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Abstract: Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is crucial
for reducing battery usage risks and ensuring the safe operation of systems. Addressing the impact
of noise and capacity regeneration-induced nonlinear features on RUL prediction accuracy, this
paper proposes a predictive model based on Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) data preprocessing and IHSSA-LSTM-TCN. Firstly, CEEMDAN
is used to decompose lithium-ion battery capacity data into high-frequency and low-frequency
components. Subsequently, for the high-frequency component, a Temporal Convolutional Network
(TCN) prediction model is employed. For the low-frequency component, an Improved Sparrow
Search Algorithm (IHSSA) is utilized, which incorporates iterative chaotic mapping and a variable
spiral coefficient to optimize the hyperparameters of Long Short-Term Memory (LSTM). The IHSSA-
LSTM prediction model is obtained and used for prediction. Finally, the predicted values of the
sub-models are combined to obtain the final RUL result. The proposed model is validated using
the publicly available NASA dataset and CALCE dataset. The results demonstrate that this model
outperforms other models, indicating good predictive performance and robustness.

Keywords: lithium-ion battery; RUL; CMMEDAN; TCN; IHSSA; LSTM

1. Introduction

Lithium-ion batteries, known for their superior performance attributes such as fast
charging rates and long operational lifespans, are widely utilized in the fields of new energy
vehicles, communication devices, and aerospace electronic equipment [1–3]. However, as
the number of charge–discharge cycles accumulates, the performance of lithium batter-
ies inevitably degrades, and the Remaining Useful Life (RUL also decreases, ultimately
leading to system malfunctions or even potential safety incidents [4,5]. Therefore, the
efficient and accurate prediction of the RUL of lithium batteries holds significant practical
importance [6,7]. The RUL of lithium-ion batteries [8] is defined as the remaining number
of usable cycles from the prediction start point until the end of battery life. The battery life
is considered to have ended when the actual capacity of the battery degrades to the failure
threshold. The commonly used equation for RUL is as follows:

RUL = EOL − N (1)

In the equation, N represents the initial cycle position, and EOL denotes the cycle
count at which the battery’s actual lifespan ends.

At present, there are primarily two approaches for predicting the RUL of lithium-ion
batteries: model-based methods and data-driven methods [9,10].

The model-based methods approach to predicting the RUL of lithium-ion batter-
ies involves analyzing internal physical and chemical reactions within the battery. This
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method requires constructing mathematical or physical models to describe the princi-
ples of performance degradation in lithium-ion batteries. For instance, equivalent circuit
models and electrochemical models are established to accomplish RUL predictions for
batteries [11–13]. Wang et al., with the assistance of Kalman Filtering (KF) and Particle Fil-
tering (PF), studied battery predictions under different discharge rates and temperatures for
RUL estimation [14]. Zhang et al. proposed an Unscented Particle Filtering (UPF) method
for battery RUL prediction. The UPF was employed to forecast battery RUL, benefiting
from the proposal distribution provided by the Unscented Kalman Filter (UKF) for particle
sampling [15].

Model-based methods generally have complex structures and are susceptible to dy-
namic influences from external environmental factors. Additionally, they require a sub-
stantial amount of prior physical knowledge. The prediction accuracy of battery RUL
is also dependent on the setting of model parameters. Establishing an accurate degra-
dation prediction model can be challenging, and as a result, this approach has certain
limitations [16].

In response to the limitations of the model-based approach, current research predom-
inantly employs data-driven methods for predictive studies. These methods overcome
the dependence on internal battery structures by investigating experimental data from
the charging and discharging processes. Utilizing machine learning, deep learning, and
various heuristic search algorithms, these approaches extract degradation features from
capacity curves, significantly improving the accuracy of battery RUL predictions [17–22].
Kang et al. proposed a RUL prediction model based on fuzzy evaluation and Gaussian
Process Regression (GPR). This method utilizes fuzzy evaluation, which combines expert
knowledge and historical data to normalize observed data. The integration with the GPR
model enables interval prediction of RUL, effectively expressing the uncertainty of predic-
tion results [23]. Zhu et al. employed the Adaptive Boosting (AdaBoost) algorithm to mine
data features and fused it with LSTM to construct a model for lithium-ion battery RUL
prediction [24]. Liu et al. introduced a novel RUL prediction method using an Improved
Sparrow Search Algorithm (ISSA) to optimize the LSTM network. By adjusting hyperpa-
rameters through ISSA, the prediction accuracy was enhanced [25]. While these studies
exhibit high predictive accuracy, they are subject to the influence of data quality due to
issues such as noise and capacity regeneration in some battery data [26].

Hence, Li et al. combined Empirical Mode Decomposition (EMD) with LSTM and
Elman networks to predict capacity sequences at different frequencies [27]. However,
traditional EMD suffers from mode-mixing issues. To address this, Tang introduced a
hybrid RUL prediction model based on CEEMDAN and Gated Recurrent Unit (GRU) along
with factor improvement using a genetic algorithm and dynamic population weighting to
accelerate algorithm convergence [28]. Zhou et al. proposed a lithium-ion battery lifespan
prediction model based on a TCN. Compared to traditional Recurrent Neural Network
(RNN) models, this network structure has the capability to capture local regeneration
phenomena [29].

In consideration of the strengths and limitations discussed in the literature, this paper
introduces a lithium-ion battery RUL prediction method based on CEEMDAN data prepro-
cessing and IHSSA-LSTM-TCN. Initially, the CEEMDAN is employed to decompose the
lithium-ion battery capacity degradation sequence into high-frequency and low-frequency
components. For the high-frequency component, a TCN model is utilized for prediction.
For the low-frequency component, the IHSSA-LSTM model is proposed for prediction.
Finally, the results from both components are integrated to obtain the ultimate prediction of
lithium-ion battery RUL. The lithium-ion battery dataset provided by NASA and CALCE
is selected for research purposes.
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2. Introduction to Relevant Theories
2.1. CEEMDAN

The CEEMDAN is an improved version of the EEMD. The CEEMDAN decomposes
nonlinear or non-stationary signals into a set of intrinsic mode functions, enhancing the
signal-to-noise ratio and decomposition accuracy. Building upon the foundation of EEMD,
the CEEMDAN incorporates adaptive noise handling. It addresses the issues of incomplete
decomposition and significant reconstruction errors observed in EEMD, offering improved
anti-pattern mixing performance [30,31]. The execution steps of the CEEMDAN are as
follows:

(1) Introduce Gaussian white noise ε0ω(i)(t) with an initial amplitude ε0 to the origi-
nal battery capacity sequence C(t), forming a new capacity sequence, as shown in
Equation (2). Here, t represents the number of cycles of the battery.

Ci(t) = ε0ω(i)(t) + C(t) (2)

(2) Using EMD to decompose Ci(t) for i iterations, a series of intrinsic mode functions
IMFs is obtained. Taking the overall average of these functions yields the first mode
component IMF1 of the battery decomposition, as shown in Equation (3).

IMF1 =
1
I

I

∑
i=1

IMFi
1 (3)

(3) Calculate the first unique residual signal from the battery decomposition, obtaining
Equation (4).

R1(t) = C(t)− IMF1 (4)

(4) Ek denotes the k-th mode component obtained after EMD processing. In each of the
experiments, the signal R1(t) + ε1E1(ω(i)(t)) is decomposed, resulting in the second
mode component and the second residual signal, as expressed in Equations (5) and (6).

IMF2 =
1
I

I

∑
i=1

E1

(
R1(t) + ε1E1

(
ω(i)(t)

))
(5)

R2(t) = R1(t)− IMF2 (6)

(5) For the k-th stage, repeat Step (4), continually decomposing the signal and calculating
the (k + 1)-th mode component, as expressed in Equation (7).

IMFk+1 =
1
I

I

∑
i=1

E1(Rk(t) + εkEk(ω(i)(t))) (7)

(6) Repeat Step (5) until the residual signal can no longer be further decomposed. At this
point, the final number of mode components obtained is K. Decomposition stops, and
the original signal is expressed as Equation (8).

C(t) = R(t) +
K

∑
k=1

IMFk (8)

2.2. TCN

A TCN is a novel network architecture based on a Convolutional Neural Network
(CNN), characterized by its incorporation of causal convolutions, dilated convolutions, and
residual connections on the foundation of one-dimensional convolutional neural networks.

In causal convolutions, it is crucial to ensure that future time sequences do not leak
information to the past, maintaining consistency in input and output sequence lengths.
However, due to the unidirectional nature of causal convolutions, akin to RNN, processing
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long sequences necessitates numerous convolutional operations, leading to challenges such
as excessive computational load and gradient vanishing. To address this issue, the TCN
employs dilated convolutions.

To afford the sequence a larger receptive field, the TCN enhances causal convolutions
by introducing a dilation factor, exponentially increasing the size of the receptive field. For
a one-dimensional time sequence {x1, x2, · · · , xt} and a filter { f1, f2, · · · , fk}, the formula
for dilated convolution at position xm is expressed in Equation (9).

F(t) = (x × d f )(t) =
k−1

∑
n=0

f (n)× xt−d×n (9)

In the convolution operation, k represents the convolution kernel size; d is the dilation
factor; t stands for the time sequence; and xt−d×n indicates convolution operations applied
exclusively to past data.

Dilated causal convolution can be divided into three parts: dilation, causality, and
convolution. Convolution refers to a type of sliding operation performed by the convolution
kernel on the data. Dilation refers to allowing interval sampling when convolving the input.
Causality refers to the data at time t in the i-th layer, which only depends on the influence
of the value at time t and before in the (i − 1)th layer. Figure 1 depicts the architectural
diagram of the dilated causal convolution, with the k equal to 3 and the d set as [1, 2, 4].
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Residual connections serve as an effective method for training deep neural networks,
facilitating the transmission of information across layers and mitigating issues associated
with gradient explosion and vanishing gradients in excessively deep networks.

2.3. LSTM

LSTM, a variant of a RNN, is distinguished by its incorporation of gates, namely the
forget gate, memory gate, and output gate. These gates enable selective memorization or
forgetting of specific portions of input data, preserving their historical states throughout
computations. The fundamental architecture of LSTM is depicted in Figure 2, and the
computational formulas for the propagation process are expressed in Equations (10)–(15).

ft = σ(W f [ht−1, Xt] + b f ) (10)

it = σ(Wi[ht−1, Xt] + bi) (11)

Ct = tanh(Wc[ht−1, Xt] + bc) (12)

Ct = ftCt−1 + itCt (13)

Ot = σ(Wo[ht−1, Xt] + bo) (14)

ht = Ottanh(Ct) (15)
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In the above equations, Xt and ht represent the input and hidden states at time t,
respectively. ft, it, and Ot denote the states of the forget gate, input gate, and output gate,
respectively. Ct and Ct−1 correspond to the current and previous time step’s cell states,
while Ct represents the candidate cell state. W f , W f , Wc, Wo, and b f , bi, bc, bo are matrices
and bias values associated with the forget gate, input gate, cell state, and output gate,
respectively. The symbol σ represents the Sigmoid activation function in the hidden layer.

2.4. SSA

A SSA is a metaheuristic optimization algorithm that mimics the predatory behavior
of sparrows and their interactions with predators. The core concept involves dividing the
search space into multiple subspaces, with each subspace explored individually until a
target is found or the entire search space is covered [32].

In the SSA, each sparrow plays one of three distinct roles: discoverer, follower, or
vigilante. The discoverer’s primary responsibility is to forage for food, while the follower
closely tracks the discoverer, moving to the discoverer’s location to share in the food
findings. The vigilante’s role is to safeguard the population and raise an alert when
potential threats are detected.

In the context of predation, the discoverer exhibits two states. When no predators are
detected nearby, the discoverer conducts an extensive, wide-area search. In the presence of
predators, it relocates to a safer area, updating its location according to Equation (16):

Xt
i,j =

Xt
i,j × exp

(
− i

α×iitermax

)
, R < ST

Xt
i,j + Q × L, R ≥ ST

(16)

Xt
i,j denotes the position information of the i-th sparrow when dimension j is iterated

t times; a is a random number uniformly distributed between (0, 1]; Q is a random number
that follows a standard normal distribution; L represents a 1 × d matrix with all elements
set to 1; R ∈ [0, 1] is a uniformly distributed random number representing the warning
value of the population; and ST ∈ [0.5, 1], is a pre-set normal number, representing the safe
value of the population.
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Throughout the foraging process, the follower continuously observes the discoverer.
Upon the discoverer identifying high-quality food, the follower promptly relocates to the
same area. The formula for updating the follower’s location is presented in Equation (17):

Xt+1
i,j =


Q × exp

(
Xt

worst−Xt
i,j

i2

)
, i > N

2

Xt+1
p +

∣∣∣Xt
i − Xt+1

p

∣∣∣× A+ × L, otherwise
(17)

XP and Xworst represent the current optimal position and worst position, respectively.
A+ = AT(AAT)

−1, A denotes a 1 × m matrix, and the elements are randomly assigned to
1 or −1.

In the anti-predation phase, about 10% to 20% of the sparrows in the population are
assigned as vigilantes. In the face of danger, an alarm mechanism is activated. The formula
for updating the position of the vigilante is outlined in Equation (18):

Xt+1
i.j =


Xt

best + β ×
∣∣Xt

i − Xt
best

∣∣, fi > fg

Xt
i + K × (

|Xt
i−Xt

worst|
( fi− fw)+ε

), fi = fg

(18)

Xbest represents the optimal position; β is a random number following the standard
normal distribution; fi is the current fitness of the sparrow; fg and fw are the current global
optimal and worst values, respectively; K ∈ [−1, 1] is a uniformly distributed random
number indicating the direction in which the sparrow moves; and ε is a normal number to
avoid a fraction of 0.

3. CEEMDAN-IHSSA-LSTM-TCN Prediction Model
3.1. IHSSA

Compared to traditional intelligent algorithms, the SSA exhibits superior optimization
performance. However, when directly applied to the nonlinear and complex task of
battery RUL prediction, the SSA faces challenges during iterations, as it may be easily
attracted to one of the optimal solutions, potentially overlooking other possible optima.
This tendency to converge to a local optimum can hinder the algorithm’s ability to manifest
global search capabilities during the optimization process, ultimately limiting its potential
to enhance the prediction accuracy of lithium-ion battery RUL models [33,34]. To address
this limitation, this paper introduces a multi-strategy improvement algorithm, the IHSSA,
which incorporates certain enhancements to the SSA.

In the SSA, individual sparrow positions are initially generated through random initial-
ization, which can result in an uneven distribution of sparrows in space. This non-uniform
distribution may, in turn, reduce the algorithm’s solution accuracy and increase the search
time. To mitigate the disruption caused by the inherent instability of the sparrow popula-
tion, this paper employs iterative chaotic mapping, ultimately enhancing the algorithm’s
accuracy in identifying high-quality locations.

Chaotic mapping is mathematical sequences characterized by high complexity and
unpredictability. The sequences exhibit properties such as nonlinearity, sensitive depen-
dence, and pseudo-randomness. Iterative chaotic mapping is a notable example of chaotic
mapping, and its expression is delineated in Equation (19):

xk+1 = sin(
aπ

xk
) (19)

x is the current iteration value and a ∈ (0, 1) is the control parameter. Iterative chaotic
mapping was used to initialize the location and fitness value of the sparrow population,
where a = 0.7 was set and the number of iterations was 200. The results are depicted
in Figure 3.
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In the SSA, when followers are in the majority, that is, (i > N/2), the global search
capability is relatively weak. This situation is further exacerbated by the constraints of the
search area’s boundaries, which can lead to clustering at the perimeter. Such clustering
results in reduced population diversity and makes it challenging to escape local optima,
thus hindering the algorithm’s search efficiency. To address this limitation, drawing
inspiration from the spiral operation employed in the whale optimization algorithm, this
paper introduces a variable spiral coefficient to the SSA. This addition allows for the
control of the search step and direction, reducing the number of individuals congregating
at the boundary. This, in turn, optimizes the utilization of the entire population space,
circumvents the pitfalls of local extreme values, and ultimately enhances the global search
performance of the SSA. The formula for the variable spiral coefficient is presented in
Equation (20):

H = a × cos(k × l × π),

a =

{
1, t < M

2 ,

e5l , otherwise,

l = 1 − 2 × t
M

(20)

H represents the variable spiral coefficient, where a is the parameter governing the
spiral control, initially set at 1 and gradually diminishing in subsequent iterations. The
parameter k denotes the spiral cycle, typically maintained at M/10, while l is a linearly
decreasing parameter from 1 to −1 over the course of iterations. The variable t signifies the
current iteration number, with M representing the maximum number of iterations.

Leveraging the insights derived from these considerations, coupled with Equations (17)
and (20), the follower’s position is adjusted, and the update formula is refined to Equation (21):

Xt+1
i,j =



cos(a × l × π)× exp(
Xt

worst−Xt
i,j

i2 ), i > N
2 and t < M

2

e5l × cos(a × l × π)× exp
(

Xt
worst−Xt

i,j
i2

)
, i > N

2 and t > M
2

Xt+1
p +

∣∣∣Xt
i − Xt+1

p

∣∣∣× A+ × L, otherwise

(21)

3.2. IHSSA-LSTM Prediction Model

The choice of hyperparameters for the LSTM model has a significant impact on the
prediction accuracy of the model. Existing hyperparameter selection generally adopts em-
pirical methods. Empirical methods are arbitrary and blind in parameter selection and lack
universality. Their prediction effects are unstable and cannot achieve the best prediction ef-
fect. Therefore, by combining multiple hyperparameters into a multi-dimensional solution
space, using Mean Square Error as the fitness function, and finding the information corre-
sponding to the global optimal fitness value to obtain the optimal parameter combination,
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the randomness and blindness of the parameter selection can be reduced. The selection
of multiple hyperparameters is often carried out at a larger solution speed, and a better
performance optimization algorithm is needed to quickly obtain the global optimal solution.
Therefore, the IHSSA with strong optimization ability and fast convergence speed is used
to optimize the hyperparameters of the LSTM model to make up for the shortcomings of
the LSTM model. By effectively obtaining the optimal parameter combination of prediction
effects through intelligent algorithms, the scientific nature of model parameter selection is
improved, thereby improving the predictive performance of the model. The specific steps
of the IHSSA-LSTM model are as follows:

(1) Divide the dataset into training and testing sets.
(2) Initialize the parameters in the SSA, such as the number of individuals in the popula-

tion N, the maximum number of iterations i_max, the proportion of discoverers in the
population, the proportion of sentinels in the population, the safety threshold, etc.

(3) Use chaotic iterative mapping to initialize the sparrow population.
(4) Use the Mean Square Error as the fitness function, calculate the fitness value of the

individual sparrows in the sparrow population, and obtain the optimal sparrow
fitness value and their positions.

(5) According to Equations (16), (18) and (21), update the positions of the producers,
followers, and sentinels, respectively.

(6) Select individuals based on the size of the fitness value and update the global optimal
fitness value.

(7) Repeat Step (4) until the termination condition is met. Output the position of the
optimal sparrow individual, that is, the best hyperparameter value, input the obtained
parameters into the LSTM model, and use the trained prediction model for prediction.

The primary steps of this model are as follows and the workflow is illustrated
in Figure 4.
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3.3. TCN Prediction Model

The TCN layer is composed of five convolutional modules, and each module consists
of the dilated causal conv layer, the weight normalization layer, the PReLU layer, the
dropout layer, and the residual connections. PreLU (Parametric Rectified Linear Unit), as
an activation function, is a variant of ReLU (Rectified Linear Unit). It introduces a learnable
parameter for negative input values, adaptively adjusting the shape of the activation
function, thus enhancing the model’s flexibility and learning capacity in handling nonlinear
issues. The definition of the PReLU activation function is as follows:

PReLU =

{
x, x > 0

ax, x ≤ 0 and 0 < a < 1
(22)
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Following these convolutional modules, a Squeeze-and-Excitation (SE) module is
incorporated. The SE module dynamically adjusts the weights of different channel features
based on the loss function, enhancing the network’s ability to recognize key information
from the input sequence and determine its priority. This improves the overall efficiency of
the TCN module. The summation operation (

⊕
) ensures that the tensors remain consistent.

The design of the TCN prediction model is illustrated in Figure 5.
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3.4. CEEMDAN-IHSSA-LSTM-TCN Prediction Model Workflow

In summary, the proposed prediction model based on CEEMDAN data preprocessing
and IHSSA-LSTM-TCN is designed to address challenges in lithium-ion batteries, such as
capacity regeneration and noise interference. The goal is to enhance the predictive capability
for the RUL of the batteries. After preprocessing the capacity data, the algorithm models
and predicts using different models for the two components, followed by integrating the
results to achieve the prediction of the RUL of lithium-ion batteries. This approach aims
to enhance the accuracy of predicting the RUL of lithium-ion batteries. The complete
workflow is illustrated in Figure 6, and the specific steps are outlined as follows:

(1) Applying the CEEMDAN to preprocess the normalized lithium-ion battery capacity
sequence, decomposition using sample entropy [35] results in three IMF components
(high-frequency components) and one residual sequence R (low-frequency component).

(2) Divide the data into training and testing sets.
(3) Employing the TCN model for forecasting the IMFs components and utilizing the

IHSSA-LSTM model for predicting the residual sequence R results in predictions for
the two respective components.

(4) Combining the predictions from the two components yields the final forecast for the
RUL of lithium-ion batteries.
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4. Experiments and Results Analysis
4.1. Introduction to the Experimental Dataset

To validate the accuracy of the proposed prediction method, lithium-ion battery
datasets from the National Aeronautics and Space Administration (NASA) and the Center
for Advanced Life Cycle Engineering (CALCE) at the University of Maryland were selected.
The NASA battery dataset includes experiments on four types of lithium-ion batteries:
B0005, B0006, B0007, and B0018. All batteries have a rated capacity of 2 Ah. The experiments
were conducted at room temperature (24 ◦C). During the charging process, a standard
charging method was used, with a constant current of 1.5 A until the maximum cut-off
voltage of 4.2 V was reached. Then, it switched to constant voltage charging until the
charging current dropped to 20 mA, indicating the end of the charging process. During
discharge, the constant current was 2 A, and when the voltage reached the respective
discharge cut-off voltages of 2.7 V, 2.5 V, 2.2 V, and 2.5 V for each of the four batteries, the
discharge ended. The CALCE dataset includes CS2_35, CS2_36, CS2_37, and CS2_38. These
batteries were also charged with a constant current rate of 0.5 ◦C until the battery voltage
reached 4.2 V, followed by a constant voltage mode until the battery current dropped
below 0.05 A. The discharge process was a constant current discharge of 0.05 A until the
voltage dropped to 2.7 V. Figure 7 depicts the capacity decline curves of the four sets
of batteries from NASA. Figure 8 depicts the capacity decline curves of the four sets of
batteries from CALCE.
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In battery experiments, it is generally accepted that the battery life is terminated
when its current capacity reaches 70% of its rated capacity. Since the capacity of the B0007
battery did not drop below 1.4 Ah in the original dataset, for experimental rigor, the failure
threshold for the B0007 battery was set at 1.5 Ah, while the other batteries were set at
1.4 Ah. In the dataset of CALCE, the failure threshold of the battery is 0.77 Ah.

4.2. Evaluation Metrics

To objectively measure the prediction model’s error, this study utilized Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) as evaluation metrics for the predic-
tion accuracy. They are defined as follows:

RMSE =

√
1
n

n

∑
t=1

(xt − x̂t)2

MAE =
1
n

n

∑
t=1

∥xt − x̂t∥

In the above equations, xt is the predicted capacity value and x̂t is the actual capacity
value. RMSE represents the square root of the ratio of the squared deviations between
the fitted data and the original data to the number of observations. MAE is the average
distance between the predicted values of the model and the true values of the samples.
Smaller values of RMSE and MAE indicate higher accuracy, better stability, and overall
better model quality.

4.3. Process of the Experiment

As can be seen from Figures 7 and 8, there are phenomena such as noise and capacity
regeneration in the battery capacity. In order to reduce the interference of these phenomena
on the data, CEEMDAN is used to decompose the capacity data. Taking the B0005 battery
and CS2_35 battery as examples, they are decomposed into multiple groups of high-
frequency signals and a group of residual signals, as shown in Figure 9.
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Figure 9. CEEMDAN decomposition of battery capacity data. (a) Decomposition of B0005;
(b) decomposition of CS2_35.

It can be observed that, after decomposition, the high-frequency signal is able to
retain the fluctuation information from the original signal. This is due to the capacity
regeneration phenomenon that occurs during the charging and discharging process of the
battery. Meanwhile, the residual signal constitutes a monotonically decreasing smooth
sequence, indicating the primary degradation trend of the battery capacity.

We utilize sample entropy to evaluate the effect of decomposition. Sample entropy is
an improved method based on approximate entropy to measure the complexity of a time
series. It measures the complexity of a time series by measuring the probability of new
changes in the signal. On the other hand, the calculation of sample entropy is independent
of the length of the data, thus it has good consistency for the sequence before and after. The
larger the sample entropy, the lower the stability and the higher the complexity of the time
series. Figure 10 shows the sample entropy of the modes after decomposition for the B0005
battery and CS2_35 battery. As can be seen, the sample entropy of the modes has obvious
differences and does not overlap, which indicates that the decomposition effect is good.
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The high-frequency component is utilized as the input for the TCN prediction model,
and the main parameters are presented in Table 1.

Table 1. Main parameters of TCN prediction model.

Modules Network In Channels Out Channels Dilation Factor

Module 1

1 × 9 Conv 1 64 1

1 × 9 Conv 64 64 1

1 × 1 Conv 1 64

Module 2

1 × 9 Conv 64 128 2

1 × 9 Conv 128 128 2

1 × 1 Conv 64 128

Module 3

1 × 9 Conv 128 256 4

1 × 9 Conv 256 256 4

1 × 1 Conv 128 256

Module 4

1 × 9 Conv 256 512 8

1 × 9 Conv 512 512 8

1 × 1 Conv 256 512

Module 5

1 × 9 Conv 512 1024 16

1 × 9 Conv 1024 1024 16

1 × 1 Conv 512 1024

SE
Full Connection 1024 512

Full Connection 512 1024

In the IHSSA-LSTM predictive model, the training parameters for the model are as
follows: the chaos mapping coefficient is set to 0.7, the sparrow population is 20, the
optimization dimension is 4, the finder alert threshold is 0.8, the finder ratio is 0.2, the scout
ratio is 0.2, the learning rate ranges from 0.001 to 0.1, and the number of iterations varies
between 10 and 100. Additionally, the number of nodes in the first hidden layer ranges
from 1 to 100, and the number of nodes in the second hidden layer also varies from 1 to 100.



World Electr. Veh. J. 2024, 15, 177 14 of 21

Taking battery B0005 and battery CS2_35 as examples, the prediction results of the
TCN predictive model and the IHSSA-LSTM predictive model for various decomposition
modes are shown in Figure 11.
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4.4. Experimental Results and Analysis

To validate the predictive performance of the proposed RUL model for lithium-ion
batteries, this study conducted multiple sets of comparative simulation experiments. In
these experiments, M represents the real data curve, M1 denotes the data curve obtained
using the model proposed in this paper, M2 represents the data curve obtained using
the EEMD-IHSSA-LSTM-TCN model, M3 stands for the data curve obtained using the
standalone TCN model, M4 is for the data curve obtained using the standalone LSTM
model, M5 represents the data curve obtained using the SSA-LSTM model, and M6 corre-
sponds to the data curve obtained using IHSSA-LSTM. The predicted starting points for
batteries B0005, B0006, B0007, and B0018 are 80, 80, 80, and 65, respectively. The prediction
results for the four battery models are shown in Figure 12, and the evaluation metrics are
presented in Table 2. Additionally, batteries CS2_35, CS2_36, CS2_37, and CS2_38 all have a
common starting point of 400, and their prediction results are illustrated in Figure 13, with
corresponding evaluation metrics listed in Table 3.
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Table 2. NASA battery evaluation metrics.

Number Metrics M1 M2 M3 M4 M5 M6

B0005

MAE (%) 0.816 1.242 2.607 3.681 2.232 1.898

RMSE (%) 1.114 1.599 2.637 3.741 2.538 1.988

Time (s) 74.65 73.42 15.86 12.69 23.57 17.86

B0006

MAE (%) 0.956 1.415 2.730 3.443 2.399 1.747

RMSE (%) 1.623 2.050 2.981 4.078 2.615 2.067

Time (s) 69.06 68.87 13.56 10.98 20.07 18.76

B0007

MAE (%) 0.690 1.035 2.022 2.606 1.522 1.450

RMSE (%) 1.005 1.483 2.225 2.918 1.636 1.996

Time (s) 72.41 73.98 14.93 11.52 21.65 19.25

B0018

MAE (%) 0.725 1.222 2.703 2.359 1.513 1.428

RMSE (%) 0.996 1.578 3.125 2.688 1.698 1.743

Time (s) 74.13 76.24 15.63 13.25 23.78 21.14
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Table 3. CALCE battery (400 predicted starting points) evaluation metrics.

Number Metrics M1 M2 M3 M4 M5 M6

CS2_35
MAE (%) 1.384 1.750 2.918 4.168 3.313 1.927

RMSE (%) 2.073 2.730 3.614 5.315 4.064 3.022

CS2_36
MAE (%) 1.295 1.433 5.799 5.229 2.700 1.948

RMSE (%) 1.520 1.753 6.780 5.784 3.262 2.383

CS2_37
MAE (%) 1.258 1.434 3.827 7.310 3.242 3.174

RMSE (%) 1.858 1.950 4.248 9.063 3.882 3.991

CS2_38
MAE (%) 1.408 1.551 5.463 7.373 2.704 2.008

RMSE (%) 2.082 2.224 6.425 8.591 3.478 2.571

From Figure 12, it can be observed that under the same conditions, the combined model
prediction curves of M1, M2, M5, and M6 can better fit the actual capacity degradation
curves compared to the single models M3 and M4. Within the combined models, M6
shows a slight improvement in prediction accuracy compared to M5, as the optimization
capability of the IHSSA algorithm is stronger than the SSA, allowing for more suitable
hyperparameters for LSTM. M2 exhibits higher prediction accuracy than M6, attributed
to the EEMD method, effectively decomposing noise and nonlinear features caused by
capacity recovery in the original battery capacity data, resulting in smoother input data
for time series prediction models. The highest prediction accuracy is achieved by the M1
model, thanks to CEEMDAN overcoming the reconstruction error introduced by the white
noise in EEMD.

Table 2 provides evaluation metric results for various models in the comparative
experiments. The maximum MAE for M2, M3, M4, M5, and M6 models are 1.415%, 2.730%,
3.681%, 2.399%, and 1.898%, respectively. The maximum RMSE values are 2.050%, 3.125%,
4.078%, 2.615%, and 2.067%, respectively. In contrast, the proposed M1 model achieves
a maximum MAE of 0.956% and a maximum RMSE of 1.623%. It is evident that the
proposed prediction model based on CEEMDAN data preprocessing and IHSSA-LSTM-
TCN demonstrates superior advantages in predicting the RUL of lithium-ion batteries.
However, due to modal decomposition, the time complexity of M1 and M2 models increases
significantly. This is because each decomposed modality undergoes training with a deep
neural network model. Encouragingly, M6 requires less time than M5, attributed to the
increased optimization speed after improving the sparrow algorithm.

From Figure 13, it can still be observed that the predictive curve of Model M1 fits
the actual curve more closely. In Table 3, the maximum MAE for models M2, M3, M4,
M5, and M6 are 1.750%, 5.799%, 7.373%, 3.313%, and 3.174%, respectively. The maximum
RMSE values are 2.730%, 6.780%, 9.063%, 4.064%, and 3.991%, respectively. In comparison,
the proposed Model M1 achieved a maximum MAE of 1.408% and a maximum RMSE
of 2.082%.

In order to comprehensively validate the effectiveness of the model proposed in
this paper, experiments were conducted on the CALCE dataset using different prediction
starting points. Figure 14 shows the prediction comparison chart for the CALCE dataset,
all with 300 as the prediction starting point. The evaluation metrics are shown in Table 4.

Table 4 provides evaluation metric results for various models in the comparative
experiments. The maximum MAE for M2, M3, M4, M5, and M6 models are 1.941%, 7.471%,
10.04%, 4.783%, and 4.249%, respectively. The maximum RMSE values are 3.161%, 8.766%,
11.68%, 5.203%, and 4.970%, respectively. In contrast, the proposed M1 model achieves
a maximum MAE of 1.706% and a maximum RMSE of 2.628%. At different prediction
starting points, due to the change in the ratio of the training set to the test set, the prediction
accuracy of other models fluctuates. However, it can be seen that the model proposed in
this paper still demonstrates good prediction accuracy.
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Table 4. CALCE battery (300 predicted starting points) evaluation metrics.

Number Metrics M1 M2 M3 M4 M5 M6

CS2_35
MAE (%) 1.533 1.673 3.160 5.261 2.765 1.974

RMSE (%) 2.588 2.598 4.109 6.957 3.769 3.370

CS2_36
MAE (%) 1.706 1.941 4.548 4.839 3.042 1.946

RMSE (%) 2.628 3.161 5.770 5.799 3.919 2.569

CS2_37
MAE (%) 1.008 1.373 5.105 10.04 4.783 4.249

RMSE (%) 1.479 1.444 5.627 11.68 5.203 4.970

CS2_38
MAE (%) 1.455 1.812 7.471 4.348 3.721 2.115

RMSE (%) 2.053 2.542 8.766 5.800 4.239 2.779

5. Conclusions

This study proposes a predictive model for the RUL of lithium-ion batteries based
on CEEMDAN data preprocessing and IHSSA-LSTM-TCN. Firstly, CEEMDAN is utilized
to decompose battery capacity data into high-frequency and low-frequency components.
Subsequently, an integrated TCN prediction model with SE is employed to predict the
high-frequency component, while the IHSSA-LSTM prediction model is used for the low-
frequency component. The final RUL prediction is obtained by combining the predictions
of these two components. Comparative experiments with multiple models demonstrate
that this approach achieves higher accuracy in predicting the RUL of lithium-ion batteries.
The key conclusions are as follows:
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(1) Utilizing the CEEMDAN to decompose lithium-ion battery capacity data into compo-
nents with distinct features reduces the impact of battery capacity regeneration and
noise on the prediction of RUL. Consequently, this diminishes prediction errors and
enhances prediction accuracy.

(2) Separating the IMF components into high-frequency and low-frequency portions
and employing specialized networks for targeted predictions enable effective cap-
ture of data features. The integration of predictions from both networks yields
more accurate RUL results, significantly enhancing the precision and stability of
the prediction method.

(3) By introducing iterative chaotic mapping and the variable spiral coefficient, the SSA
was optimized to enhance both local and global search capabilities. This optimization
led to an improvement in the ability to tune the hyperparameters of LSTM.

(4) On the NASA dataset and CALCE dataset, through comparisons with various other mod-
els, the proposed predictive model in this study demonstrated higher prediction accuracy.

(5) Due to the adoption of modal decomposition, and the method of predicting and
combining each decomposed mode separately, the prediction time has significantly
increased. Therefore, future efforts should be made to find more effective methods to
improve prediction accuracy, while reducing the prediction time of the model.
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Symbol comparison table
CALCE Center for Advanced Life Cycle Engineering
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RUL Remaining Useful Life
SSA Sparrow Search Algorithm
TCN Temporal Convolutional Network
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