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Abstract: Amidst the obesity and type II diabetes mellitus (T2DM) epidemics, glucagon-like peptide-1
receptor agonists (GLP-1RAs) stand out as a promising therapeutic ally, achieving notable success
in glycemic control and weight management. While GLP-1RAs’ positive clinical outcomes are com-
mendable, they introduce significant gastrointestinal (GI) challenges, emphasizing the pivotal role of
gastroenterologists in understanding and managing these implications. Physicians should be vigilant
of potential complications if endoscopy is indicated and considered. A protocol coined “The Three E’s:
Education, Escalation, and Effective Management” is essential as the first defense against GLP-1RA-
induced dyspepsia, necessitating routine GI consultations. Awareness and intervention of potential
aspiration due to GLP-1RA-induced gastroparesis are vital in clinical management. Furthermore,
the evolving recognition of GLP-1RAs’ beneficial effects on non-alcoholic steatohepatitis (NASH)
suggests gastroenterologists will increasingly prescribe them. Thus, a comprehensive understanding
of pharmacological properties and potential GI complications, including the undetermined cancer
risk landscape, becomes paramount. This review accentuates the nuances of GLP-1RA therapy
from a gastroenterological lens, juxtaposing the therapeutic potential, manageable side effects, and
circumstantial challenges, ensuring that GI specialists remain at the forefront of holistic care in obesity
and T2DM management.

Keywords: GLP-1RA; gastrointestinal side effects; weight control; T2DM; treatment approach;
endoscopy; overweight and obesity; digestive health; drug therapy; NASH

1. Introduction

Glucagon-like peptide-1 receptor agonists (GLP-1-RAs) are synthetic hormones signif-
icant in managing T2DM and obesity, offering marked reductions in blood sugar and body
weight with a minimal risk of hypoglycemia. As these drugs gain popularity in the U.S.
for their “shortcut to fitness” appeal, gastroenterologists must grasp their gastrointestinal
effects and broader implications. Prescribing physicians must be well informed about their
use, action, dosing, side effects, and management of complications to safely guide patients
who are attracted to this weight loss trend. Moreover, given the wide-reaching effects of
GLP-1-RAs due to the prevalence of receptors on various organs, they can contribute to
weight reduction and increased insulin sensitivity. Still, they may also cause unintended
side effects, including nausea and potential undetermined cancer risks. This review pro-
vides gastroenterologists with essential insights for managing these effects and ensuring
top-tier patient care.

2. Background

GLP-1 is an incretin hormone—a gut peptide secreted following the consumption of
nutrients and stimulates insulin secretion in response to hyperglycemia [1]. In patients
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with T2DM, this incretin effect is markedly reduced; hence, the role that GLP-1RAs play
in managing patients with significant insulin resistance is critical. The GLP-1 molecule
is secreted as a component of proglucagon from L cells in the distal ileum and colon; the
proglucagon is proteolytically cleaved via the action of various prohormone convertase
enzymes to form two active peptides, GLP-1 (7,26)-NH2, the most common form, and
GLP-1 (7-37) [2,3]. The half-life of GLP-1 is relatively short, reported as approximately two
minutes due to the degradative action of a serine aminopeptidase known as dipeptidyl-
peptidase-4 (DPP-4) as well as its rapid clearance through the kidneys, a consequence of
the GLP-1 molecule’s low molecular weight. For this reason, most GLP-1 analogs have
been designed to resist the degradative action of DPP-4, specifically: exenatide, liraglutide,
and semaglutide [3].

DPP-4 is the subject of several targeted pharmaceutical therapies, known as DPP-4
inhibitors, to prolong the duration of the effect of GLP-1-RAs [3]. The FDA acknowl-
edges several medications in this class, including sitagliptin, saxagliptin, linagliptin, and
alogliptin. These medicines are often available as single-ingredient formulations or com-
bined with other diabetes therapies, such as metformin [4]. Initially described as a T-cell
surface marker, DPP-4 has been found to exist in a soluble form that persists throughout the
gut, liver, lungs, and kidney, as well as peripheral blood, urine, and other body fluids [4].

The GLP-1 receptor exists within multiple organ systems. On the pancreas, activation
of GLP-1 receptors induces insulin release while suppressing glucagon; these glucose-
dependent responses are significantly associated with low risks for hypoglycemia. Other
systems that house GLP-1 receptors include the central nervous system (CNS) and gas-
trointestinal (GI) tract; stimulation of receptors in these regions produces effects involving
reduced appetite and decelerated gastric emptying, resulting in slower glucose absorp-
tion [5]. Within the CNS, the hindbrain contains GLP-1-Rs targeted by endogenous and
exogenous GLP-1 and analogs to control food intake. Experiments that involved direct
injection of GLP-1 into the hindbrain produced acutely reduced food intake, hunger, and
cravings and inhibited gastric emptying [6].

Building upon the foundational understanding of GLP-1, its rapid degradation by
DPP-4, and the consequential design of resistant GLP-1 analogs and DPP-4 inhibitors,
a nuanced exploration into the various GLP-1 receptor agonists (GLP-1RAs) available
is critical. Refer to Table 1, which offers a comprehensive overview of several notable
GLP-1RAs—highlighting key information regarding their approval, dosing, mechanism
of action, clinical studies, and utilization in diverse populations—thereby establishing a
thorough context for the ensuing discussion on their detailed applications, considerations,
and alternative therapeutic approaches.

Table 1. Overview of GLP-1 agonists: key information, clinical studies, and utilization in various
populations.

Drug Name Approval Date & Use(s) Dosing and
Administration

Key Precautions and
Side Effects

Clinical and
Post-Marketing

Use in Populations and
Conclusion

Albiglutide
(Tanzeum/Eperzan)
[7,8]

- 2014.
- Improves

glycemic control
in adults with
T2DM as an
adjunct to diet
and exercise.

- GlaxoSmithKline
(GSK) has
discontinued the
manufacture and
distribution of
Eperzan
worldwide since
July 2018.

- Weekly
administration;
any time of day;
with or without
meals.

- Starting dose: 30
mg; can increase
to 50 mg.

- If missed,
administer
within 3 days.

- Not
recommended as
first-line therapy
or for those with
pancreatitis
history.

- Serious
hypersensitivity,
thyroid C-cell
tumors,
hypoglycemia,
and renal
impairment.

- Side effects:
URTI, diarrhea,
nausea, and
injection-site
reaction.

- No evidence of
macrovascular
risk reduction.

- Reported adverse
reactions:
respiratory
infections,
diarrhea, nausea,
injection site
reactions, cough,
back pain,
arthralgia,
sinusitis, and
influenza.

- Contraindicated in
individuals with
medullary thyroid
carcinoma or MEN
syndrome type 2.

- Weigh benefits against
risks in pregnancy.

- Nursing mothers
should discontinue
nursing or the drug.

- No dosage
adjustment for renal
impairment;
monitoring advised.
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Table 1. Cont.

Drug Name Approval Date & Use(s) Dosing and
Administration

Key Precautions and
Side Effects

Clinical and
Post-Marketing

Use in Populations and
Conclusion

Dulaglutide
(Trulicity) [9]

- 2014.
- Adjunct for

glycemic control
in adults with
T2DM.

- Reduces risk of
major adverse
cardiovascular
events in adults
with T2DM and
cardiovascular
disease or risk
factors.

- Initiate at 0.75
mg
subcutaneously
once weekly.

- May increase to
1.5 mg, 3 mg, and
up to 4.5 mg once
weekly with at
least 4 weeks
between dose
increases.

- If missed,
administer if at
least 3 days until
the next dose.

- Can be taken any
time of day, with
or without food.

- Not for patients
with pancreatitis
history or severe
gastrointestinal
disease.

- Contraindicated
with medullary
thyroid
carcinoma or
MEN syndrome
type 2 history
and serious drug
hypersensitivity.

- Side effects:
nausea, diarrhea,
vomiting,
abdominal pain,
and decreased
appetite.

- Pancreatitis,
hypoglycemia
with insulin
secretagogues or
insulin, serious
hypersensitivity,
acute kidney
injury, and
gastrointestinal
reactions
reported.

- Diabetic
retinopathy
complications
seen in
cardiovascular
outcomes trial.

- Use in pregnancy only
if the benefit
outweighs fetal risk.

- May delay gastric
emptying, affecting
oral medication
absorption.

Exenatide
(Byetta/Bydureon)
[10]

- 2005.
- Improves

glycemic control
in adults with
T2DM as an
adjunct to diet
and exercise.

- Inject
subcutaneously
within 60 min
before morning
and evening
meals (or two
main meals; at
least 6 h apart).

- Starting dose: 5
mcg twice daily.

- Increase to 10
mcg twice daily
after 1 month
based on
response.

- Not a substitute
for insulin; avoid
in type 1 diabetes
or diabetic
ketoacidosis.

- Not
recommended
with insulin.

- Not for patients
with pancreatitis
history or severe
GI disease.

- Possible side
effects: nausea,
hypoglycemia,
vomiting,
diarrhea,
jitteriness,
dizziness, and
headache.

- No established
macrovascular
risk reduction.

- Reports of
pancreatitis,
hypoglycemia
with
sulfonylureas,
renal issues,
hypersensitivity,
and increased
INR with
warfarin.

- Use with caution in
moderate renal failure,
renal transplantation,
and severe GI disease.

- Weigh benefits against
risks in pregnancy
and nursing mothers.

Liraglutide
(Victoza, Saxenda)
[11,12]

- Victoza (2010):
Improves
glycemic control
in adults with
T2DM; reduces
cardiovascular
event risk.

- Victoza: 0.6 mg
daily, increasing
to 1.2 mg and
possibly 1.8 mg;
once daily, at any
time, without
regard to meals.

- Victoza: Not for
type 1 diabetes or
diabetic
ketoacidosis; con-
traindications
include
medullary
thyroid
carcinoma, MEN
syndrome type 2,
and serious
hypersensitivity.
Common side
effects: nausea,
diarrhea,
vomiting,
decreased
appetite,
dyspepsia, and
constipation.

- Victoza: Risks
include thyroid
C-cell tumors,
pancreatitis,
hypoglycemia
with insulin,
renal
impairment,
hypersensitivity,
and gallbladder
disease.

- Increased risk of
worsening
diabetic
retinopathy

- Victoza: No renal
dose adjustment;
consider risks in
pregnancy; may delay
gastric emptying
affecting oral
medication
absorption.
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Table 1. Cont.

Drug Name Approval Date & Use(s) Dosing and
Administration

Key Precautions and
Side Effects

Clinical and
Post-Marketing

Use in Populations and
Conclusion

Liraglutide
(Victoza, Saxenda)
[11,12]

- Saxenda (2010):
Chronic weight
management for
adults with
obesity or
overweight with
weight-related
comorbidity.

- Saxenda: Start at
0.6 mg daily,
increasing
weekly to 3 mg;
once daily, at any
time, without
regard to meals.

- Saxenda: Not for
T2DM treatment;
contraindica-
tions similar to
Victoza.
Common side
effects: nausea,
hypoglycemia,
diarrhea,
constipation,
vomiting,
headache,
decreased
appetite,
dyspepsia,
fatigue, dizziness,
abdominal pain,
and increased
lipase.

- Saxenda: Risks
include thyroid
C-cell tumors,
pancreatitis,
gallbladder
disease,
hypoglycemia
with insulin
secretagogues,
increased heart
rate, and renal
impairment.

- Saxenda:
Contraindicated in
pregnancy and
nursing; pediatric
safety not established;
similar effects on
gastric emptying.

Lixisenatide
(Adlyxin) [13,14]

- 2016.
- Adjunct for

glycemic control
in adults with
T2DM.

- Begin with 10
mcg once daily
for 14 days, and
then increase to
20 mcg once
daily.

- Administer
within one hour
before the first
meal of the day.

- Subcutaneous
injection in the
abdomen, thigh,
or upper arm.

- Avoid in patients
with chronic
pancreatitis, type
1 diabetes,
diabetic
ketoacidosis, or
gastroparesis.

- Hypersensitivity
to Adlyxin
components
possible,
including
anaphylaxis.

- Watch for
pancreatitis,
hypoglycemia
(with
sulfonylurea or
insulin), acute
kidney injury,
and
immunogenicity.

- Common
adverse reactions:
nausea, vomiting,
headache,
diarrhea,
dizziness, and
hypoglycemia.

- No demonstrated
macrovascular
risk reduction
with Adlyxin.

- Not for end-stage
renal disease patients.

- Use in pregnancy only
if benefit outweighs
fetal risk.

- May delay gastric
emptying, affecting
oral medication
absorption.

- Oral contraceptives
should be taken 1 h
before or 11 h after
Adlyxin.

Semaglutide
(Ozem-
pic/Rybelsus/
Wegovy) [14]

- Ozempic (2017):
Adjunct for
glycemic control
in adults with
T2DM.

- Ozempic: Start at
0.25 mg weekly,
and increase to
0.5 mg and
possibly to 1 mg.
Administer once
weekly, at any
time, with or
without meals.

- Ozempic: Avoid
as first-line
therapy for diet
and exercise
control failure;
not for type 1
diabetes or
diabetic
ketoacidosis.

- Ozempic:
Reports of
pancreatitis,
diabetic
retinopathy; no
established
macrovascular
risk reduction.

- Ozempic: Women
should discontinue 2
months before a
planned pregnancy.
Monitor for
hypoglycemia, acute
kidney injury, and
hypersensitivity.

- Wegovy (2020):
Adjunct for
chronic weight
management in
adults and
pediatric patients
12+ with obesity.

- Wegovy: For
adults, start at
0.25 mg weekly,
and increase to
2.4 mg
(recommended)
or 1.7 mg.
Pediatric
maintenance
dose: 2.4 mg
weekly.
Administer once
weekly, at any
time, with or
without meals.

- Wegovy: Do not
use with MTC,
MEN2 history, or
known
semaglutide
hypersensitivity.
Not for
concurrent GLP-1
receptor agonist
use.

- Wegovy: Reports
of pancreatitis,
gallbladder
disease; not
studied in
patients with a
history of
pancreatitis.

- Wegovy: Discontinue
during pregnancy and
2 months prior due to
long half-life. Monitor
for hypoglycemia,
acute kidney injury,
hypersensitivity,
diabetic retinopathy
complications,
increased heart rate,
suicidal behavior, and
ideation.
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3. Exploring the Multifaceted Impact of GLP-1RAs: Beyond Glycemic Control
3.1. Weight Reduction

Compared to placebo, GLP-1-RAs have demonstrated significant reductions in body
weight, with studies reporting reductions between 2.1 and 8.4 kg over as many as 56 weeks
using liraglutide, semaglutide, or efpeglenatide in various dosages [15–20]. The effects of
GLP-1-RAs on body weight reduction have been well established in studies, contributing
to their widespread adoption. In addition to the aforementioned effects that GLP-1-RAs
have on insulin and glucagon release and modulating appetite through gastroparesis,
rodent studies have also postulated a secondary effect of increased energy expenditure.
The treatment of rodents with GLP-1-RAs was shown to excite CNS pathways, resulting
in activation of brown adipose tissue (BAT), increasing BAT temperature, and increasing
energy expenditure to decrease body weight and adiposity; selective knockout of the GLP-1
receptor produced the opposite effect, with resultant increases in body weight and adiposity.
However, preclinical studies have confirmed that this mechanism of body weight reduction
is secondary to the effects of reduced food intake and inhibited gastric emptying and may
not be a clinically significant means of weight loss [6].

The resultant abatement in food intake and the inherent incretin effects of GLP-1-RAs
lead to a decrease in blood glucose. However, different formulations of GLP-1 analogs will
exhibit varying degrees of fasting blood glucose and postprandial hyperglycemia. Results
have shown that shorter-acting GLP-1-RAs generally have a half-life of 2–5 h and have
relatively modest decreases in fasting blood glucose with relatively substantial decreases
in postprandial hyperglycemia. In contrast, longer-acting GLP-1-RAs have half-lives of
12 h and produce relatively substantial decreases in fasting blood glucose with relatively
modest reductions in postprandial hyperglycemia; both types of GLP-1-RAs were equally
efficacious in reducing body weight by 2–5 kg on average. Long-acting GLP-1-RAs appear
to act identically to endogenous GLP-1 by decreasing body weight through its action on the
CNS, while short-acting GLP-1RAs primarily exert blood glucose control via the inhibition
of gastric motility to delay glucose absorption, consequently moderating the release of
postprandial insulin [3].

Thus, GLP-1RAs demonstrate flexibility in various treatment strategies, asserting their
utility as integral to individualizing weight loss and hyperglycemia management. Recent
findings suggest that in overweight and obese adults, a combination of GLP-1-RAs and
phentermine-topiramate are the best drugs to reduce body weight, with semaglutide being
the most effective [3].

3.2. Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)
have recently increased in prevalence, most likely secondary to the increase in T2DM
and metabolic syndrome. As insulin resistance is a primary driver in the development of
NAFLD and NASH, applying GLP-1-RA therapy to increase insulin sensitivity is vital in
decreasing steatosis and improving liver histology, ameliorating the pathogenesis of these
diseases [3].

Studies on the acute use of exenatide and other GLP-1-Ras reveal that treatment
reduces hepatic glucose production in healthy individuals and overall decreases de novo
lipogenesis within hepatic tissue, the liberation of free fatty acids through lipolysis, and
toxic metabolites derived from triglycerides [3]. In a double-blind, randomized, placebo-
controlled trial, fourteen patients were randomized to 1.8 mg liraglutide or placebo for
12 weeks. The patients had a definitive diagnosis of NASH on a liver biopsy within six
months of the study and were between 18 and 70 years old. The study’s results showed that
treatment with liraglutide was associated with improved metabolic dysfunction, insulin
resistance, and lipotoxicity. Throughout the study, several biochemical parameters were
assessed, including liver biochemistry, inflammatory markers, hepatic and systemic insulin
sensitivity, lipolysis, hepatic de novo lipogenesis, and hepatic steatosis—all of which
showed improvement following the administration of liraglutide [21]. The 12-week study
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concluded that treatment with liraglutide successfully resolved problems associated with
metabolic dysfunction, insulin resistance, and lipotoxicity related to the development of
NASH, with great potential for modifying the disease course. Detailed insights from this
and related trials have been summarized in Table 2, which comprehensively compares
outcomes and metrics studied across various clinical trials focusing on GLP-1Ras and their
role in NAFLD and NASH [22].

Another randomized trial compared treatment with 3 mg liraglutide with a supervised
program of dieting and moderate-intensity aerobic exercise in obese patients with NAFLD
diagnosed using MRI and without any other causes of hepatic steatosis. After 26 weeks of
treatment, both groups presented with significant and similar reductions in weight, liver fat
fractions, and liver stiffness, as well as serum C-reactive protein, alanine aminotransferase,
and aspartate aminotransferase. The comparable effects of liraglutide to a structured
lifestyle modification program illustrate its efficacy in tempering the liver pathologies
associated with NAFLD; a combination of both liraglutide and exercise results in enhanced
maintenance of weight loss, abdominal fat, and inflammatory markers than either treatment
alone [23,24].

However, while GLP-1-Ras have been shown to reduce liver steatosis through their
actions on body mass effectively, GLP-1-Rs have thus far not been identified on key cells
implicated in the generation of liver fibrosis, namely hepatocytes, Kupffer cells, and hepatic
stellate cells [24]. In patients with NAFLD, the hallmark mechanism that drives disease
development is de novo lipogenesis within the liver. The primary enzyme controlling this
process is ATP citrate lyase (ACLY). In mouse studies, ACLY inhibitors such as bempedoic
acid reduced liver steatosis, hepatocellular ballooning, lobular inflammation, and liver
fibrosis. This antifibrotic effect appears to result from active suppression of lipogenesis
and inhibition of transforming growth factor-beta (TGF-beta)-induced proliferation and
activation by bempedoic acid. Furthermore, bempedoic acid produced marked antifibrotic
effects independent of reductions in steatosis in select strains of mice with NASH without
obesity or insulin resistance. Considering these results, the experiments imply that the
therapeutic effects of ACLY inhibitors and GLP-1-Ras are independent and distinct [24].

Table 2. Effects of GLP-1Ras on hepatic outcomes in NASH and T2DM patients.

Year & Study Author Participants & Condition Type of Study Drug & Outcomes

2009;
Jendle et al.

[25]

314 T2DM patients, 18–80 years, BMI
≤ 40 kg/m2 (LEAD-2), ≤45 kg/m2

(LEAD-3), HbA1c 7.0–11.0%

Randomized, double-blind, and
parallel-group trials (LEAD-2 and

LEAD-3), where the reduction in fat
mass and hepatic steatosis was a

primary outcome.

Liraglutide 1.8 mg/metformin: Significant increase
in liver-to-spleen attenuation ratio, indicating

reduced hepatic steatosis.

2015; Tang et al.
[26]

35 T2DM patients inadequately
controlled on metformin monotherapy

or combination

Randomized study; insulin vs.
liraglutide effects on liver fat were the

primary outcome.

Insulin: Improved glycated hemoglobin (7.9% to
7.2%, p = 0.005), decreased liver MRI-PDFF (13.8%
to 10.6%, p = 0.005), liver volume, and total liver fat
index (304.4 vs. 209.3%·mL, p = 0.01). Liraglutide:

Improved glycated hemoglobin (7.6% to 6.7%,
p < 0.001), no significant change in liver MRI-PDFF,

liver volume, or liver fat index.

2015; Eguchi et al.
[27]

27 subjects with NASH and glucose
intolerance, post lifestyle modification

intervention.

Prospective, uncontrolled study; the
impact on histological findings in
NASH was a primary outcome.

After 24 weeks of liraglutide treatment at
0.9 mg/body per day, 19 subjects showed

significant improvements in body mass index,
visceral fat accumulation, aminotransferases, and
glucose abnormalities. Six subjects who continued

liraglutide for 96 weeks showed a decrease in
histological inflammation as determined by NASH

activity score and stage as determined by Brunt
classification without significant adverse events.

2016; Armstrong et al.
[28]

52 overweight patients with clinical
evidence of non-alcoholic

steatohepatitis.

Multicentre, double-blinded,
randomized, placebo-controlled phase

2 trial; resolution of non-alcoholic
steatohepatitis without worsening in

fibrosis was a primary outcome.

1.8 mg daily of liraglutide led to a resolution of
definite non-alcoholic steatohepatitis in 39% of

patients, compared with 9% in the placebo group
(relative risk 4.3 [95% CI 1.0–17.7]; p = 0.019). A
total of 2 (9%) of 23 patients in the liraglutide

group versus 8 (36%) of 22 patients in the placebo
group had fibrosis progression. Adverse events

were mostly mild to moderate, with
gastrointestinal disorders being more common in

the liraglutide group.
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Table 2. Cont.

Year & Study Author Participants & Condition Type of Study Drug & Outcomes

2016; Dutour et al.
[29]

44 obese subjects with T2DM
uncontrolled on oral antidiabetic

drugs.

Prospective randomized clinical trial;
hepatic and epicardial fat reduction

was a primary outcome.

Exenatide treatment resulted in significant weight
loss (−5.3 ± 0.4 kg; p = 0.001 for the difference
between groups) and a decrease in epicardial

adipose tissue (EAT) (−8.8 ± 2.1%) and hepatic
triglyceride content (HTGC) (−23.8 ± 9.5%),

compared with the reference treatment (EAT: +1.2
± 1.6%; HTGC: +12.5 ± 9.6%; p = 0.003 and

p = 0.007, respectively). No significant change in
myocardial triglyceride content (MTGC) was

observed.

2016; Armstrong et al. [21] 14 NASH patients

Double-blind, randomized,
placebo-controlled trial; the effect on

insulin sensitivity, hepatic lipid
handling, and adipose dysfunction

was a primary outcome.

Liraglutide treatment led to a reduction in BMI
(−1.9 vs. +0.04 kg/m2; p < 0.001), HbA1c (−0.3 vs.
+0.3%; p < 0.01), LDL cholesterol (−0.7 vs. +0.05
mmol/L; p < 0.01), and ALT (−54 vs. −4.0 U/L;

p < 0.01). It also increased hepatic insulin
sensitivity and decreased endogenous glucose
production (p < 0.05), increased adipose tissue

insulin sensitivity (p < 0.05), and inhibited lipolysis
and de novo lipogenesis (both p < 0.05) in vivo and

in primary human hepatocytes.

2017; Seko et al.
[30]

15 biopsy-proven NAFLD patients
with T2DM refractory to diet

intervention.

Retrospective study; the effectiveness
of dulaglutide in NAFLD patients with
T2DM was the main focus, implying it

was a primary outcome.

Dulaglutide (0.75 mg for 12 weeks) significantly
reduced body weight, hemoglobin A1c,

transaminase activities, total body fat mass, and
liver stiffness.

2017;
Khoo et al. [23]

Non-diabetic Asian adults with
NAFLD; BMI ≥ 30 kg/m2, mean

weight 96.0 ± 16.3 kg

Randomized study; comparing
liraglutide and lifestyle intervention on

NAFLD was a primary outcome.

Both the liraglutide group (3 mg daily) and the
diet/exercise group saw similar and significant

weight reductions (−3.5 ± 3.3 kg vs. −3.5 ± 2.1 kg,
respectively, p = 0.72) and liver fat fraction
decreases (−8.9 ± 13.4% vs. −7.2% ± 7.1%,

p = 0.70). Changes in serum alanine
aminotransferase (−42 ± 46 vs. −34 ± 27 U/L,

p = 0.52) and aspartate aminotransferase (−23 ± 24
vs. −18 ± 15 U/L, p = 0.53) were not statistically

significant.

2019; Newsome et al.
[31]

Subjects with obesity and/or T2DM at
risk of NAFLD.

Data from a 104-week cardiovascular
outcomes trial and a 52-week weight
management trial; effect on alanine

aminotransferase (ALT) and
high-sensitivity C-reactive protein

(hsCRP) as primary outcomes.

In the weight management trial of patients with
elevated baseline ALT, semaglutide led to
end-of-treatment ALT reductions of 6–21%

(p < 0.05 for doses ≥0.2 mg/day) and hsCRP
reductions of 25–43% vs. placebo (p < 0.05 for 0.2

and 0.4 mg/day). Normalization of elevated
baseline ALT occurred in 25–46% of weight

management trial subjects vs. 18% on placebo. In
the cardiovascular outcomes trial, no significant

ALT reduction was noted at 0.5 mg/week. A
reduction was observed at this dose at week 30 but
was not sustained to week 56, while a 9% reduction
vs. placebo was seen at 1.0 mg/week (p = 0.0024).

2020; Teshome et al. [32] 590 participants with non-alcoholic
fatty liver disease (NAFLD).

Systematic review; the study compiled
data from randomized controlled trials,

single-arm trials, and cohorts.

GLP-1 analogs led to decreased serum
transaminases, improved liver histology and
insulin resistance, reduced body weight, and

normalized liver enzymes. Specifically, ALT, AST,
and GGT decreased by 5.5%, 59.5%, 52.8%, and

44.8%, respectively, and there was a reduction in
proinflammatory cytokines and an enhancement of

protective adipokines noted in some studies.

3.3. Neurodegenerative Applications of GLP-1RAs

GLP-1RAs present promising therapeutic avenues for counteracting neurodegener-
ative diseases by leveraging endocrine–neural interactions. These receptors, including
GLP-1R, GIPR, and GcgR, are intricately woven into various anti-inflammatory path-
ways and have been shown to alleviate neural degradation and inflammation associated
with Alzheimer’s and Parkinson’s diseases (AD and PD) [33–38]. Notably, GLP-1 and its
metabolites have demonstrated improvements in AD and PD pathologies under experi-
mental conditions, with GLP-1A playing a vital role in ameliorating motor and emotional
aspects of PD as well as enhancing glucose metabolism in the brain, relevant to AD man-
agement [3,33,39,40]. Furthermore, mouse models have showcased GLP-1R activation’s
potential in improving neuroinflammation, neurogenesis, and synaptic plasticity while
also counteracting inflammatory, oxidative, and apoptotic pathways in PD [3]. Despite
these promising findings, translating these results to clinical practice requires further
investigation in human studies.
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3.4. Cardiovascular Implications of GLP-1RAs

Transcending their neural applications, GLP-1RAs render cardiovascular benefits,
particularly in the context of T2DM and obesity. Trials spotlight a noteworthy reduction
in cardiovascular events with GLP-1RAs, a promise grounded in preclinical and clinical
landscapes [6].

Specifically, Albiglutide and Efpeglenatide have demarcated their potential to reduce
major adverse cardiovascular events (MACEs) in individuals with T2DM, even while
achieving only moderate weight loss [6]. It is imperative to recognize that although
preclinical findings affirm the cardioprotective capabilities of GLP-1RA in animals with
obesity absent diabetes, a thorough extrapolation to human circumstances, particularly in
non-diabetic environments, demands additional scrupulous research [6].

4. GLP-1RA-Associated Side Effects and Potential Concerns

The adverse effects and concerns associated with GLP-1RA therapy encompass a
vast spectrum, ranging from gastrointestinal disturbances to potential oncological implica-
tions. To encapsulate these varied effects, we present a comprehensive figure detailing the
multifaceted ramifications of GLP-1RA use (Figure 1).
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Figure 1. Overview of GLP-1RA-associated side effects and potential concerns. The figure elucidates
the various side effects and concerns linked with GLP-1RA administration. Depicted are the primary
areas of impact, including gastrointestinal, facial, oncological, renal, glycemic, dermatological, pan-
creas, cardiovascular, allergenic, and immune responses, and musculoskeletal implications. Each
segment details specific conditions or responses that may arise due to GLP-1RA treatment. This
comprehensive overview presents a visual summary of the multifaceted interactions of GLP-1RAs
within the human body.
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4.1. Gastrointestinal Impact of GLP-1 Receptor Agonists

Clinical investigations into GLP-1RAs ubiquitously report gastrointestinal distur-
bances as a principal side effect, significantly embodying nausea and diarrhea and, to a
lesser extent, vomiting, constipation, abdominal pain, and dyspepsia [41–44]. The onset
of such side effects predominantly emerges conspicuously during the initiation and up-
titration of treatment, demonstrating a potential dose- and class-effect dependency, with
nausea disturbing up to 50% of patients [45–47]. The delay in gastric emptying and peaks of
the GLP-1 effect with short-acting formulations have been hypothesized as causative agents
for the pervasiveness of nausea [48,49]. Notably, gastrointestinal side effects, particularly
constipation, may linger despite a general attenuation over time and are seemingly less
frequent with long-acting GLP-1RAs [6,47].

Gastrointestinal (GI) disturbances are common adverse effects associated with semaglu-
tide. In phase 3 trials, subcutaneous semaglutide induced nausea in 11.4 to 20%, vomiting
in 4 to 11.5%, and diarrhea in 4.5 to 11.3% of patients [50–53]. The incidence of GI distur-
bances was higher in the SUSTAIN 6 trial, which included older patients with comorbid
conditions [53]. For oral semaglutide, the occurrence rates were 5.1 to 23.2% for nausea, 2.9
to 9.9% for vomiting, and 5.1 to 15% for diarrhea during the on-treatment period [54–56]. In
a phase 2 trial, the total amount of GI disturbances was similar for oral and subcutaneous
semaglutide (56% vs. 54%), with nausea occurring in 34% vs. 32%, vomiting in 16% vs.
9%, and diarrhea in 20% vs. 14% [57]. Higher doses of semaglutide are associated with
more frequent GI adverse effects, which has led to the recommendation of a dose escalation
scheme starting with a low dose [57]. GI complaints are the primary adverse-event-related
cause of drug discontinuation in phase 3 trials, with rates up to 12%. Approximately 10%
of patients will discontinue semaglutide because of GI complaints, which may be slightly
higher than other GLP-1 analogs [58].

The analysis of GLP-1 dose groups revealed a significant increase in the likelihood
of experiencing nausea, vomiting, and diarrhea compared to placebo and conventional
treatment (CT). Exenatide 10 µg twice daily (EX10BID) exhibited the highest odds ratio
(OR) and incidence for nausea (OR 2.89–6.10, 37.13%) and vomiting (13.13%), significantly
surpassing placebo (nausea 9.36%; vomiting 2.01%). A dose–response relationship was
observed for nausea and vomiting, with EX10BID posing the highest risk. The risk of both
nausea and vomiting decreased for 26 weeks. For diarrhea, all GLP-1 dose groups had
a significantly worse impact than placebo and CT, with the highest incidences observed
in liraglutide 1.8 mg once daily (LIR1.8, 12.52%), exenatide 2 mg once weekly (EX2QW,
12.09%), and liraglutide 1.2 mg once daily (LIR1.2, 11.94%) [59].

In a study of 1842 patients with T2DM (T2D), participants were divided into three
groups to receive different doses of dulaglutide: 1.5 mg, 3.0 mg, and 4.5 mg [60]. The
3.0 mg and 4.5 mg doses were more effective in lowering HbA1c than the 1.5 mg dose.
Gastrointestinal (GI)-related symptoms like nausea, diarrhea, and vomiting were the
most common treatment-emergent adverse events (TEAEs) [60]. The highest incidence
of new-onset GI symptoms occurred within the first two weeks of initiating the 0.75 mg
dose, declining by over 50% afterward. Most GI TEAEs were mild, with less than 1% of
participants experiencing severe events. Few patients discontinued the study drug due to
GI adverse events (1.4% for nausea, 0.7% for vomiting, and 0.7% for diarrhea). Significant
interactions were observed between female and male subgroups concerning nausea and
diarrhea, with females experiencing higher incidences of nausea across all dose groups and
males demonstrating higher incidences of nausea and diarrhea in the 3.0 mg and 4.5 mg
groups compared to the 1.5 mg group [61].

Patients experiencing GI disturbances can be counseled to eat slowly with reduced
portions per meal, avoid high-fat foods, and consider anti-emetic therapy. However, long-
term data are unavailable for the latter [62]. The mechanisms behind nausea/vomiting
and diarrhea induced by GLP-1RAs are incompletely understood but may include effects
on gastric emptying, the central nervous system, nutrient absorption, and intestinal motil-
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ity [63–69]. Furthermore, nausea induced by GLP-1RAs is linked to weight loss in some
studies, although the relationship is not consistent across all trials [67–69].

4.2. Pancreatic Concerns

GLP-1RAs have insinuated concerns regarding pancreatic integrity. Animal studies
and clinical evaluations illustrating elevated pancreatic enzymes have spotlighted potential
inflammatory responses and pancreatitis [70–75]. Despite these apprehensions, numerous
studies and meta-analyses have contested establishing a direct causative relationship
between GLP-1RAs and pancreatitis, presenting a nuanced perspective on its pancreatic
safety [76–78].

Concerns about the possible association between GLP-1-RAs and neoplasm emergence
have prompted investigators to research the incidence of thyroid and pancreatic neoplasms
amongst patients being treated with GLP-1-RAs. A 2011 analysis of FDA databases from
2004 to 2009 found that while both the FDA and EMA assert that concerns of a causal
association between incretin-based drugs and pancreatic cancer are inconsistent with
current data, thyroid and pancreatic cancer were reported more frequently in patients
treated with exenatide than with rosiglitazone [79].

A real-world study by Yang et al. (2022) [4] utilized data from the FDA Adverse
Event Reporting System (FAERS) between 2004 and 2021 and found that the proportional
reporting ratios (PRRs) for malignant pancreatic neoplasms related to GLP-1-RA therapy
were greater than 2. The PRR compares the ratio of neoplasms formed under therapy
with GLP-1-RAs with those formed under comparator therapy; PRRs equal to one signify
that GLP-1RA-associated neoplasms were reported as frequently as comparator-associated
neoplasms.

The study found that in cases with malignant pancreatic neoplasms, about half of
these cases were associated with the combination use of GLP-1-RAs with DPP-4 inhibitors;
the PRR tended to increase when this combination therapy was utilized. It is proposed that
using DPP-4 inhibitors significantly prolongs the half-life of GLP-1-RAs, allowing enhanced
β-cell proliferation, inhibiting apoptosis, and increasing the risk of tumor formation.

4.3. Concern for Thyroid Neoplasms

While studying the incidence of pancreatic neoplasms, Yang et al. (2022) found that
the PRRs for benign and malignant thyroid neoplasms associated with GLP-1-RAs were
greater than three and five, respectively.

Proposed explanations for this apparent increase in PRR for thyroid neoplasms obfus-
cate the strength of the association between GLP-1-RA therapy and neoplasm formation.
Amongst patients with thyroid neoplasms, Synthroid was the second most common com-
bined drug identified, suggesting that these patients were being treated for hypothyroidism.
A 2020 meta-analysis reported that hypothyroidism was associated with a higher risk of
thyroid cancer within the first 10 years of follow-up. In addition, the International Agency
for Research on Cancer (IARC) found that increased screening for thyroid cancer has
directly resulted in an increased incidence of thyroid cancer across 25 countries. This is
further compounded by the FDA’s issue of a warning that GLP-1-RA use may increase the
risk of medullary thyroid cancer, causing reporters to attribute more thyroid cancers to
GLP-1-RA use and patients undergoing GLP-1-RA treatment to proactively seek thyroid
ultrasounds, resulting in increased detection of thyroid neoplasms [4].

Meanwhile, the PRR for other neoplasms, including respiratory and mediastinal,
breast, most male and female reproductive, bone and skin soft tissue, nervous system,
ocular, and hematologic, was less than 1 [4].

4.4. Cardiovascular Implications

In the cardiovascular domain, GLP-1RAs have not denoted an elevation in cardio-
vascular events; nevertheless, a subtle but potentially clinically pertinent augmentation
in heart rate has been associated with their administration [80–84]. Selected GLP-1RAs,
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including exenatide, liraglutide, and albiglutide, have not manifested significant alterations
in the QTc interval, offering a degree of cardiovascular reassurance [85].

4.5. Endocrinological and Glycemic Considerations

GLP-1RAs, when co-administered with metformin, do not exacerbate clinically rele-
vant hypoglycemic events [86–88]. Contrastingly, their combination with sulphonylurea
or insulin reveals a noticeable increment in hypoglycemic incidences, attributed to the
potential uncoupling of GLP-1’s insulinotropic effect from its glucose dependence [89–91].
This underscores the advisability of modulating sulphonylurea or insulin dosages upon
GLP-1RA initiation [92].

4.6. Allergenic and Immune Responses

Diverging into the immunogenic milieu, GLP-1RAs and synthetic peptides can engen-
der antibody formation, presenting a spectrum of immunogenicity [93–97]. Despite the
perceivable risk of hypersensitivity, re-exposure to agents such as exenatide did not ele-
vate hypersensitivity occurrences [98]. Although rare, severe anaphylactic responses have
been documented in post-marketing, stipulating prudent monitoring and management of
hypersensitivity phenomena [93–95].

4.7. Musculoskeletal Implications

A notable dichotomy exists between various GLP-1RAs regarding skeletal impacts,
where liraglutide demonstrates a risk reduction for bone fractures, whereas exenatide
evidences an elevation in such risk [99]. Comparatively, studies involving exenatide twice
daily and insulin glargine once daily exhibited no substantial modulation in bone mineral
density or select serum markers [100].

4.8. Dermatological Implications

GLP-1 receptor agonists (GLP-1RAs) manifest dermatological side effects predom-
inantly at injection sites, with common occurrences of rash, erythema, and itching, par-
ticularly with long-acting formulations [93,96,97,100]. Exenatide once weekly has been
associated with the emergence of small, transient bumps, while isolated reports connect it
with panniculitis and other dermatological issues like hyperhidrosis, alopecia, and certain
rashes [93,100,101].

4.9. Renal Concerns

The intersection between GLP-1RAs, notably exenatide, and renal functionality has
been scrutinized, with correlations drawn to acute kidney injury, often propelled by side
effects like nausea, vomiting, and dehydration [102,103]. Detailed renal examinations have
unearthed ischemic glomeruli and diabetic nephropathy [104], with other potential contrib-
utors being GLP-1-induced natriuresis and diminished renal perfusion [105]. Nevertheless,
contrasting analyses have deemed renal issues as seldom and not distinctively divergent
from comparators [106,107]. Practitioners must heed acute renal failure risks, especially in
volume contraction scenarios [102].

4.10. Facial Implications

The exploration of GLP-1 receptor agonists, notably Ozempic, reveals an intriguing yet
often under-discussed aesthetic concern known as the “Ozempic face.” This phenomenon
manifests as a marked, gaunt appearance of the face, resulting from a swift depletion
of facial fat, collagen, and elastin, amplifying the visibility of wrinkles and auguring
skin sag [108]. Not universally documented in clinical trials, this accelerated facial aging
confronts plastic surgeons with a unique challenge, necessitating specialized approaches to
mitigate these potent aesthetic and potentially psychological changes amidst the enduring
popularity of the medication [109]. Offering solutions that span from minimally invasive
fillers to more substantial surgical interventions, surgeons must also navigate the intricacies
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of nutritional aspects and their influence on pre- and post-operative recovery [110]. Thus,
it becomes imperative for facial plastic surgeons to immerse themselves in the particulars
of Ozempic and related semaglutide products, considering their aesthetic repercussions
and perioperative considerations while transparently communicating potential side effects
to those contemplating their use.

4.11. Implications of Overdose

Overdose with GLP-1RAs, while documented, typically precipitates symptoms like
nausea, vomiting, and abdominal pain without hypoglycemia, even in cases of substantial
overdose [111–113]. Therapeutic intervention in these instances leans predominantly
towards supportive care.

5. Management of Gastrointestinal Adverse Events: “The Three E’s”

The side effects induced by initiating treatment with GLP-1-RAs can be seen as a
considerable barrier to those struggling to meet their health goals, which are refractory
to other treatment modalities, such as lifestyle modification. The most commonly cited
methodology for managing side effects is individualized and gradual dose-escalation of
the medication; a more gradual dose escalation is recommended to reduce the frequency of
gastrointestinal adverse events. However, if side effects arise during the dose escalation, a
delay in up-titration should be considered [6,114,115].

A proposed approach designed by Wharton et al. (2022) identified evidence of sev-
eral strategies of side effect management in clinical practice gathered from real-world
studies on GLP-1-RA adverse event mitigation described as “The Three E’s: Education
and explanation, escalation to an appropriate dose, and effective management of GI side
effects” [47].

The first step involves counseling eligible patients on the potential side effects of
GLP-1-RAs and providing appropriate reassurance that such effects typically subside
following gradual dose escalation. Modifiable patient behaviors should be made clear,
such as reducing meal portion sizes; mindfulness to stop eating when feeling full; resisting
eating when not hungry; avoiding foods that are high in fat or spicy; and a moderation
of alcohol intake and other carbonated beverages. Importantly, prescribing physicians
should discuss regular bowel habits with their patients to establish any current GI disorders
(e.g., constipation, diarrhea) as a baseline, particularly in patients who are overweight
or obese, as GI disorders will commonly be present within these populations. Prompt
resolution of these existing GI disorders should be executed before initiating GLP-1-RA
therapy. For patients with more severe pre-existing GI diseases, such as gastroparesis,
GLP-1-RAs should be avoided.

As previously described, gradual dose escalation is recommended as a standard of
practice when beginning therapy with GLP-1-RAs to reduce the risk of encountering ad-
verse GI effects. While clinical trials with this drug class have followed rigid titration
regimens to assess the drugs’ efficacy appropriately, clinical practice should follow more in-
dividualized and patient-centered dose escalation in response to the severity and frequency
of GI symptoms within the first few weeks of treatment. The prescribing physician’s goal in
tempering adverse effects should be to communicate closely with their patients to balance
effective weight loss while dispensing a tolerable dose.

Lastly, a stepwise and severity-based approach should be applied to patients who
complain of GI symptoms encountered following the initiation of their GLP-1-RA treatment.
For patients experiencing upper GI side effects of short duration or mild severity, patient
counseling on modifying dietary behaviors, as mentioned above, may be considered.
Clinical and real-world studies show that patients with overweight or obese body habitus
commonly experience constipation as a side effect of GLP-1-RAs and should be consulted
on increasing fiber and water intake; supplemental pharmaceutical interventions such
as stool softeners may be considered. Close monitoring of these effects is advised, as
worsening symptoms may warrant dose de-escalation of dosing.



Gastroenterol. Insights 2024, 15 203

In response to patients who report GI side effects that are persistent or severe, dose
escalation should be postponed. Before pursuing other actions, clinicians should reconsider
the source of these GI symptoms and create a differential diagnosis of other conditions that
may be responsible for the patient’s presentation. While assessing a patient’s presentation
of worsening or new onset severe symptoms, if acute pancreatitis is suspected, GLP-1-RA
therapy should be immediately halted, and standard clinical management of pancreatitis
should be performed—upon confirmation of pancreatitis, GLP-1-RAs should not be reiniti-
ated. A reassessment of the patient’s history, including the concomitant use of any other
prescription or non-prescription medicines, is prudent. Metformin use simultaneous with
GLP-1-RA therapy has been reported to be associated with an increased risk of GI adverse
effects in patients with T2DM.

Following appropriate management of alternative conditions, alternative strategies to
mollify adverse GI effects may include dose adjustment or the transition to alternative GLP-
1-RAs. When GI symptoms are encountered and dose escalation is paused, the up-titration
may be resumed once the patient reaches a dose that the patient can tolerate. Further
dose escalation is recommended to occur slower than previously attempted. Physicians
and patients should be aware that the time for titration to full maintenance dosages may
be longer than initially recommended at the start of treatment. Real-world studies using
liraglutide to address obesity found that the median time to the 3 mg maintenance dose
was nearly 50 days, contrasting with the 28-day recommended prescribing information.

If patients initiating treatment with a GLP-1-RA find extraordinary difficulty in tol-
erating very low doses of their medication, treatment may be stopped, and a trial with
an alternative GLP-1-RA may be attempted as the tolerability profile between numerous
GLP-1-RAs varies. Reinitiation with alternative GLP-1-RAs should be performed following
a resolution of any adverse effects—the time for resolution of adverse effects following
termination of GLP-1-RA therapy can vary between 1 and 2 days and 1 and 2 weeks [47].

To provide a structured and visually accessible guide through the nuanced and pivotal
stages of managing GLP-1RA therapy-related gastrointestinal side effects, refer to Figure 2.
This figure, through a strategically segmented flowchart, elucidates a systematic approach
across three essential phases: A. Education and Explanation; B. Escalation to an Appropriate
Dose; and C. Effective Management of GI Side Effects, providing healthcare providers with
an actionable and adaptive tool for informed decision-making in the clinical setting.
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Figure 2. Navigating GLP-1RA therapy-related GI side effect management. This flowchart delin-
eates a strategic approach to managing gastrointestinal (GI) side effects during GLP-1RA therapy,
segmented into three pivotal phases: A. Education and Explanation, focusing on preemptive patient
education regarding potential side effects and lifestyle adaptations; B. Escalation to an Appropriate
Dose, emphasizing a gradual and tailored dose escalation with persistent patient monitoring; and
C. Effective Management of GI Side Effects, which addresses both short-term/mild and persis-
tent/severe GI side effects through various strategies, such as dietary intervention, pharmacological
treatment, and potential GLP-1RA dosing modifications. This structured yet adaptable guide aims to
enhance healthcare providers’ decision-making by prioritizing patient safety and therapeutic efficacy
amidst GI side effect management challenges in GLP-1RA therapy.
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6. Safety and Tolerability of GLP-1RAs

In the therapeutic landscape, GLP-1RAs are positioned as notable agents with efficacy
in diverse medical conditions, given their direct impact on metabolic and potentially
neurodegenerative pathways. Nevertheless, a thorough understanding of their safety and
tolerability is quintessential to optimizing their therapeutic utility.

GLP-1RAs extend a commendable safety profile concerning the risk of hypoglycemia,
even in non-diabetic cohorts, attributed to their inherent glucose-dependent mechanism
of action [17,116–119]. However, a panorama of gastrointestinal side effects, including
nausea, vomiting, and diarrhea, is a recognizable companion of GLP-1RA therapy, albeit
their typically mild-to-moderate and transient nature, ensuring these agents are generally
well-tolerated [20,120,121].

A 2011 randomized clinical trial compared the weight and cardiometabolic effects
experienced by patients who received either once-weekly semaglutide or placebo for
68 weeks. The study’s results revealed that 52 weeks after termination of treatment with
semaglutide, patients experienced a regain of 11.6% of their original weight, compared
to only 1.9% in the placebo group. However, patients on semaglutide still recorded a net
weight loss of 5.6% of their original weight. In addition, blood sugar, cholesterol, and
inflammatory marker measures remained improved following semaglutide treatment for
120 weeks after treatment cessation [122].

Tran et al. (2018) studied the effects of liraglutide therapy and withdrawal of ther-
apy on β-cell functioning and glucose tolerance. It was found that following a 48-week
treatment with liraglutide and a 2-week washout period, 57.7% of patients treated with
liraglutide reverted to a statistically significant decline in β-cell functioning and higher 2 h
blood glucose compared with patients in the placebo group. The study highlights the need
for further study to understand the effects of GLP-1-RA therapy on glucoregulatory mech-
anisms and the long-term sustainability of these medications in patients with advanced
β-cell dysfunction [123].

While GLP-1RAs have a generally favorable safety and tolerability profile, judicious
evaluation and management strategies are essential to navigate specific scenarios and miti-
gate associated risks, ensuring optimal patient care. This synthesis of current knowledge
affirms the necessity for ongoing research to further delineate the safety boundaries and
guidelines for GLP-1RA use in diverse clinical contexts.

Official Statements Regarding Endoscopic Procedure Precautions

Venturing into more specialized considerations, the American Association for the
Study of Liver Disease (AASLD) has harbored concerns regarding the potential association
between GLP-1RAs and safety issues pertinent to sedation and endoscopy. The use of
this drug class has been shown to be associated with increased gastric residue in esopha-
gogastrodudenoscopy due to delayed gastric emptying, potentially affecting parameters
such as procedure duration and diagnostic accuracy [124]. The anecdotal correlation of
GLP-1RAs with an enhanced risk of gastroparesis is underscored as being dose-dependent
and a class-effect phenomenon. However, the AASLD conscientiously notes the scarcity or
absence of data concerning the relative risk of complications from aspiration, emphasizing
the necessity for further exploration into the implications of discontinuing therapy before
upper gastrointestinal endoscopy [125].

Additionally, the recommendations from the American Society of Anesthesiologists
(ASA) delineate that for patients on daily-dosed GLP-1RAs, cessation of the medication
on the day of a procedure is prudent; for those on a weekly regimen, withholding the
medication the week prior is ideal. Engagement with the prescriber for potential bridging
therapy is advisable to navigate the risks of hyperglycemia during the withholding period.
Furthermore, ASA guidelines advocate a delay when severe symptoms manifest on the
day of the procedure. Procedures can commence if patients are without symptoms and
have adhered to medication withholding guidelines. Conversely, if patients necessitating
endoscopy have not adhered to medication withholding instructions and no symptoms
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are apparent, practitioners are advised to exercise “full-stomach precaution” (indicative of
high aspiration risk). Utilization of stomach ultrasounds to guide further action may be
considered [126].

7. Alternative Non-GLP-1-RA Approaches to Weight Loss

Non-pharmacological modalities for addressing weight loss exist alongside drugs
such as GLP-1-RAs. The FDA has approved medical devices such as Plenity to approach
weight loss via mechanical means instead of hormonal. Plenity is a unique nonsurgical
device for weight management in overweight and obese adults (tested on participants with
a body mass index of 27 to 40 kg/m2) in conjunction with diet and exercise.

Plenity, approved by the FDA in April 2019, is a novel, oral, nonsystemic, superab-
sorbent hydrogel developed to treat overweight patients and those with obesity. The gel is
contained within a capsule and is comprised of naturally occurring building blocks. A type
of modified cellulose cross-links with citric acid to form a three-dimensional matrix. When
the device is ingested and the capsule dissolves, the hydrogel particles release and expand
to occupy nearly a quarter of the patient’s stomach volume when maximally hydrated. The
gel mixes with ingested food within the stomach and small intestine to induce a feeling of
satiety. Plenity is available in capsule form, but it is not considered a drug because it is not
absorbed by the body. Rather, the hydro-gel capsule releases gel particles that absorb water,
expanding significantly in size and signaling satiety without being absorbed. As the formed
product travels throughout the small intestine, it maintains its mechanical properties until
degradation by enzymes housed within the large intestine. Upon degradation, the colon
releases and resorbs water while the cellulose is excreted within feces. For these reasons,
Plenity is considered a medical device rather than a drug, leading to a different threshold
for approval.

Plenity is currently indicated for patients with a BMI of at least 27 kg/m2 without
comorbidities and does not have any restrictions on the duration of therapy. Contraindi-
cations to Plenity include a history of GERD, gastric ulcers, or gastrointestinal structures
either due to chronic diseases such as Crohn’s disease or prior gastrointestinal surgeries
that may have altered motility throughout the GI tract. The product is also cautioned
against use by patients who are pregnant or allergic to any of its ingredients [127].

8. Conclusions

GLP-1 receptor agonists (GLP-1-RAs) offer promising avenues for combating obesity
and type 2 diabetes mellitus (T2DM), owing to their accessibility and low hypoglycemic
risk. Despite their broad-reaching effects across multiple organ systems, concerns persist
regarding upper gastrointestinal side effects and their potential link to certain cancers. This
review outlines the uses and side effects of GLP-1-RAs, emphasizing the need for caution in
prescribing, particularly for patients undergoing sedation procedures or at risk for thyroid
and pancreatic cancers. While acknowledging these risks, the significant potential for
ameliorating weight gain and hyperglycemia underscores the importance of considering
GLP-1-RAs in pharmaceutical treatment strategies.

This comprehensive review recognizes several limitations in regard to the selection
of cited literature and the limitations of the data obtained from the literature. Primarily,
reliance on studies that themselves are reviews introduces the risk of compounding biases
and interpretations. Additionally, the inclusion of relatively dated articles may overlook
recent advancements and nuanced understandings in the field. Moreover, the reliance
on in vitro studies without corresponding human trials raises questions about the direct
applicability of findings to clinical settings, potentially limiting the generalizability of
conclusions to real-world contexts. These constraints underscore the necessity for cautious
interpretation and the need for further empirical investigations to consolidate and validate
the insights gleaned from the review.
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