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Abstract: Intelligent decisions for autonomous lane-changing in vehicles have consistently been a
focal point of research in the industry. Traditional lane-changing algorithms, which rely on predefined
rules, are ill-suited for the complexities and variabilities of real-world road conditions. In this study,
we propose an algorithm that leverages the deep deterministic policy gradient (DDPG) reinforcement
learning, integrated with a long short-term memory (LSTM) trajectory prediction model, termed as
LSTM-DDPG. In the proposed LSTM-DDPG model, the LSTM state module transforms the observed
values from the observation module into a state representation, which then serves as a direct input to
the DDPG actor network. Meanwhile, the LSTM prediction module translates the historical trajectory
coordinates of nearby vehicles into a word-embedding vector via a fully connected layer, thus
providing predicted trajectory information for surrounding vehicles. This integrated LSTM approach
considers the potential influence of nearby vehicles on the lane-changing decisions of the subject
vehicle. Furthermore, our study emphasizes the safety, efficiency, and comfort of the lane-changing
process. Accordingly, we designed a reward and penalty function for the LSTM-DDPG algorithm and
determined the optimal network structure parameters. The algorithm was then tested on a simulation
platform built with MATLAB/Simulink. Our findings indicate that the LSTM-DDPG model offers a
more realistic representation of traffic scenarios involving vehicle interactions. When compared to
the traditional DDPG algorithm, the LSTM-DDPG achieved a 7.4% increase in average single-step
rewards after normalization, underscoring its superior performance in enhancing lane-changing
safety and efficiency. This research provides new ideas for advanced lane-changing decisions in
autonomous vehicles.

Keywords: LSTM; DDPG; reinforcement learning; lane-changing decision

1. Introduction

Among the many functions of intelligent driving assistance systems, autonomous lane
changing is important [1]. Through intelligent lane-changing decisions, traffic accidents
caused by driver errors can be significantly reduced, and the efficiency of lane changing
can be improved. Consequently, systems related to autonomous vehicle lane-changing [2,3]
have emerged as a focal point of research for various vehicle enterprises and the robotics
field [4].

Currently, lane-changing decision models include two common methods: a rule-based
decision algorithm and a reinforcement learning decision algorithm. The rule-based de-
cision algorithm defines the behavior mode of the vehicle in different scenarios and uses
characteristic variables as the basis for judgment when the driving condition switches.
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The primary representative algorithms are the finite-state machine (FSM) and fuzzy logic
algorithms. An FSM is a mathematical model of a discrete input and output system com-
posed of a finite number of states. Within this system, the current state interprets events
and triggers corresponding actions, leading to state transitions. For instance, under the
mixed framework of an FSM, a reference [5] determines the results of different submodules
according to their priorities, and determines the final decision results through state estima-
tion and goal determination. Fuzzy logic, on the other hand, is instrumental for systems
with indeterminate or expansive models. By emulating the human brain’s approach to
uncertainty and reasoning, fuzzy logic addresses challenges posed by conventional meth-
ods in deciphering regular information. A study highlighted in reference [6] introduced
an automatic overtaking method leveraging fuzzy logic, enabling overtaking on two-way
roads. Although rule-based decision-making methods are straightforward to implement
and offer clear interpretability, they demand manual rule-based configurations and regular
updates. These types of methods, however, may falter in real-world environments with
scenarios too intricate for rule-based descriptions, leading to compromised robustness and
adaptability. Moreover, real-world driving often presents “gray areas”, where a single
scene can offer multiple logical decision paths or involve conflicts between several rules.

There are also many methods for the trajectory planning of autonomous vehicles,
including the A* algorithm, sampling-based fast-exploring random number (RRT) algo-
rithm, model predictive control (MPC) algorithm, and B-spline-based trajectory planning
algorithm. Reference [7] proposes a criterion-based A* algorithm that uses the criteria
generated by human programming or global programming to develop heuristic functions.
However, the A* algorithm still has some problems, such as the inaccurate detection of a
road edge and inapplicability during vehicle turning. In reference [8], the MPC algorithm is
used to solve the problem of lane-change decision and control, and a decision method based
on model predictive control is proposed. In this method, the control of a vehicle running
on the expressway is divided into two parts: lane-change decision and lane-change control,
which are solved by the MPC method, respectively. A new collaborative trajectory planning
strategy is proposed in reference [9], which is particularly concerned with column stability
during vehicle formation. Unlike traditional methods, this strategy advances the goal of
distance control to the planning stage, rather than adjusting it only in the feedback control
stage. By integrating the concept of string stability, the strategy enables a smooth transition
between autonomous driving and collaborative formation driving. In addition, B-spline
curves are used to design trajectories of cooperative vehicles, and a series of piecewise
polynomial functions are generated.

In [10], a network structure and hyperparameter model, pretrained in a simulator, were
adapted to a car equipped with a camera. Using monocular images as an input enabled the
vehicle to learn lane-following in real-world scenarios for the first time. In [11], a hybrid
approach blending imitation learning with the deep deterministic policy gradient (DDPG)
algorithm was trained within the Carla simulator [12]. The model introduced a controllable
gating mechanism to address the inefficiencies in exploring continuous space. Under the
influence of varying steering angle rewards, specialized strategies were cultivated for each
control signal.

Currently, reinforcement-based decision algorithms excel in exploring the depth of
scenes. They can comprehensively address all operational conditions by leveraging exten-
sive datasets, autonomously extracting features and decision attributes, which facilitates
algorithm iterations. However, the interpretability of such algorithm models is limited. The
decision-making efficacy is contingent on the sample dataset’s quality, model network’s
structure, and adequacy of sample sizes; any mismatches in these can lead to the over-
fitting or underfitting of the model. A fully end-to-end approach demands considerable
hardware computing capabilities in intelligent vehicles. These types of systems tend to
be complex, opaque, and difficult to interpret. Consequently, the decision and planning
modules have evolved independently, reserving reinforcement learning algorithms for
high-level decision-making. The planning module, in turn, formulates a coherent trajectory
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aligned with vehicle dynamics, enhancing the system’s interpretability and adaptabil-
ity. However, a majority of these reinforcement learning algorithms, when employed for
high-level decisions, operate on static environmental analysis. They rely on present-time
environmental data, neglecting potential future state changes. Hence, the algorithm’s
decision output might achieve only local optimization, lacking a globally optimal decision
across the entire environment.

There are some problems in the decision-making algorithm of intelligent driving
vehicles, such as the difficulty of describing the real environment with rules, poor algorithm
interpretation, and lack of learning ability. Because the LSTM [13] trajectory prediction
algorithm can help the model adapt to the changes of a dynamic environment, it also can
help the DDPG algorithm to better process time-series information in the environment
and improve the agent’s generalization ability to the environment. Therefore, a DDPG
intelligent vehicle decision algorithm based on LSTM trajectory prediction is introduced in
this paper. By integrating the anticipated trajectory of interactive vehicles as part of the
input, we constructed the LSTM-DDPG model on the MATLAB/Simulink platform. When
contrasted with the Conv-DDPG decision algorithm, which solely accounts for the current
state information, the proposed algorithm’s superiority was clearly evident.

2. LSTM and DDPG
2.1. LSTM

Long short-term memory (LSTM) leverages extensive sequence information to create
a learning model owing to its inherent memory function. By introducing a memory unit,
LSTM addresses the gradient vanishing issue encountered in long sequence prediction.
Moreover, the control gate structure facilitates the coordination of information transmission
between memory cells, effectively tackling the long-term dependency challenges in time-
series prediction. This makes LSTM particularly suitable for time-series forecasting.

LSTM served as the foundational predictor for the reinforcement learning algo-
rithm [14]. Utilizing the LSTM decoder structure, we predicted the trajectory of obstacle ve-
hicles, established the connection between the anterior and posterior trajectory coordinates
of the vehicle, and conducted a more in-depth analysis of the microscopic characteristics of
these vehicle trajectory coordinates [15].

2.2. DDPG

Reinforcement learning [16] is a process in which the agent learns continuously in the
environment through different strategies. A policy maps the state space to the action space.
Guided by this policy, the agent selects actions as input to interact with the environment.
In response, the environment provides real-time feedback in the form of rewards and
transitions to the next state based on state transition probabilities. Through ongoing
interactions and trial-and-error between the agent and environment, an optimal policy is
ultimately learned, aiming to maximize the cumulative reward from environmental actions.

The policy gradient (PG) algorithm can parameterize the policy, compute the gradient
function relative to the action, and refine the policy using gradient descent, ultimately
yielding the optimal policy action. Although the output of the stochastic policy gradient
presents a probability distribution, and hence, a specific output action value remains
indeterminate, the deterministic policy gradient algorithm operates differently. In the case
of a deterministic policy, a specific action value corresponds to a definitive action; thus, for
the same state input into the network, the output action remains consistent.

The deep deterministic policy gradient (DDPG) [17] algorithm, which employs the
actor–critic framework [18], addresses the limitation of the DQN algorithm being confined
to discrete actions, enabling its application to tasks with continuous action spaces. DDPG
synergizes the deterministic policy gradient algorithm with techniques inherent to the
DQN algorithm.



World Electr. Veh. J. 2024, 15, 173 4 of 14

3. DDPG Lane-Changing Decision Algorithm Combined with LSTM Trajectory Prediction

Vehicle acceleration and steering wheel angles are continuous variables. In this study,
we selected the DDPG algorithm, recognized for its superior performance in continuous
states, to drive vehicle decision-making. We gleaned the decision-making behavior of
real drivers from experience, establishing a mapping [19] from road state information to
acceleration and steering wheel angles. Concurrently, lane-changing is a nuanced and
intricate decision-making process, requiring a vehicle to assimilate both its current data
and the interactive vehicular information from the road environment. During real-world
driving, drivers often anticipate the future trajectories of surrounding vehicles before
deciding on a maneuver. Traditional reinforcement learning models for lane-changing
decisions tend to focus solely on the static information of the current moment as captured
by vehicle sensors. This approach offers a limited overall understanding of the environment
and lacks foresight into the future actions of interactive vehicles. This type of approach
falls short in accurately capturing the dynamics of real-world traffic scenarios.

Therefore, this paper proposes an LSTM-DDPG intelligent lane-changing decision
algorithm with an interactive vehicle-prediction trajectory function. The integrated LSTM
module considers the influence of future interactive vehicles on the lane-changing behavior
of local vehicles and adds observation and status modules to the LSTM to improve the
adaptability of the traditional algorithm in complex traffic scenarios. This decision is more
closely related to real road scenarios.

3.1. Subsection

In this study, we integrated LSTM into the DDPG framework, resulting in LSTM-
DDPG algorithm models, as illustrated in Figure 1. The LSTM is split into two branches.
Each LSTM unit comprises an observation and a status module. The status module trans-
lates the observed values from the observation module into distinct status information.
The second LSTM ingests the position data of the obstacle vehicle and, through the en-
coder, convolutional layer, and decoder, derives the anticipated trajectory information.
The reinforcement learning component of LSTM-DDPG consists of both an actor network
and a critic network, as depicted in Figure 1. Both the actor and critic networks employ
a four-tiered structure, encompassing an input layer, an output layer, and two interme-
diate hidden layers. The hidden layers utilize the ReLU activation function to model the
relationship between input and output signals.
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Figure 1. Framework of the LSTM-DDPG algorithm.

The LSTM prediction model processes signals from various vehicle sensors, capturing
the present state of the host vehicle and its surroundings. This model predicts the future
trajectories of nearby vehicles. Using the forecasted trajectory combined with the current
vehicle position, data are fed into the DDPG action network. The actor network then
generates continuous action values for acceleration and the front wheel angle, based on an
action strategy. Meanwhile, the critic network processes the state transformed by the LSTM
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along with the action output from the actor network, producing a return value. This return
value is used to assess and continually refine the strategy of the actor network. Ultimately,
the quintet of the current state, action, updated state, return value, and termination status
is saved in the experience pool. Both actor and critic networks are refined using samples
drawn from this pool.

The LSTM-DDPG algorithm pseudo-code is shown in Table 1.

Table 1. LSTM-DDPG algorithm pseudo-code.

Algorithm: LSTM-DDPG

1 Initialize experience pool D
2 Initialize critic network θQ, actor network θµ

3 Initialize target network θQ−
, θµ−

4 for episode in (1, M) do
5 set initial state S0
6 for t in (1, T) do
7 get the historical track X0 and Map to vector µt

8 encode µt as an implicit state vector by encoder
9 predict the surrounding vehicle track Y0 by decoder
10 convert Y0 to location information and update st
11 select the optimal action at according to step 10 and action strategy
12 execute at and obtain current reward rt and observe next state st+1
13 store the element (si, ai, ri, st+1) in D
14 sample mini-batch (si, ai, ri, st+1) from D
15 update critic network using loss function L
16 update actor network using policy gradient ∇θµ µ
17 update the two target networks by soft update mode
18 end for
19 end for

3.2. Markov Process Modeling
3.2.1. Set State Space

During driving, the vehicle consistently interacts with its environment, maintaining a
flow of state information. When making lane-changing decisions, it is crucial to consider
the vehicle’s driving state and dynamics between the vehicle and its surroundings. In
this study, the chosen state set incorporated information from both the host vehicle and
road environment.

1. The ego vehicle information on the road at time t, M[t] = {v, d, x, y};

Ego vehicle information: The scalar input is chosen to represent the ego vehicle
information using speed v of the ego vehicle, distance d between the ego vehicle and
preceding vehicle, and ordinate (x, y) of the ego vehicle trajectory.

2. Predicted trajectories of surrounding vehicles on the road at time t;

LSTM was utilized to forecast the trajectories of neighboring vehicles. To uniformly
represent the vehicle trajectory’s high-dimensional features, the historical trajectory co-
ordinates of the surrounding vehicles at the given input time were transformed into
word-embedding vectors using the fully connected layer µt:

µt = FC
(
Xt; Wfc

)
, (1)

where FC() denotes a fully connected layer function, and Wfc denotes the weight parameter
of the fully connected layer.

The word-embedding vector of the corresponding vehicle historical trajectory and
hidden state vector ht−1 of the historical trajectory at the last moment were passed via
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the LSTM encoder to obtain the current hidden state vector ht containing the contextual
information of the vehicle motion features:

ht = encoder
(

µt, ht−1; Wenc

)
, (2)

where encoder() is responsible for encoding the word-embedding vector µt of the ve-
hicle trajectory into an implicit state vector, and Wenc denotes the weight parameter of
the encoder.

Finally, the trajectory encoding the hidden state vector of all the vehicles around the
current time is obtained as follows:

ht
0, ht

s(s ∈ 1, 2, . . . , n), (3)

Predicted trajectory: At any time t, the inputs of the trajectory prediction model are the
trajectory coordinates of all vehicles v0 around the host vehicle in the historical observation
domain length his:

X0 =
[(

xt−his
0 , yt−his

0

)
. . .

(
xt−1

0 , yt−1
0

)
,
(
xt

0, yt
0
)]

Xs =
[(

xt−his
s , yt−his

s
)

. . .
(

xt−1
s , yt−1

s
)
,
(
xt

s, yt
s
)]

,
(4)

The model output comprises the coordinates of the driving trajectory of the target
vehicle in the future prediction domain length pred:

Y0 =
[(

xt+1
0 , yt+1

0

)
. . .

(
xt+2

0 , yt+2
0

)
,
(

xt+pred
0 , yt+pred

0

)]
, (5)

3.2.2. Set Action Space

In the decision-making lane-changing problem of intelligent vehicles in this study, lon-
gitudinal velocity and lateral lane change need to be considered simultaneously. Therefore,
we define the acceleration and steering wheel angle with continuous values as actor–
network output A[t]: {a[t], δ[t]} [20].

Considering the longitudinal comfort of passengers, an acceleration output range
within [–5, 5], and the tanh activation function were used in the output layer of the actor
network to make the acceleration map output within [–1, 1]. Considering the actual
situation of vehicle steering and lateral comfort of passengers, the wheel angle was limited
in the range of [–30◦, 30◦], and finally, a tanh activation function was used to keep it within
[–1, 1], which was convenient for model convergence. OU random processes with θ = 0.25
and σ = 0.2 are added to the output action to avoid a decrease in generalization ability due
to sensing errors.

3.2.3. Design Reward Function

The actor network of the agent extracts the current status information from the LSTM
module. It then selects an action from the action space according to its strategy and receives
the corresponding reward (or penalty) based on this action. This interactive process
continues until a termination condition is met. The agent’s goal is to achieve the maximum
cumulative reward. Typically, the agent’s actions are assessed using a reward function.
Hence, designing an apt reward function is crucial to the efficacy of the LSTM-DDPG
algorithm. In this study, we designed a modular reward function that prioritizes safety,
efficiency, and comfort.

1. Safety

In terms of safety, autonomous vehicles must prioritize avoiding collisions with other
vehicles on the road. It’s essential to guide the vehicle in selecting the appropriate driving
lane. Specifically, if the vehicle chooses a positive steering wheel angle while in the left lane
(indicating a lane change to the left) or a negative steering wheel angle in the right lane
(indicating a lane change to the right), then these scenarios indicate an aberrant steering
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wheel angle. Consequently, a penalty value of −50 should be imposed in such instances.
If a collision occurs during a lane change or while following another vehicle, a penalty of
−200 should be assigned, ending the training. If the distance between vehicles falls below
the safe margin given the current speed, then a penalty of −50 is imposed. In all other
scenarios, a reward of +5 is given.

Dsafe = vt + D−default, (6)

where Dsafe denotes the safe distance for the vehicle at a given speed, v denotes the current
vehicle speed, t denotes the velocity coefficient, and D-default denotes the initial safe distance.

r1 =


−200 i f d < Lvehicle
−50 i f d < Dsa f e
−50 i f y > Llane, δ ≥ 0,
−50 i f y < Llane, δ ≤ 0
+5 else

(7)

where d denotes the distance between the ego and preceding vehicles, y denotes the lateral
coordinate of the ego vehicle, δ denotes the front steering wheel angle of the ego vehicle,
Lvehicle denotes the length of the ego vehicle, and Llane denotes the length of the ego vehicle.

2. Efficiency of Traffic

To ensure safety during lane changes, autonomous vehicles need to drive at an efficient
pace without exceeding speed limits or changing lanes too frequently. Prolonged lane-
changing maneuvers can reduce the efficiency of road usage, which would warrant a
greater penalty.

r2 = −dt, (8)

where dt denotes the simulation step size.

3. Comfort

In the real driving process, frequent speed changes affect the comfort of passengers in
a vehicle. Therefore, a reward function for lane-change comfort was designed according to
vehicle acceleration and jerk.

r3 =
1

1 + |a|+|∆a| , (9)

where a denotes the acceleration of the vehicle, and ∆a denotes its jerk.

4. Reward Function Ensemble

During the lane-change process, safety, lane-change efficiency, and comfort must be
balanced. The total reward agent obtained for each time step is as follows:

R = ω1r1 + ω2r2 + ω3r3 , (10)

where ω1, ω2, ω3 denote the respective weight of the reward function involved in safety,
lane-changing efficiency, and comfort. The safety weight mainly considers whether the
vehicle complies with the traffic rules and whether there is a collision in the decision-
making process. The weight of lane-change efficiency mainly considers the reasonable
acceleration and deceleration in the process of vehicle running. The comfort weight mainly
considers the acceleration and jerk of the vehicle. The greater the weight, the more the
trained model emphasizes that particular factor. However, an excessively high weight
can prevent the model from converging. The impact of the reward function on the policy
network is intricate, and finding the optimal weight coefficient requires careful parameter
tuning. Finally, weights for the reward function were designated as 5.0, 2.0, and 1.0.
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3.3. Network Parameter Updating

DDPG consists of four networks: the online policy network, target policy network,
online Q network, and target Q network, and the parameters of each network are
updated alternately.

The critic network fits the action state value function according to the current state
information st and expected action µt generated by the actor network. To enhance the accu-
racy of the action value evaluation by the critic network, the online Q-network parameter
value θQ is updated by minimizing the loss function, which can be defined as:

L =
1
n

n

∑
i

(
Q
(

si, ai

∣∣∣θQ
)
− yi

)2
, (11)

yi = Ri + γQ−
(

s
′
i, µ−

(
s
′
i

∣∣∣θµ−)∣∣∣θQ−)
, (12)

where n denotes the sample number of the batch sampling experience, Ri denotes the
reward value of the experience sample i; γ denotes the discount factor, θQ denotes the pa-
rameter of the online Q-network, θQ−

denotes the parameter of the target Q-network,
Q
(
si, ai

∣∣θQ) denotes the action value estimated using the online critic network, and

Q−
(

s
′
i, µ−

(
s
′
i

∣∣∣θµ−
)∣∣∣θQ−

)
denotes the future action value estimated using the target ac-

tor network and target critic network.
The actor network fits the policy function to generate the desired action µt based on

the current state information st of the model input, and the online policy network parameter
θµ updates the policy gradient expression as follows:

∇θµ µ ≈ 1
n∑

i
∇θµ µ(s|θµ)|si∇aQ

(
s, a

∣∣∣θQ
)
|si ,µ(si)

, (13)

where µ(s|θµ) denotes a deterministic policy, and θµ denotes the online policy network
parameter.

After each training iteration, gradients are utilized to update both online network
parameters, while the target network parameters are updated using a soft update method.
This method efficiently mitigates abrupt shifts and divergence in network gradient cal-
culations, reduces large variations in network parameter updates, and promotes swift
convergence during model training.

θµ−
= τθµ + (1 − τ)θµ−

θQ−
= τθQ + (1 − τ)θQ−

,
(14)

where θµ, θµ−
denote actor and target actor network parameters, respectively, θQ, θQ−

denote critic and target critic network parameters, respectively, and τ denotes the soft
update coefficient.

4. Verification of LSTM-DDPG Algorithm

In this study, we utilized the MATLAB R2021a simulation platform to establish simu-
lation scenarios and algorithmic models. A representative two-lane highway setting was
chosen to compare the LSTM-DDPG algorithm, which incorporates trajectory prediction,
against the conventional Conv-DDPG algorithm that lacks this feature.

4.1. Training Scene Construction

When training the LSTM-DDPG algorithm, we should pay attention to the compu-
tational complexity of the algorithm. LSTM is a special recurrent neural network (RNN)
whose computational complexity depends mainly on the depth and width of the network.
Although the computational complexity of the LSTM in time steps is constant (O(1)), the
overall computational burden increases as the number of network layers increases. The
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computational complexity of the DDPG mainly comes from updating the value function
and optimizing the strategy. Therefore, the computational complexity of LSTM-DDPG will
be the sum of the two, which can lead to challenges in real-time simulations. Consider-
ing the computational complexity of the LSTM-DDPG algorithm, the scenario shown in
Figure 2 is set up.
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Two training scenarios are selected to train the LSTM-DDPG algorithm. In scenario 1,
there are two obstacle cars, whose positions are left behind and right in front. Scenario 2
has three obstacle vehicles, whose positions are left rear, left front, and right front. In the
chosen scenario, the ego vehicle starts in the right lane. The position of the three obstacle
cars is left rear, left front, and right ahead. However, the initial conditions of the obstacle
vehicles (such as relative distance and speed in relation to the ego vehicle) adhere to specific
constraints. The ego vehicle initiates at a speed of 65 km/h, with a maximum allowable
speed of 100 km/h. The speed of obstacle car 1 is randomly generated in the range of
60–70 km/h, the speed of obstacle car 2 is randomly generated in the range of 70–80 km/h,
and the speed of obstacle car 3 is randomly generated in the range of 60–70 km/h, and the
initial distance from the car is 25 m.

During training, the initial parameters for the network training were set as follows: a
learning rate of 0.005, batch size of 128, maximum of 500 iterations, and gradient threshold
of 1. The Adam optimizer was chosen for the training process. The actor and critic networks
in DDPG utilize a multi-layered fully connected structure. The actor network had neuron
counts of 8, 256, 256, and 2, while the critic network comprised 10, 256, 256, and 1. The
learning rates for the actor and critic networks were established at 0.001, and a discount
factor of 0.99 was applied. Minibatch gradient descent was employed for training, with a
batch size of 128 and cap of 1400 training epochs. The simulation operated at timesteps of
0.1 s.

4.2. LSTM Trajectory Prediction
4.2.1. Trajectory Preprocessing

In this study, we utilized MATLAB to design traffic scenarios on a straight roadway
with varying densities: three cars and four cars. For each condition, the sequence of vehicle
trajectory coordinates was captured at every time step to facilitate model training. The
original data was captured at a frequency of 10 Hz, but was subsequently resampled at
5 Hz to ensure the retention of critical features in the dataset. For the processed data, an
8 s sliding window was employed to segment and generate data samples. Within this 8 s
span, the initial 3 s served as historical data input to the model, while the succeeding 5 s
acted as the reference for future trajectory predictions. The dataset was then categorized
into training, validation, and testing subsets. Specifically, the initial 70% of samples were
earmarked for training, the following 10% (from 70% to 80%) for validation, and the final
20% (from 80% to 100%) for testing.

Before employing the LSTM for trajectory prediction, it is essential to normalize the
trajectory coordinates. This involves calculating the mean and standard deviation of the
dataset and transforming it into a standardized dataset with a mean of one and variance of
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one. To better support the subsequent phased training of the LSTM network, datasets are
stored using the cell-type data format.

To assess the accuracy of the predictions, the root−mean−square error (RMSE) was
utilized to measure the deviation between the predicted and actual trajectories.

RMSE =

√
1

pred∑tn+pred
t=tn+1 δT

t δt, (15)

δ =
(
x − µx, y − µy

)T , (16)

where tn denotes the prediction start time, (x, y) denote the coordinates of the real trajectory
points, and the actual predicted trajectory coordinates are represented by the mean of the
future trajectory distribution output (µx, µy) of the model.

4.2.2. Effect of Historical Duration

The appropriate input length for the LSTM network is crucial. If the input length is
too brief, then it may not adequately capture the inherent mathematical characteristics
of the data, leading to a significant decline in trajectory prediction accuracy. To delve
deeper into how the duration of historical input trajectory impacts the extraction of vehicle
interaction features by the trajectory prediction model, both qualitative and quantitative
analyses of the model’s performance under varying input durations were conducted. The
LSTM model was fed historical trajectory inputs of 1 s, 2 s, 3 s, 4 s, and 5 s. The RMSE
values recorded during the training process are illustrated in Figure 3a. Upon analysis,
the average RMSE values for the durations from 1 s to 5 s were 0.05457, 0.05324, 0.05115,
0.05067, and 0.05575, respectively.
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Figure 3a demonstrates that the model begins to show signs of convergence around
50 steps for various input history lengths. As the input history field length ranged from
1 s to 4 s, there was a noticeable reduction in the deviation between the predicted and
actual trajectories as the input historical trajectory of the model increased. This suggests
that extending the historical trajectory can enhance the extraction of vehicle interaction
features. However, when the length of the history field extended to 5 s, the predictive
trajectory’s error began to increase, even surpassing the prediction inaccuracies observed
at history field lengths of 1 s and 2 s. This indicates that an excessively long historical
trajectory input may distort the interaction features the model seeks to extract. Analyzing
the average RMSE value, the smallest error occurred at a model length of 4 s, indicating
high predictive accuracy at this input length. Nevertheless, the prediction error for a 4 s
input length was only marginally better than that for a 3 s input length, but it demanded



World Electr. Veh. J. 2024, 15, 173 11 of 14

more time and computational resources. When balanced against these factors, a history
length of 3 s proved to be the most suitable model input.

As depicted in Figure 3b, the predicted vehicle trajectory coordinates align closely
with the actual trajectory. The minimal prediction error suggests that the LSTM module
developed in this study is effective in forecasting the genuine trajectory. Moreover, the
trained encoder is well-suited for integration into the subsequent DDPG reinforcement
learning decision-making model.

4.3. Comparison and Analysis

Based on the LSTM trajectory prediction module of the previous step, the representa-
tive states in the predicted trajectory and status module of the surrounding vehicles were
considered as part of the input data of the LSTM-DDPG. During the simulation, the ongoing
training episode was halted upon a collision with or overtaking of the lead vehicle. Sub-
sequently, the virtual driving environment was reinitialized, and a fresh training episode
commenced until the predefined training epochs were fulfilled. Tables 2 and 3 provide
detailed information on the DDPG’s network architecture and hyperparameter settings.

Table 2. DDPG network structure.

Parameters Layer Dimension Activation Function

Critic network
fully connected layer 1 (10, 256) ReLU
fully connected layer 2 (256, 256) ReLU
fully connected layer 3 (256, 1) ReLU

Actor network
fully connected layer 1 (8, 256) ReLU
fully connected layer 1 (256, 256) ReLU
fully connected layer 1 (256, 2) ReLU

Table 3. Training hyperparameter settings for DDPG.

Parameter Parameter Values Parameter Parameter Values

Network learning rate 0.001 Sample size 64
Discount factor 0.99 Experience pool size 10,000

Gradient threshold 0.001 Maximum training period 1400

In the DDPG algorithm’s learning journey, both episode reward and average reward
serve as indicators of training convergence and the overall efficacy of learning. Figure 4a
illustrates the training progression of the enhanced LSTM-DDPG. During the initial stages
of training, the agent struggled to make appropriate lane-changing decisions. However,
a significant surge in the average reward was observed between the 600th and 1000th
training periods. Furthermore, this average reward largely remained consistent in the latter
phases, suggesting that over time, the vehicle became adept at opting for actions with more
favorable reward values, thus making better lane-changing choices.

It is necessary to balance safety, traffic efficiency, and comfort in lane-change decisions
of autonomous vehicles. The curve of the average reward value normalized by a single step
in the training process is smoothed, and the change curve is shown in Figure 4b. It can be
observed that the reward value of the LSTM-DDPG algorithm gradually converges to 0.89
after about 1200 rounds of training. After about 1260 training rounds, the reward value of
the Conv-DDPG algorithm gradually converges to 0.83. After about 1300 training rounds,
the reward value of the TD3 algorithm gradually converges to 0.82. By comparison, it is
found that the LSTM-DDPG algorithm has the fastest convergence speed, and the reward
return is also improved.
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As can be seen from Figure 4, with the continuous increase in the number of training
rounds, the total reward value and the single-step reward value during training gradually
become stable, which also reflects some indicators in the reward and punishment function.
The reward and punishment functions are designed according to safety, traffic efficiency,
and comfort, respectively. When the distance between the car and the front car, lane-
changing situation of the car, speed, and acceleration of the car change greatly, the final
reward value will be affected. Therefore, the stabilization of the reward value can reflect
that the speed, acceleration, and traffic efficiency of the vehicle are also stable.

The average speed, average jerk value, and maximum steering wheel angle of the
three algorithms in the process of lane change are shown in Table 4. It can be seen from
the table that the LSTM-DDPG strategy algorithm performs better than the Conv-DDPG
and TD3 strategy algorithm. The LSTM-DDPG strategy algorithm can change lanes with a
smaller steering wheel angle, smaller jerk value, and higher speed, which not only ensures
lane-change efficiency but also ensures comfort. The LSTM-DDPG strategy algorithm can
run stably in different scenarios.

Table 4. Comparison of algorithms.

Average Velocity
Speed (km/h)

Average Jerk Value
(m·s−3)

Maximum Steering
Wheel

Angle (◦)

LSTM-DDPG
(Scenario1) 76.3 0.6 18.1

LSTM-DDPG
(Scenario2) 77.5 0.7 18.1

Conv-DDPG 72.4 1.1 21.2
TD3 72.6 1.0 20.6

5. Conclusions

A lane-changing model was conceptualized using a Markov decision process. This
model integrated LSTM-based trajectory predictions and pertinent state information into
the actor–critic framework of the DDPG. Additionally, a multifaceted reward function
specifically tailored for autonomous lane-changing was devised. Through iterative training
guided by this reward function, the system can discern the optimal decision for autonomous
lane-changing, considering the future state of vehicles it interacts with.

1. Prediction of surrounding vehicles using LSTM: After the training of the data set,
the LSTM module built can finally predict the relatively accurate future vehicle
trajectory, and the prediction results are shown in Figure 3. At the same time as
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the state input of the DDPG algorithm, the vehicle can make better decisions on the
lane-change trajectory.

2. The LSTM-DDPG algorithm also performs well during training. As shown in Figure 4,
both round reward and average reward increase significantly after the training cycle
reaches 600 cycles. After the training cycle reaches 1000 cycles, the reward reaches
an undetermined trend, and the vehicle can choose a better action to change lanes.
The convergence speed of the LSTM-DDPG algorithm is faster than that of the Conv-
DDPG algorithm.

3. As can be seen from the data in Table 3, the LSTM-DDPG algorithm proposed in this
paper can perform lane changes with faster speed and smaller acceleration in different
scenarios. The vehicle can be more efficient and more comfortable while completing
the task of a lane change.

4. In the LSTM-DDPG algorithm, LSTM can help the DDPG algorithm capture and
exploit this long-term dependency. When the driving scene changes, the LSTM-DDPG
algorithm can update the strategy by learning the dynamic characteristics of the
environment to provide continuous action space. The LSTM-DDPG algorithm may
provide more robust decision strategies by learning long-term dependencies and
continuous action spaces.
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