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Abstract: Macrolepiota sp. CS185 is a basidiomycete with high potential as a biocontrol agent against
various phytopathogenic fungi. Regardless of its pronounced potential as a post-harvest fungi biocon-
trol agent, its activity in tomato seedlings infected with Alternaria alternata has not been well studied.
Thus, the present work aimed to evaluate the cultures and supernatants’ antagonistic activity against
fig fruits’ post-harvest fungi and antifungal activity production kinetics. The culture antagonistic
characteristics were assessed through multiple confrontations, the supernatant concentration effect,
and the kinetics of antagonistic action. The multiple confrontations showed differences (p ≤ 0.05)
among phytopathogens and over time, with Colletotrichum sp. 2 being the most susceptible. Based
on the 9-day incubation profile, the treatment fractions supplemented with a 50% concentration
of Macrolepiota sp. CS185 supernatants showed a higher inhibition percentage (%In). Except for
Alternaria alternata 1 and 2, the rest of the isolates showed a similar decrease in antagonistic activity up
to a certain extent over time. Among all tested strains, Colletotrichum sp. 2 was found with a higher
susceptibility. Regarding the production kinetics of antagonistic activity, a triple interaction was
observed between the phytopathogen, the age of the Macrolepiota sp. CS 185 culture, and incubation
time. In addition, changes in the mycelium growth rate (p ≤ 0.05) along with the higher activity in
the supernatants of 20 and 30 days were observed and suggested the production of multiple bioactive
metabolites. These results indicate that Macrolepiota sp. CS185 produces antifungal metabolites at
different times and could be a suitable candidate to control fig fruits’ post-harvest fungi issues.

Keywords: antifungal activity; Alternaria alternata; biocontrol; Colletotrichum sp.; Macrolepiota sp.;
phytopathogenic fungi

1. Introduction

Continuous population growth has increased the current food demand worldwide,
and to fulfill this ever-rising demand, intensifying agricultural production is in practice.
However, incorrect production techniques and microbial attacks have been noticeable
causes of significant food losses, mainly during post-harvest work [1]. It can be demon-
strated in producing fruits and vegetables, where their quality and shelf life are significantly
affected, generating losses close to 40% [2]. In the case of fruit trees, 50% of post-harvest
damage is associated with microorganism activity [3]. Regardless of microbial spoilage, it is
also imperative to mention other reasons that majorly contribute to this rise in food demand
and supply. Fruits are nutritious sources with elevated nutritional content, particularly in
the context of human dietary practices and health. This has led to a notable surge in their
consumption patterns [4,5].
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There has been growing interest in fig fruit (Ficus carica L.) due to its higher contents
of total polyphenols, total flavonoids, and anthocyanins that provide a great antioxidant
capacity [6–8]. However, fresh fig fruits are usually susceptible to pathophysiological
disorders during post-harvest practices, such as softening and cracking of the skin, even
under cold storage conditions. Therefore, they are highly perishable products in post-
harvest with microbiological decomposition that results in an unpleasant taste and odor.
This is why conservation methods are required to counteract their deterioration [9]. Some
studies have reported the species associated with fruit deterioration, such as the genera of
Alternaria, Aspergillus, Botrytis, Cladosporium, Eurotium, Fusarium, Geotrichum, Gloeosporium,
Monilinia, Mucor, Penicillium, and Rhizopus [10–12]. Alternaria and Fusarium are notable for
causing internal fruit rot and are the main fungal concerns in fig production [13].

The above has led to the search for alternative strategies that not only protect fig
fruits from damage but also extend their shelf-life. Therefore, the current studies are
mostly focused on evaluating of the effect of temperature [14,15], packaging in modified
atmospheres [16], the use of chemical agents [17], radiation [18], and the development of
coatings that preserve the quality attributes of the fruits [9]. The most used polymers are
chitosan, sodium alginate, agar, and gum Arabic [9,19,20]. Interest has grown in developing
hybrid coating materials with strong antimicrobial activities by combining different polymers
with essential oils [21] or active compounds extracted from agricultural byproducts [22].
Other strategies include using coatings based on nopal mucilage with bactericidal activity [23]
and zinc oxide nanoparticles [24] to preserve fruit quality and shelf-life.

Basidiomycetes are proven sources of bioactive metabolites. However, they have
not been used in the post-harvest field [25,26]. Both organic extracts and supernatants
obtained from carpophores or cultures of this group of fungi have shown antifungal ac-
tivity and economic importance [27–31]. Thus, compounds such as Crinipellins A and
I produced by the basidiomycete Crinipellis rhizomaticola have been identified, with ac-
tivity against various phytopathogens, i.e., Magnaporthe oryzae, Colletotrichum coccodes,
Botrytis cinerea, and Phytophthora infestans [32]. Strobilurins are a group of bioactive metabo-
lites produced by several fungi and have been used to develop agricultural fungicides,
e.g., β-methoxyacrylate [33,34]. Such fungicides have shown notable inhibitory activities
against phytopathogens, such as Gibberella zeae, Sclerotinia sclerotiorum, and Rhizoctonia
cerealis [35]. Likewise, Macrolepiota genus has shown great potential to produce bioactive
compounds [36], along with other biological characteristics, such as antibacterial, antioxi-
dant, anti-inflammatory, regulatory, antidepressant, and anticancer effects [37]. However,
studies associated with their capacity as biocontrol agents are limited or lacking in the
existing literature. For example, the native strain Macrolepiota sp. CS185 supernatants
have antagonistic activity against Alternaria solani under greenhouse conditions in tomato
seedlings [30]. Neither the antifungal activity production kinetics nor its effect on fungal
isolates obtained from fruits under post-harvest conditions were studied. Therefore, the
present work aimed to evaluate the cultures and supernatants’ antagonistic activity against
fig fruits’ post-harvest fungi and antifungal activity production kinetics.

It is important to highlight that the genus Macrolepiota is a group of fungi characterized
by smooth spores, a ring on the stem, and a large conical cap that often opens as it matures.
These mushrooms usually have a tall, thin stem with a membranous mobile ring. The cap
is white to brown, often with scales or spots. The slats are tight and free. Spores range in
color from white to brown, green, and blue; the hymenophoral trama can be either regular
or trabecular. The pileus covering’s structure (velar or pileipellicular) can be epithelioid,
trichodermal, or cuticular. Some species of Macrolepiota are edible and valued for their
flavor, but it is important to be careful when identifying mushrooms for consumption, as
some species can be toxic. It is essential to consider all these morphological details when
identifying fungi of the genus Macrolepiota to ensure accurate and safe identification [38,39].
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2. Materials and Methods
2.1. Reagents

All the reagents and chemical compounds used were of reagent grade and obtained
from Sigma-Aldrich (San Luis, MO, USA). Culture media were from BD (Becton, Dickinson
and Company, Franklin Lakes, NJ, USA). All solutions were prepared using double distilled
water in Laboratorios Monterrey, S.A. (Monterrey, Nuevo León, Mexico). Measurements
of fungal mycelium growth were made with a digital vernier caliper of 150 mm with an
accuracy of 0.01 mm.

2.2. Biological Material

All listed strains were kindly provided in their pure form by the Enzymology Lab-
oratory of Facultad de Ciencias Biológicas, UANL. Briefly, four sub-strains of Alternaria
alternata, i.e., A. alternata 1, A. alternata 2, A. alternata 3, and A. alternata 4, were used. Two
sub-cultures of Colletotrichum sp. 1 and Colletotrichum sp. 2 obtained from the fruit of figs
were acquired commercially. Macrolepiota sp. CS185, as an antagonist agent, was used
as a positive control, whereas, in multiple confrontations, the Fusarium solani strain was
used [30]. The above-listed strains were maintained periodically by reseeding every three
months and preserved in YMGA medium (glucose 4 g L−1, malt extract 10 g L−1, yeast
extract 4 g L−1, and agar 15 g L−1) [40]. The freshly prepared mixture of YMGA medium
and potato dextrose agar (PDA) was used to develop fungal inoculums with five days of
growth. From the periphery of reactive colonies, discs of 0.5 cm were taken to sow solid or
liquid media.

2.3. Cell-Wall Degrading Enzymes Detection

The evaluation of the plant cell-wall component (DPCWC) enzymes profile, such as
cellulases, xylanases, lignin-modifying enzymes (LME), pectinases, and amylases from
phytopathogenic fungi, was conducted on solid medium. The base medium used was
adapted from Sin et al. [41], with a composition of peptone (0.1%), yeast extract (0.01%),
and agar (2.0%). Carboxymethylcellulose (CMC, 1%), xylan (1%), and pectin (0.5%) were
used as carbon sources, added to the base medium for the detection of cellulases, xylanases,
and pectin, respectively.

For the detection of amylases, 1% starch was used, while for the detection of LME
activity, the Poly R-478 dye was used at 0.04% and 1% glucose as a carbon source. Laccase
activity was revealed by the oxidation of syringaldazine (0.5%), which was added after
sterilizing the medium [41]. Fungal growth was recorded daily. An iodine solution was
used to reveal the activity of carbohydrolases on the third day. All assays were performed
in quadruplicate. The diameter of the hydrolysis halo was measured to calculate the
degradation index (DI) using Equation (1) [42]:

DI =
h
G

(1)

where h corresponds to hydrolysis (mm) and G corresponds to fungal growth (mm).

2.4. Determination of Antagonistic Activity in Multiple Confrontations

Petri dishes were prepared with papa dextrose agar (PDA), which were inoculated
with a 0.5 cm piece, taken from the Macrolepiota sp. CS185 culture periphery with five days
of growth. The plates were incubated for 24 h at 28 ◦C and subsequently four post-harvest
fungi were sown in the peripheries. As a negative control, the confrontation between the
isolated post-harvest fungi was performed without the antagonist to rule out that inhibition
may be due to nutrient depletion. The plates were incubated again at 28 ◦C to measure the
mycelium radial growth every 24 h from the cylinder’s rim to the edge of the consolidated
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mycelium in the direction of the antagonist for four days. All trials were carried out in
triplicate. The percentage inhibition (%In) was estimated using Equation (2):

%In =
Gc − Ga

Gc
× 100 (2)

where Gc corresponds to the growth of the phytopathogen in the control treatment, and Ga
corresponds to the growth in confrontation with the basidiomycete.

2.5. Determination of the Antagonistic Activity of Cell-Free Supernatants

The antifungal potential of supernatants was determined using methodology de-
scribed by Hernández et al. [30]. Briefly, around 200 mL of PDB medium was prepared,
sterilized, and inoculated with three discs (each of 5 mm diameter). The above inoculated
plates were incubated for 18 days at 28 ◦C under stirring conditions (150 rpm) in an orbital
shaker from New Brunswick Scientific® (Edison, NJ, USA). Supernatants were recovered
by filtration using the paper Whatman® N◦1 and sterilized using 0.45 µm Luzeren cellulose
ester membranes with the ultrafiltration system of Merck Millipore® (Burlington, MA,
USA). Next, four flasks were prepared with PDA medium, using double-distilled water
at 100, 85, 70, and 50%. These were sterilized at 121 ◦C for 15 min, cooled to 60 ◦C, and
the sterilized supernatant was added to a final concentration of 0, 15, 30, and 50%. These
mediums were poured into Petri dishes. They were inoculated with a 0.5 cm piece and
incubated at 28 ◦C. The growth radius of the mycelium was measured daily for nine days.
All treatments were carried out in triplicate. Equation (2) was used to calculate the growth
percentage inhibition (%In). From the daily measurements of the growth of the colonies
of the post-harvest isolates, the growth curves were obtained, allowing the determination
of the mycelium growth rate (MGR) using the slope of the linear equation on the charts
(Figures S1 and S2). The MGR of the treatments was used to estimate the relative percentage
inhibition in the daily mycelium growth rate (RPI) by Equation (3):

RPI =
(

MGRc − MGRa
MGRc

)
× 100 (3)

where MGRc corresponds to the mycelium growth rate in the treatment control and MGRa
corresponds to growth in confrontation with the basidiomycete antagonist.

2.6. Production Kinetics of Antifungal Activity

To evaluate the antagonistic activity, first, the supernatant suspension from cultures
of Macrolepiota sp. CS185 was obtained. For said purpose, sixteen Erlenmeyer flasks
containing 500 mL PDB medium were prepared, inoculated simultaneously, and incubated
at 28 ◦C under shaking at 150 rpm. Two cultures were filtered at 0, 5, 10, 15, 20, 25, 30,
and 40 days to recover the supernatants, which were frozen until later use. Subsequently,
Petri dishes were prepared using a PDA medium enriched with 30% of each supernatant
to evaluate the antagonistic effect as described above in Section 2.5. The media were
inoculated with the respective phytopathogenic fungus, and 0.5 cm pieces were taken
from the periphery of a culture with a growth of five days and placed in the center of the
plates. These were incubated at 28 ◦C for eight days. The negative control comprised PDA
medium without supernatant. The daily growth of the mycelium was recorded for the
estimation of %In using Equation (2), and the growth curves and the determination of MGR
and RPI were carried out using Equation (3). All treatments were recorded as a mean of
five repetitions.

2.7. Statistical Analysis

For the analysis of the results of the evaluation of antifungal activity, a randomized
block experimental design with a factorial arrangement of A × B was used. The data
generated by the effect of the different sources of variation on the study variables were
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statistically contrasted through an analysis of variance (ANOVA) and a comparison of
averages, according to the Tukey test to a degree of significance of 95% (p ≤ 0.05). InfoStat®

statistical software was used in data analysis.

3. Results
3.1. Determination of Antagonistic Activity in Multiple Confrontations

The comparison of means for %In of fungal radial growth is summarized in Table 1.
Differences in statistical significance were observed in time and between isolates. In general,
Colletotrichum isolates tended to be more susceptible (60–70%, p < 0.05) to Macrolepiota sp. CS
185 supernatants than Alternaria isolates (40–60%) and Fusarium (<50%) isolates. However,
significant antagonistic activity was obtained at four days, except in Alternaria alternata
1. Colletotrichum sp. 2 was the most susceptible (73.3%), followed by Colletotrichum sp. 1
(68.8%), A. alternata 3 (66.9%), and A. alternata 4 (66%).

Table 1. Comparison of percentage inhibition means (%In) the radial growth of isolates obtained
from fig fruits.

Isolate
Day

p-Value
1 2 3 4

A. alternata 1 53.0 aA 58.6 aA 60.3 abA 56.1 bcdA 0.88
A. alternata 2 43.7 aA 46.2 abA 49.8 bcA 52.4 cdA 0.13
A. alternata 3 38.8 abC 48.0 abBC 62.9 abAB 66.9 abcA 0.003
A. alternata 4 51.9 aB 53.6 abAB 62.9 abAB 66.0 abcA 0.02

Colletotrichum sp. 1 55.2 aB 57.8 aB 63.5 abAB 68.8 abA 0.005
Colletotrichum sp. 2 63.1 aC 63.7 aBC 72.0 aAB 73.3 aA 0.01
Fusarium oxysporum 15.3 bcC 27.0 bcBC 46.6 bcAB 52.9 cdA 0.005

F. solani 0.0 cB 8.1 cB 30.7 cA 43.2 dA 0.0003

p-value 0.001 0.002 0.001 0.001

%In = percentage inhibition; a–d Different letters in the same column denote statistically significant differences
(Tukey, p ≤ 0.05). A–C Different letters in the same row denote statistically significant differences (Tukey, p ≤ 0.05).

Likewise, the antagonistic activity increased in relation to the incubation time, showing
the higher values at four days (except in A. alternata 1), with Colletotrichum sp. 2 being
the most susceptible. It is worth mentioning that, despite the similarity of the behavior
of the isolates of the same genus, the profile of degraders of plant cell-wall components
was different (Table 2). All isolates were producers of cells and xylanases. Only Fusarium
oxysporum showed pectinolytic activity, while Colletotrichum sp. 2 was the only one that
presented laccase activity.

Table 2. Degradation rate (DR) of the cell-wall degrading enzymes produced by post-harvest fungi.

Isolate *
Cellulases Xylanases Pectinases Laccase LME

DR (%)

Alternaria alternata 1 1.07 bc 0.96 a 0.00 b 0.00 b 0.00
A. alternata 2 1.16 ab 0.75 c 0.00 b 0.00 b 0.00
A. alternata 3 1.26 a 0.78 bc 0.00 b 0.00 b 0.00
A. alternata 4 1.12 abc 0.98 a 0.00 b 0.00 b 0.00
Colletotrichum sp. 1 0.983 cd 0.71 c 0.00 b 0.00 b 0.00
Colletotrichum sp. 2 1.17 ab 0.92 ab 0.00 b 2.32 a 0.00
Fusarium oxysporum 0.91 d 0.81 bc 1.10 a 0.00 b 0.00
F. solani 1.22 a 0.77 c 0.00 b 0.00 b 0.00

p-value 0.001 0.001 0.001 0.001 sd
DR = enzyme degradation rate; * = post-harvest fungi isolated from figs. LME = lignin modifying enzymes.
a–d Different letters in the same column denote statistically significant differences (Tukey, p ≤ 0.05).
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3.2. Determination of Antagonistic Activity in Multiple Confrontations

The effect of the tested concentrations for isolates of A. alternata and Colletotrichum spp.
is shown in Figure 1. The higher %In was observed in treatments with the Macrolepiota sp.
CS185 supernatant at 50%. At the same time, Colletotrichum isolates had a similar behavior
(Figure 1E,F). The Colletotrichum sp. 2 isolate was the most susceptible, as observed in
multiple confrontations.
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Figure 1. Percentage inhibition (%ln) at different concentrations of supernatants of Macrolepiota sp.
CS185. (A) corresponds to Alternaria alternata 1, (B) A. alternata 2, (C) A. alternata 3, (D) A. alternata 4,
(E) Colletotrichum sp. 1, (F) Colletotrichum sp. 2. a–c Different letters indicate the differences between
the different concentrations (15, 30 and 50%) at each of the evaluated times.

On the other hand, A. alternata strains showed different inhibition patterns (Figure 1A–D),
with Isolate 4 being the one with the higher susceptibility. It is worth mentioning that the
antagonistic activity decreased linearly over time, except in the treatments with A. alternata
2 and A. alternata 3 (Figure 1B,C). The latter showed values of less than 30% inhibition in
all treatments.

Figure S1 shows the growth curves for the different treatments for each isolate. From
which the mycelium growth rate (MGR) and the relative percentage of inhibition (RPI) in
daily growth rate were estimated. Concerning the MGR, A. alternata 1 and Colletotrichum
sp. 2 were statistically equal (p < 0.05) in the control treatment (without supernatant),
while A. alternata 2 had the lowest MGR (2.58 mm/d), reiterating the differences between
strains of the same genus. The latter was the only isolate with the highest RPI value in the
30% supernatant treatment since the rest had the highest RPI values in the 50% treatment
(Table 3).
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Table 3. Mycelium growth rates and relative percentage of growth inhibition at different concentra-
tions of supernatants.

Post-Harvest
Fungi *

0% 15% 30% 50%

MGR
(mm/d)

RPI
(%)

MGR
(mm/d)

RPI
(%)

MGR
(mm/d)

RPI
(%)

MGR
(mm/d)

RPI
(%)

A. alternata 1 4.44 aA 0 aD 3.99 aB 10.01 eC 3.62 aC 18.47 eB 3.30 aD 25.71 dA

A. alternata 2 2.58 eA 0 aD 2.25 eB 12.83 dC 1.96 eD 23.83 cdA 2.06 cdC 19.99 eB

A. alternata 3 2.80 dA 0 aD 2.49 cB 11.01 deC 2.19 dC 21.81 dB 2.02 cdD 27.98 dA

A. alternata 4 4.00 bA 0 aD 3.05 bB 23.83 bC 3.02 bB 24.61 cB 2.75 bC 31.30 cA

Colletotrichum sp. 1 3.02 cA 0 aD 2.42 dB 19.92 cC 2.17 dC 28.05 bB 1.88 dD 37.65 bA

Colletotrichum sp. 2 4.34 aA 0 aD 3.09 bB 28.83 aC 2.42 cC 44.17 aB 2.20 cD 49.27 aA

* = isolated from fig fruits, MGR = Mycelium growth rate, RPI = relative percentage of inhibition in daily
growth rate, mm/d = millimeters per day. a–e Different letters in the same column denote statistically significant
differences (Tukey, p ≤ 0.05). A–D Different letters denote statistically significant differences in MGR or RPI values
between isolates (Tukey, p ≤ 0.05).

3.3. Production Kinetics of Antifungal Activity in Cell-Free Supernatants

To assess the antagonistic effect of the supernatants of Macrolepiota sp. CS185, the
supernatants obtained from cultures with 18 days of incubation were used. To rule out that
the decrease in antagonistic activity (concerning that obtained in the multiple confronta-
tions) was associated with the age of the basidiomycete culture, an inhibition curve was
performed with supernatants obtained from 0 to 40 days. From these, plates were prepared
with 30% of each supernatant. In this phase, A. alternata 1, A. alternata 4, and Colletotrichum
sp. 1 and 2 were selected considering the similarities in their growth rates.

An analysis of variance (Table S1) for the %In of supernatants from cultures with differ-
ent incubation periods showed statistically significant differences (p ≤ 0.01) for the culture
age, time, and isolated post-harvest fungi, indicating a three-way interaction between
these factors. The effect of the culture age of Macrolepiota sp. CS185 on the production of
antagonistic activity is shown in Figure 2.
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A. alternata 1 (Figure 2A) showed a higher inhibitory activity between Days 3 and 6
of culture (>60%). However, it was not associated with a specific age of the supernatants,
since at Day 3 of growth and with the supernatant obtained at Day 15 (SN15), a %In of
64.9% (p ≤ 0.01) was observed, whereas at Days 4 and 5 of culture, the highest antagonistic
activity was reported in the supernatant (SN25) with 63.5 and 62.4%, respectively. Likewise,
on Day 6, the supernatants, i.e., SN30 and SN40, presented the maximum inhibition with
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63.6 and 61.2%, respectively. This could explain the low %In (<25%) observed in the
previous phase with 18-day-old supernatants and with the same concentration (30%). A.
alternata 4 (Figure 2B) showed a similar behavior of maximum antagonistic activity between
Days 3 and 7 of culture, although this was also not attributed to a specific supernatant.
However, the results for this isolate were lower (%In < 60%) than those observed for A.
alternata 1, highlighting that both isolates presented the highest antagonistic activity with
the supernatant SN25 at Day 6. In the case of Colletotrichum isolates, differences were
also seen in the effect of antagonistic activity according to the age of the supernatant
of Macrolepiota sp. CS185 (Figure 2C,D). The highest inhibition (>50%) of these isolates
was between Days 4 and 7 but like that observed for Alternaria isolates with different
supernatants. The higher antagonistic activity was seen on Day 6 with the supernatant
SN30, with a %In of 60%. Figure S2 shows the growth curves of the phytopathogenic fungi
cultivated in the media supplemented with supernatants of the Macrolepiota sp. CS185
at different times, in which it can be observed that the lowest growth rate was recorded
in treatments SN20, SN25, and SN30. However, the RPI in the daily growth rate of these
treatments was different (p < 0.05), except for A. alternata 1 (Table 4). A. alternata 4 had the
lowest RPI values. In contrast, Colletotrichum sp. 1 showed the highest susceptibility under
these conditions.

Table 4. Mycelium growth rates and relative percentage of growth inhibition in media supplement
with supernatants of different culture days.

Tt

A. alternata 1 A. alternata 4 Colletotrichum
sp. 1

Colletotrichum
sp. 2

MGR
(mm/d)

RPI
(%)

MGR
(mm/d)

RPI
(%)

MGR
(mm/d)

RPI
(%)

MGR
(mm/d)

RPI
(%)

Control * 4.50 a 0.00 d 4.56 a 0.00 c 4.88 a 0.00 e 4.67 a 0.00 e

SN05 4.97 0.57 d 4.95 a 0.00 c 4.16 ab 14.87 d 4.56 a 2.48 de

SN10 3.87 ab 22.57 b 4.66 a 0.00 c 3.92 bc 19.72 c 4.49 a 3.94 d

SN15 3.25 b 34.94 a 3.40 a 12.33 a 3.01 d 38.27 a 3.10 a 33.66 a

SN20 3.25 b 34.94 a 3.40 a 12.33 a 3.01 d 38.27 a 3.10 a 33.66 a

SN25 3.35 b 32.91 a 3.40 a 12.33 a 3.55 bcd 27.27 b 3.55 a 24.05 b

SN30 3.39 b 32.08 a 4.11 a 9.97 b 3.06 cd 37.29 a 3.03 a 35.21 a

SN40 4.57 ab 8.62 c 5.11 a 0.00 c 4.01 ab 17.79 c 3.84 a 17.86 c

Tt = treatments with Macrolepiota sp. CS185 supernatant of different culture days. * = negative control (without
supernatant; 0%). GMR = mycelium growth rate. RPI = relative percentage inhibition in daily growth rate,
mm/d = millimeters per day. a–e Different letters in the same column denote statistically significant differences
(Tukey, p ≤ 0.05).

It is worth mentioning that the changes seen in the cultures of the different treatments
suggest the production of multiple metabolites responsible for the antifungal activity
(Figure 3). These two analyses enabled us to identify the days of the maximum output of
the antifungal activity of Macrolepiota sp. CS185, in addition to the supernatants’ direct effect
on the growth speed and colonial morphology. In addition, the antifungal activity may be
due to more than one metabolite with different effects on the colonies and production times.
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4. Discussion

According to the Ministry of Agriculture and Rural Development (SADER), Mexico
is the third producer of figs in America, after Argentina and Peru. In 2022, the national
production of figs was 11,500 tons [43].

Fungi are one of the leading causes of post-harvest losses in figs. Fungi can cause
rot, spots, and other damage, making figs unacceptable for human consumption. Post-
harvest losses due to fungi in figs can reach 50%, highlighting those caused by Alternaria
alternata [44], mainly associated with the enzyme DPCWC production. For Alternaria
alternata and Colletotrichum capsici, the production of cellulases and pectinases has been
reported as a virulence factor [45]. In the case of post-harvest mushrooms obtained from
figs, cellulase and xylanase activities predominated.
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White rot basidiomycetes (WRB) are a group of fungi that stand out to produce
ligninolytic enzymes [46], in addition to a wide variety of structurally diverse bioactive
metabolites [47], among which can be found antimycobacterial, antiviral, antifungals, im-
munomodulators, and anticancer, to name a few [48]. However, the study of the production
of these metabolites, their cellular targets, and their application is limited compared to what
has been explored for ascomycetes and bacteria. Macrolepiota sp. CS185 has shown activity
against phytopathogenic fungi such as Alternaria solani, Fusarium spp., Colletotrichum spp.,
and B. cinerea [30], which is why it was selected to evaluate its antagonistic potential against
isolates of phytopathogenic fungi from fig fruit.

Thus, the %In results observed in Alternaria isolates were similar to those reported for
Ganoderma lucidum (67.28%) and Lentinula edodes (57.46%) but higher than that described
for Volvariella volvaceae (40.53%) [49]. In the case of Colletotrichum sp., the results obtained
were higher than those reported by Priya et al. [28] for other basidiomycete genera such
as Auricularia polytricha (53.70%), Coprinus comatus (40%), Ganoderma lucidum (54.81%),
Volvariella volvacea (42.9%), Lentinus edodes (45.5%), Pycnoporus sanguineus (57.4%), Schizo-
phyllum commune (47.8%), and Trametes versicolor (43.63%). Regarding the results observed
with Fusarium isolates, they were lower than the inhibitory activity for basidiomycetes such
as G. lucidum (60.3%) but like those reported for L. edodes (35.3%) [50]. Variations among
fungal species may explain these results due to differences in their evolutionary origin.
Interspecific hybridization results suggest that genetic exchange which leads to speciation
can occur within a single species, in a complex mechanism that allows the dynamics of the
evolution of phytopathogens [51].

Regarding the result of the antagonistic activity of cell-free supernatants to different
concentrations, differences among Alternaria isolates can be explained by variability at the
genetic level, mainly associated with fungicide-resistance genes [52,53]. This could also
explain the observed differences in growth rate per day. Although all isolates showed linear
growth behavior for the first seven days, the negative controls on isolates of Alternaria
showed differences in the mycelium growth rate (MGR), ranging from 2.7 to 4.4 mm·d−1,
while Colletotrichum controls showed similar values. However, the highest relative growth
rate inhibition percent (RPI) was shown by Colletotrichum sp. 1. It is worth mentioning
that the %In values in media supplemented with supernatants were lower than the results
obtained in multiple confrontations. This behavior has been reported for other basid-
iomycetes that showed a higher antifungal activity on A. solani in dual confrontations than
in media supplemented with organic fungi extracts [49]. V. volvaceae was the basidiomycete
that showed the most significant loss with 54.13%, followed by A. polytricha (49.82%) and
L. edodes (33.98%), while G. lucidum decreased by 21.11%, retaining most of its activity.
This could be explained by interspecific interactions established among the cultures that
promote the expression and production of enzymes and bioactive metabolites [54].

On the other hand, the differences in %In between the different supernatant times on
the same phytopathogen can be explained by the production of more than one antifungal
metabolite, since changes in colony pigmentation were observed between the different
treatments. In this sense, it is worth mentioning that basidiomycetes are recognized for
producing bioactive secondary metabolites mainly directed to traditional medicine [55].
However, little is exploited in the agricultural sector, despite the excellent chemical variety
of these bioactive antifungal metabolites that can be of high (peptides) or low molecular
weight (terpenoids, steroids, organic acids, etc.) and potential applications [56]. It is worth
mentioning that the composition of the culture medium is a determining factor in the
production of bioactive metabolites [57]. Thus, changes in the supernatants’ antifungal
activity, in addition to possibly being associated with producing more than one metabolite,
are induced by changes in the medium composition over time. This has been reported
for the strains Trametes versicolor 353 and Ganoderma lucidum 162, where differences in
antimicrobial activity were observed on different strains evaluated but did not show anti-
fungal activity [58]. Likewise, in Ganoderma lipsiense CCIBt 2689, changes in antimicrobial
activity and total phenol content were observed, demonstrating the effect of changes in
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the composition of the medium on the production of bioactive metabolites [59]. Thus, this
could explain the differences observed between the genera of phytopathogens used in the
present investigation.

The specificity observed and reported for metabolites produced by basidiomycetes
could mean an advantage over broad-spectrum chemical fungicides that act non-specifically.
Another advantage of cell-free supernatants is that they do not require complex processes
to obtain them. They are compatible with agents conventionally used to prepare coatings,
such as starch or pectin. Therefore, in future research, the metabolites responsible for the
antagonistic activity, the effect of the composition of the medium on the production of
bioactive metabolites, and their potential application in the preparation of fruit coatings
will be characterized. To our knowledge, there are no reports on the identification of
Macrolepiota antifungal bioactives or their application as biocontrol agents, except the
Hernanez-Ochoa et al. [30] work, in which it was reported that antigenic activity could
be associated with sesquiterpene lactones and quinones production. However, there are
reports of sesquiterpenes with antifungal activity against plant pathogenic fungi produced
by other basidiomycetes, such as Lactarius rufus [60]. Another fungus sesquiterpenoid
producer with antifungal activity is Stereum complicatum [61].

To date, many sesquiterpenoids with diverse bioactivities have been reported, demonstrat-
ing the potential of the basidiomycetes as a promising source of novel bioactive compounds.

5. Conclusions

Cultures and supernatants of Macrolepiota sp. CS185 showed antagonistic activity
on the isolated genus of Alternaria alternata and Colletotrichum sp. obtained from fig fruit,
with the latter being the most susceptible. Regarding supernatant concentration, 50%
was observed to produce the highest activity for most phytopathogenic isolates, which
will require production studies to increase the production of metabolites. In this sense,
the kinetics of the antagonistic activity for supernatants obtained at different culture
times of Macrolepiota sp. CS185 showed that bioactivity can be related to more than one
metabolite, and these have different effects on colony morphology. The foregoing suggests
that Macrolepiota sp. CS185 supernatants can be used in coatings’ elaboration to control post-
harvest fungi, since no cell-wall degrading enzymes were detected under these conditions.
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Table S1: Mean squares of variance analysis for the percentage of inhibition of supernatants of
different culture ages.
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