling the acceleration, and its cost function is
as follows:

Cj = ωj

n−2

∑
i=1

(

.
si+2 − 2

.
si+1 +

.
si

∆t2 )
2

(21)

where ωj is the jerk cost weight factor.
The longitudinal displacement s(m) of the vehicle is related to the time t(s), as follows:

.
si =

si+1 − si
∆t

(22)

..
si =

si+2 − 2si+1 + si
∆t2 (23)

...
s i =

si+3 − 3si+2 + 3si+1 − si
∆t3 (24)

where
..
s is the acceleration at the ith moment, measured in m/s2;

...
s is the first-order

derivative of the acceleration at the ith moment, measured in m/s3.
In summary, the total cost function used for quadratic planning is shown below:

C = Cv + Ca + Cjerk (25)

The total cost function is converted to the standard form of quadratic planning as an
equation. Equations (26)–(28) are the final quadratic planning expressions for the velocity,
acceleration, and jerk cost functions, respectively.

Cv = ωv

n

∑
i=1

(
.
si − vre f )

2
= ωv

(
xT AT

1 A1x − 2hTx
)

(26)

Ca = ωa

n−1

∑
i=1

(

.
si+1 −

.
si

∆t
)

2

=
ωa

∆t2

(
xT AT

2 A2x
)

(27)

Cj = ωj

n−2

∑
i=1

(

.
si+2 − 2

.
si+1 +

.
si

∆t2 )
2

=
ωj

∆t4

(
xT AT

3 A3x
)

(28)

where A1 is a unit matrix of order n; A2 is an (n − 1)× n matrix; A3 is a matrix of order
(n − 2)× n; x is shown in Equation (29); h is shown in Equation (30).

x =
{ .

s1
.
s2 · · · .

sn
}T

1×n (29)

h =
{

vre f vre f · · · vre f
}T

1×n (30)

Ultimately, the standard type expression for the quadratic planning cost function is
shown below:

C = xT H
2

x − f Tx (31)

where H is shown in Equation (32); f T is shown in Equation (33).

H = 2
(

ωv AT
1 A1 +

ωa

∆t2 AT
2 A2 +

ωj

∆t4 AT
3 A3

)
(32)
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C = xT H
2

x − f Tx (33)

3.2.2. Constraint Condition

The restrictions on the vehicle position are based on dynamic programming. Without
considering the reversing behavior of the vehicle, a convex space is opened in which
the upper and lower limits on the vehicle position are obtained, i.e., the longitudinal
displacement at the next moment is greater than at the current moment. The constraint of
the traveling speed is considered as the speed limit of the lane itself, which is a constant
more significant than or equal to zero. The acceleration is based on the constraints of
the physical structure of the vehicle, i.e., the maximum acceleration that can be achieved
by the vehicle itself. Jerk constraints are constraints on the comfort of the occupants,
reducing the magnitude of the acceleration change, and the following are the expressions
for each constraint:

smin ≤ si ≤ smax (34)

0 ≤ .
s ≤

(
aymax

kappa

)1/2
(35)

..
smin ≤ ..

si ≤
..
smax (36)

...
s min ≤ ...

s i ≤
...
s max (37)

To ensure the continuity of the speed profile, the variables need to be constrained, and
the continuity of the variables is constrained using a Taylor expansion and by ignoring the
higher-order infinitesimals of the longitudinal position and its first-order derivatives.

si+1 = si +
.
sidt +

1
2

..
sidt2 +

1
6

( ..
si+1 −

..
si

dt

)
dt3 (38)

.
si+1 =

.
si +

..
sidt +

1
2

( ..
si+1 −

..
si

dt

)
dt2 (39)

A simplification of Equations (38) and (39) are obtained as follows:

(
1 dt 1

3 dt2 −1 0 1
6 dt2

0 1 1
2 dt 0 −1 1

2 dt

)


si.
si..
si
si+1.
si+1..
si+1

 =

(
0
0

)
(40)

Now, we optimize s1,
.
s1,

..
s1 · · · · · · sn,

.
sn,

..
sn; then, the equation is constrained as follows:


1 dt 1

3 dt2 −1 0 1
6 dt2 0 0 0 · · ·

0 1 1
2 dt 0 −1 1

2 dt 0 0 0 . . .
0 0 0 1 dt 1

3 dt2 −1 0 1
6 dt2 . . .

0 0 0 0 1 1
2 dt 0 −1 1

2 dt . . .
...

...
...

...
...

...
...

...
...

. . .


(2n−2)×3n



s1.
s1..
s1
s2.
s2..
s2
...

sn.
sn..
sn


3n×1

=


0
0
...
0

 (41)

The planning starting point constraint is to ensure that the initial position, velocity,
and acceleration of the vehicle remain constant after the speed optimization is performed,
and is expressed as follows:
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s0 = sstart.
s0 = vstart..
s0 = astart

(42)

4. Simulation Verification

To verify the feasibility of the trajectory planning algorithm proposed in this paper,
the simulation environment is constructed based on the Panosim platform. Moreover, its
built-in real sensors are utilized to obtain information on the roads, obstacles, vehicle speed,
etc. Python was used to write the model for simulation verification, and the simulation
flow is shown in Figure 13.
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For path planning, (1) uses a circle (C-APF) [17], an ellipse (E-APF), and a deformed
ellipse (DE-APF) as the repulsive potential field range for the obstacles, respectively. The
results before and after the improvement of the artificial potential field method are com-
pared under global gravity potential field conditions. (2) Simulation comparisons are made
between the improved A-star algorithm of the literature [20], the improved RRT algorithm
of the literature [21], and the DE-APF algorithm under the same working conditions. Speed
planning is formed based on the planning paths. The results of the dynamic planning and
quadratic planning are then compared. Finally, the effectiveness of the algorithm proposed
in this paper in dynamic and static obstacle avoidance is verified by the above simulation
comparison. The values of the relevant parameters used for the simulation are shown in
Table 1.

Table 1. Parameters related to the simulation.

Parameters Value Parameters Value

Alane 10 W · (m) 2
σ 0.35 L · (m) 3.3
η 0.5 kd 1000
k 3 dsa f e · (m) 0.5
H 2 da · (m) 1.5

σxg 1.5 ωv 235
σxy 1.5 ωa 10
C 4.9 ωj 500

4.1. Description of the Simulation

Urban roads have many intersections, which are formed by intersecting multiple
structured roads. At the intersections, roadway boundaries need to be supplemented
according to the driving intentions of the autonomous vehicles. This paper simulates and
validates the dynamic and static obstacle avoidance capabilities of the algorithm under
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the uncontrolled intersection human left-turn condition. As shown in Figure 14, the initial
position of ego vehicle A is (22, −8), with an initial speed of 5.5 m/s, and is located in the
inside lane when making a left turn; the position of obstacle vehicle B is (2, 30), with a
speed of 5.5 m/s, and is located in the outside lane, traveling straight ahead at a constant
speed; the position of obstacle vehicle C is (21, 4.5), and is at a stationary state.
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For the evaluation of the artificial potential field method before and after improvement,
this paper uses as the evaluation indexes of the planning path the following: whether or not
to fall into the local optimum, as well as the maximum transverse and longitudinal safety
distance, the mean curvature, and the maximum curvature. Among them, the maximum
transverse and longitudinal safety distance is the maximum radiation distance of the
obstacle-repulsive potential field in the transverse and longitudinal directions. Furthermore,
to evaluate the improved artificial potential field method with other planning algorithms,
this paper uses the curvature, curvature change rate, heading angle, and heading angle
change rate as evaluation indexes.

4.2. Path Planning

Figure 15 shows the planning situations under different ranges of the obstacle-repulsive
potential field, respectively: the range of the repulsive potential field of the C-APF spans
three lanes and completes the planning; the range of the repulsive potential field of the
E-APF is not uniformly distributed within the driving lanes and falls into the local optimum,
which prevents them from completing the planning; the range of the repulsive potential
field of the DE-APF is uniformly distributed within the driving lanes, which avoids the
local minima and completes the path planning.
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The simulation results are shown in Table 2. Under the left-turn condition, the E-APF
algorithm falls into the local optimum and cannot complete the planning without reaching
the target point. Compared with the C-APF algorithm, the DE-APF algorithm increases the
maximum longitudinal safety distance by 2.3428 m (the distance between the center of mass
of the vehicle and the center of mass of the obstacle) and decreases the maximum transverse
safety distance by 0.593 m, while the mean curvature decreases by 0.0057 and the maximum
curvature of the path decreases by 0.039. In conclusion, the DE-APF algorithm trajectory
planning on structured roads is more in line with the characteristics of vehicle travel: the
longitudinal safety distance is increased, the lateral safety distance is appropriately reduced,
and path smoothing can be used for tracking control.

Table 2. Path planning simulation validation results.

C-APF E-APF DE-APF

Fall into local
optimality * N Y N

Maximum
longitudinal safety

distance/m
6.1211 \ 8.4459

Maximum lateral
safety distance/m 4.9507 \ 4.4117

Average curvature 0.0709 \ 0.0652
Maximum curvature 0.2020 \ 0.1630

* This evaluation metric of ‘Y’ indicates that the algorithm is in local optimality and ‘N’ indicates that it is not in
local optimality. If the algorithm falls into local optimality, then all other metrics are denoted by ‘\’.

In Figure 16, the paths planned by the A-star, RRT, and DE-APF algorithms all reach
their destinations. Among them, the path planned by A-star is too close to the obstacle,
with the closest lateral only 2.12 m (the distance between the center of mass of the vehicle
and the center of mass of the obstacle). Moreover, due to this algorithm’s characteristic of
finding the shortest distance, it shows the tendency to splice multiple straight lines. The
maximum longitudinal range between the path planned by the RRT algorithm and the
obstacle is only 2.34 m, a potential safety hazard for collision. Moreover, the timing of the
lane change after avoiding the obstacles could be more reasonable for these two algorithms.
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The path variations planned by the three algorithms are revealed in Figure 17. The
average curvature of the paths planned by DE-APF, A-star, and RRT are 0.0062, 0.0202, and
0.0487, respectively. The average rate of change is 0.0002, 0.0010, and 0.0020, respectively. It
can be seen that the paths planned by the DE-APF algorithm proposed in this paper are
flatter. Due to the limitation of the working conditions, the yaw angle of the path needs to
be changed from 0 degrees to 90 degrees. From graph b in Figure 17, it can be seen that the
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path planned by DE-APF changes smoothly, and the rate of change in the yaw angle of the
path is nearly constant in the half section. In summary, the path planned by DE-APF can
significantly improve the safety and comfort of autonomous vehicle travel.
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4.3. Speed Planning

Figure 18 shows the dynamic and static obstacle avoidance process under this working
condition. By combining the DE-APF algorithm with speed planning, the ego vehicle A
starts from the initial point to avoid static obstacle C and dynamic obstacle B to reach the
target point in 12.5 s. The ego vehicle A avoids the dynamic obstacle B by decelerating to
give way to the dynamic obstacle B. It starts to decelerate from 0.0 s based on 5.5 m/s until
10.5 s, and, finally, it starts to accelerate to reach the target point.

Figure 19 shows the results of dynamic planning and quadratic planning. Graph a in
Figure 19 shows the S-T graph of the velocity planning, where the planned longitudinal
displacements versus time curves are all located below the green collision range. It indi-
cates that the primary vehicle decides to slow down and give way, eventually avoiding
the dynamic obstacle. The graphs b–d in Figure 19 show the planning results for velocity,
acceleration, and jerk. The data show that the variation in each curve after the quadratic
planning optimization is significantly reduced and smoother. The ego vehicle decelerates
from 0 s to 4.2 s, then accelerates to 9.8 s, and finally maintains a uniform speed; the acceler-
ation fluctuates in the range of −0.9~0.7 m/s2, and the rate of change in the acceleration is
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in the range of −0.3~0.4 m/s3. In conclusion, the speed planning algorithm proposed in
this paper can reasonably avoid dynamic obstacles and provide the ego vehicle with high
safety and comfort.
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5. Experimental Verification

This paper verifies the feasibility of the proposed algorithm in the real world based on
the ROS intelligent microvehicle. It is compared and analyzed with the improved A-star
algorithm proposed in the literature [20] and the improved RRT algorithm proposed in the
literature [21]. Evaluation metrics include the curvature, heading angle, rate of change, and
speed. The advantages and disadvantages of the proposed algorithms are evaluated using
these metrics.

5.1. Experimental Condition

The experimental scene and working conditions are shown in Figure 20. The structured
road sandbox can genuinely reflect the road’s lane lines and obstacle information. Static
obstacles, dynamic obstacles, and destinations are set in the structured road of the sandbox.
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The dynamic obstacle accelerates from 0 m/s to 0.2 m/s at the location in the figure and
then travels in the direction of the red arrow at a constant speed. The ego vehicle departs
from the location in the figure at a standstill. It evades the static obstacle and performs
speed planning to evade the dynamic obstacle and reach the destination.
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Figure 20. Schematic graph of experimental scenes and working condition.

The experimental microvehicle shown in Figure 21 is equipped with a single line Li-
DAR (RPLIDARA1360) for detecting static obstacle position information, dynamic obstacle
position and velocity information. The depth camera (IMX219-160) performs target detec-
tion and provides category and depth information. The STM32 microcontroller embedded
with an Inertial Measurement Unit (MPU9250) provides linear and angular acceleration
information in three directions. Real-time vehicle speed and position can be calculated
by listening to the acceleration information. The computing platform (Jetson Nano) exe-
cutes complex perception, decision-making, and control algorithms, extracting information
from sensor data for target recognition, path planning, and motion control. The high-
performance computing power and support for the Jetson Nano deep learning enable the
intelligent microvehicle to respond faster and more accurately to environmental changes.
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5.2. Experimental Results

The algorithms were written in Python and deployed into the intelligent microvehicle.
Utilizing the ROS’s topic publishing and receiving mechanism, real-time communication
between environment sensing, path planning, chassis control, and feedback was accom-
plished. Figure 22 shows the paths planned by different algorithms in this scenario. The
depth camera provides the lane line information. The green, purple, and blue paths are the
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planning results of DE-APF, A-star, and RRT algorithms, respectively. All three algorithms
accomplished the task of avoiding obstacles and reaching the destination.
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Figure 22. Planning results for the different algorithms.

The path variations planned by the three algorithms are revealed in Figure 23. The
average curvature of the paths planned by DE-APF, A-star, and RRT are 0.1148, 0.1249, and
0.1423, respectively. The average rate of change is 0.0306, 0.0356, and 0.0478, respectively. It
can be seen that the paths planned by the DE-APF algorithm proposed in this paper are
flatter. The trend of the yaw angle changes is roughly the same, with the DE-APF algorithm
planning the smoothest path changes. Although there are significant angle changes, the
frequency of changes is the lowest.
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Figure 24 shows the state changes in the intelligent microvehicle when avoiding static
and dynamic obstacles. It can be seen that the ego vehicle chooses the deceleration–yielding
strategy when facing dynamic obstacles. The overall change in speed, acceleration, and
jerk is relatively smooth.
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5.3. Analysis of Results

Compared to simulation validation, actual vehicle experiments contain some uncer-
tainties. These uncertainties mainly stem from how the vehicle senses its surroundings and
state through various sensors. These sensors include the LIDAR, cameras, inertial mea-
surement unit (IMU), etc. Due to their physical structure and other factors, these sensors
generate errors affecting this paper’s algorithms. The main errors are measurement errors
and localization errors. Measurement errors are caused by the sensor’s inherent uncertainty
or by environmental noise. They can cause discrepancies between sensor measurements
and actual values, thus affecting the accuracy of vehicle status information and surrounding
perception information. The localization uses the integration of the acceleration collected by
the IMU, which accumulates the localization error over time. Considering the sensor errors
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mentioned above, the impact of sensor errors on the performance of the algorithms is fully
considered when performing real-vehicle validation, and corresponding measurements
are taken to minimize the impact of these errors. The sensor data are filtered and corrected
when performing the actual vehicle-deployment algorithm. The effect of measurement
errors is reduced by using an extended Kalman filter. This improves the accuracy of the
sensed data. To eliminate positioning errors, instead of relying on information from a
single positioning system, a multi-sensor fusion approach was used to synthesize the
positioning information. The effective compensation of positioning errors was carried out
by combining the positioning data from multiple sensors, such as the IMU and LIDAR.
This improved the accurate estimation of the vehicle position. Finally, it was used as the
input of the positioning information of the algorithm in this paper.

In the real-vehicle validation of the algorithm in this paper, both the environment
sensing algorithm and the trajectory tracking control algorithm had to be deployed. The
environment sensing algorithm provides environmental information such as obstacles. The
trajectory tracking control algorithm controls the vehicle horizontally and vertically so
that the vehicle reaches the desired position. Therefore, the accuracy of the environment
sensing and trajectory tracking control algorithms also affects the results of the algorithm
proposed in this paper. In addition, due to the limitations of the experimental conditions, it
is impossible to verify the effects of environmental changes, such as the sudden appearance
of pedestrians and other exceptional cases. In the future, the work in this area will be
improved continuously.

The simulation was conducted under ideal conditions without sensor noise interfer-
ence, resulting in smooth results. However, despite preprocessing the sensor-collected data,
experimental measurements were affected by sensor noise, leading to some jitter. Despite
this jitter, the overall results closely resembled the simulated results. This suggests that
the outputs of the actual vehicle and the simulation model align closely and share similar
environmental input information. This effectively demonstrates the real-world feasibility
of the algorithm proposed in this paper. With the curvature of the planned trajectory and
its rate of change, the heading angle and its rate of change, and the metrics of speed and
acceleration, the algorithm proposed in this paper dramatically improves the safety and
comfortable riding of the passengers in autonomous vehicle trips.

6. Conclusions

This paper proposes a method to decouple path and speed to solve the trajectory plan-
ning problem of static obstacle avoidance and dynamic obstacle avoidance for autonomous
vehicles on structured roads. The research features and innovations of this article include
the following: (1) designing an obstacle-repulsive potential field model concerning a two-
dimensional normal distribution, and introducing the ellipse and deformed ellipse as the
repulsive potential field range; (2) constructing a global gravitational field and designing
a rolling updating mechanism for the range of influence; (3) constructing and solving a
convex optimization problem based on the S-T graph for speed planning in the Frenet
coordinate system. Simulation and experimental validation results show that the algorithm
proposed in this paper can achieve trajectory planning for static and dynamic obstacle
avoidance on structured roads. Comparison with the unimproved artificial potential field
method, A-star, and RRT algorithms shows that the algorithm planning proposed in this
paper has apparent advantages in terms of the obstacle avoidance effect and trajectory
flatness. It is proved that the trajectory planned by the algorithm in this paper can meet the
requirements of vehicle safety and comfort.

It should be noted that the trajectory planning model designed in this paper does not
apply to split vehicles, such as trailers, because split vehicles usually have different driving
characteristics and dynamics that do not match the assumptions on which the model in
this paper is based, which may lead to poor application of the model to split vehicles.
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