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Abstract: Since microplastics are considered harmful to the human body, studies on their samplings,
pretreatments and analyses environmental media, such as water, are continuously being conducted.
However, a standard sampling and pretreatment method must be established, particularly because
microplastics of a few micrometers in size are easily affected by external contamination. In this
study, a microplastic sampling device was designed and developed to obtain a high recovery rate
of microplastics and prevent plastics contamination during all processes. For the evaluation of the
developed device, microplastic reference materials were produced and used, and computational fluid
dynamics (CFD) analysis was performed. This device has not only been applied to the relatively
large previously studied microplastics (100 µm) but also to microplastics of approximately 20 µm
that are vulnerable to contamination. A recovery rate of 94.2% was obtained using this device, and
the particles were separated by filtration through a three-stage cassette. In conclusion, we propose a
method to increase the accuracy and reproducibility of results for microplastic contamination in the
environment. This method is able to consistently obtain and manage microplastics data, which are
often difficult to compare using various existing methods.

Keywords: microplastics; sampling device; CFD analysis; recovery rate; size classification

1. Introduction

Microplastics are plastics with a diameter of less than 5 mm. They are classified as
either primary and secondary microplastics, which are produced by human activities and
environmental decomposition, respectively. Recently, microplastics have attracted much
research attention because of their toxicity, bioaccumulation [1–4], and organic matter
transportation [5]. Microplastics can cause contamination problems in all environmental
media, such as fresh water, tap water, sea, air, and soil [6–10]. Secondary microplastics are
microplastics produced by the decomposition of discharged plastics and pose a higher risk
to the environment and life forms as their size decreases over time [11–14]. In particular,
microplastics with sizes of a few microns are involved in bioaccumulation and organic
matter accumulation [1,5,15]. However, research on microplastic sampling and analysis
methods is being actively conducted, and ISO standardization is in progress (ISO/DIS
24187).

The most widely used devices for isolating plastic particles in the aqueous phase are
the manta trawl, plankton net, and Van Dorn sampler [16]. However, there are disadvan-
tages to using these samplers, and additional equipment, such as a boat, is required to
transport large samplers during the research process. Additionally, a manta trawl can-
not be used for microplastics of less than 50 µm in diameter, and it is difficult to control
tool contamination [17–20]. To overcome these problems, in this study, small-sized mi-
croplastic samples were collected using the encapsulation and centrifuge methods [17,19].
The encapsulation method consumes less energy, easily controls pollution, and collects

Sustainability 2023, 15, 3907. https://doi.org/10.3390/su15053907 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15053907
https://doi.org/10.3390/su15053907
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4510-1804
https://orcid.org/0000-0001-7406-4064
https://orcid.org/0000-0001-9346-8849
https://doi.org/10.3390/su15053907
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15053907?type=check_update&version=1


Sustainability 2023, 15, 3907 2 of 14

microplastics of a few microns in diameter depending on the pore of the woven stainless
filter. To improve the device and ensure efficiency, a CFD analysis was conducted to check
the fluid flow inside the device, and to identify, predict, and correct the cause of sampling
loss. This analysis can identify the cause of a problem by comparing it with the actual
result and performing an improved complementary analysis. In addition, in the case of
fouling that occurs in sample collection using a filter, studies are currently being conducted
to increase the efficiency of sample collection by finding the cause of pressure decreases
through CFD [21,22]. In this study, the cause of the pressure decrease that may occur during
filter filtration was predicted using modeling and used to solve the problems of previous
studies.

Fragments of microplastics present in devices, which are only a few microns in size, can
affect the analysis results [23]. The microplastics present in a typical laboratory environment
can affect microplastic samples with sizes of a few microns [24–26]. In another study of
ours, POM fragments were found in environmental and falling blank samples during the
sampling process, which used a polyoxymethylene (POM) cassette in the most commonly
used low-volume air sampler. However, as a result of using a stainless filter and cassette,
the POM cassette was no longer found in the atmospheric sample (Figure 1 and Table 1).
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Figure 1. µ-Raman result of (a) air blank sample and (b) air sample for POM cassette.

Table 1. µ-Raman result for POM and STS cassettes.

Cassette
Material

Sample PET PS PVC PE PP POM
(#/m3)

POM
Passive sample 0 0.209 0 1.044 0.209 0.209
Active sample 0.417 0.417 0 4.174 2.087 0.209

STS Active sample 2.805 0.301 0 41.675 0 0

Although the need for contamination control has been frequently reported, the control
method used in each study is different. For instance, one study used high-temperature treat-
ment to remove plastic contamination [25]. Another study conducted by Hermsen et al. [27]
found that “laboratory preparation” has the second lowest performance in the quality as-
sessment of microplastics. The aim of this study was to develop a high-efficiency and
low-cross contamination device to sample microplastics a few microns in sizes and separate
them by sizes. A CFD analysis was then used to identify and improve the mechanical
defects and sample losses in the developed device.



Sustainability 2023, 15, 3907 3 of 14

2. Materials and Methods
2.1. Reagents

A 35% hydrogen peroxide (H2O2) solution was purchased from Daejung Chemical &
Metals Co., Ltd., Seoul, Republic of Korea. Ethyl alcohol (C2H6O, 99%) solution and zinc
chloride (ZnCl2, 98%) powder were purchased from DUKSAN Pure Chemicals, Inc., Seoul,
Republic of Korea. The high-performance liquid chromatography (HPLC) equipment for
analyzing field blank samples was purchased from Baker. Distilled, deionized (DI) water
was used in all experiments. All reagents were first filtered using a Whatman’s glass fiber
filter (GF/F) and then filtered again using an STS filter to remove microplastics and glass
fibers from the reagents. Before use, the GF/F and STS filters were washed with ethyl
alcohol and oven-dried at 100 ◦C for 24 h.

2.2. Analytical Devices

The surfaces of the STS filter and plastic were analyzed using scanning electron mi-
croscopy (SEM; JSM-IT500). The blank sample was analyzed using µ-Raman spectroscopy
(New XploRA Plus, HORIBA, Kyoto, Japan) and silicon filter (Si-filter). Micro-balance
(BM-20, A&D, Tokyo, Japan) which has 0.001 mg resolution was used to measure the weight
of the STS filter to estimate the recovery rate of the sampler and pretreatment process.

2.3. Sampling and Pretreatment Device Development

A device was developed to sample small-sized microplastics over 5 µm in environ-
mental media. In addition, it was modified into three types according to the problems
that occurred during the sampling process. The sampling device is based on a filtration
method to allow for flexible filter pore size and easy filter replacement after contamination.
Each device was manufactured according to the design depicted in Figure 2. All sampling
devices consisted of a housing and cassette, and each cassette was watertight with a sili-
cone O-ring or gasket. The cassettes could be easily stacked in multiple stages within the
housing. In the case of conventional sampling and pretreatment devices, additional units
(several individual housings) or processes for size classification were required. However,
the developed sampling device requires only one compact housing and several optional
cassettes for size classification. In this study, three-stage cassettes equipped with filters of
different pores were used for size classification. The devices were made from an aluminum
alloy with a low cost, easy machinability, light weight, and higher chemical resistance than
conventional metals such as stainless steel. The device was modified and supplemented to
increase the recovery rate of the microplastic sampler. Similar to other studies, by applying
a stainless steel (STS) filter, it was possible to collect a large volume of samples and mi-
croplastics measuring several microns with the device at the user’s discretion. In addition,
the STS filter could withstand vacuum pump pressure and had a strong chemical resistance,
maintaining filter pore during sampling and pretreatment.
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Figure 2. Sampling devices and cassette with silicon gasket: (a) Device 1, (b) Device 2, (c) and Device
3. (d) Assembly of the sampling device (D × H = 80 mm × 100 mm) and scheme of the sampling
process.

2.4. Computational Fluid Dynamics (CFD) Analysis

The water flow of the sampling device was simulated using Flow-3D software (Flow
Science, Inc., Santa Fe, NM, USA). The solver version was 12.0.3.02 lnx64 02/05/2021 HPC.
More details regarding the software, hardware, and fluid properties are provided in Table
S1. Before the CFD analysis, the flow velocity was studied in the following three cases:

• Case 1 (XX): Filtration without filters and microplastics.
• Case 2 (FX): Filtration with an STS filter inside the device without microplastics.
• Case 3 (FM): Filtration with an STS filter inside the device and 30 mg of microplastic

solution dispersed in 30 mL of ethanol.

The amount of microplastics selected for the flow velocity experiment was set at 30 mg,
which minimizes the influence of external factors such as air flow and vibration on the
measured value of the ultra-microbalance. Since the device has a symmetrical structure, the
simulation was carried out for only one quarter of the device, and the microplastic particles
were excluded from the CFD analysis.

2.5. Reference Material Recovery of the Sampling Device

The recovery rate of the sampling device was confirmed by the difference in weight be-
fore and after the filtration of microplastics of 20 µm or less using an ultra-microbalance. A
woven STS filter was used for filtration to prevent plastic contamination using a membrane
filter, and the SEM image is shown in (Figure 3). The microplastic reference materials used
were polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyvinyl
chloride (PVC), and polyethylene (PE). These five plastics are the most frequently found
plastics in the environment [28].

The microplastics were prepared with multi-stage sieve shaking after ultrafine grind-
ing at the Korea Testing & Research Institute (KTR). Two types of microplastic reference
materials produced by Bundesanstalt fuer Materialforschung und -pruefung (BAM) in Ger-
many, PS and PE, with diameters in the range of 10–300 µm, were used. The microplastics
produced by KTR are diverse and several micrometers in size. These reference materials
were divided into two size ranges. The first range included microplastics with diameters
of dozens of microns, and the second range included microplastics with sizes of a few
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hundred microns. The lower 10% size, middle size, and upper 90% size for the particle size
of each range are shown in (Tables 2 and 3). The average particle size and the distribution
of the microplastics were analyzed using a particle size analyzer (LA-350, HORIBA), and
the shape of the particles was confirmed using a SEM analysis (Figure 2).

Table 2. Size distribution of the first range of microplastic reference materials.

Cumulative Diameter d (10%) d (50%) d (90%)

Cumulative
diameter (µm)

PE 11.0 18.0 29.7

PET 9.8 15.8 25.0

PS 9.0 14.1 21.5

PP 10.0 16.4 29.3

PVC 10.6 16.7 25.2
d (10%): 10% of the total particles are smaller than this size. d (50%): 50% of the total particles are smaller than
this size. d (90%): 90% of the total particles are smaller than this size.

Table 3. Size distribution of the second range of microplastic reference materials.

Cumulative Diameter d (10%) d (50%) d (90%)

Cumulative
diameter (µm)

PE 102.1 203.3 331.1

PET 108.4 165.4 235.5

PS 70.4 140.1 218.0

PP 120.1 170.0 253.7

PVC 109.8 160.3 233.3
d (10%): 10% of the total particles are smaller than this size. d (50%): 50% of the total particles are smaller than
this size. d (90%): 90% of the total particles are smaller than this size.
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Figure 3. SEM image of (a) a STS filter, (b) polyethylene, (c) polyethylene terephthalate,
(d) polystyrene, (e) polypropylene, and (f) polyvinyl chloride.

First, the filter was washed with an 99 % filtered ethanol solution and oven-dried at
90 ◦C for 1 h in a glass Petri dish. Microplastics were weighed and sonicated in 500 mL of
DI water for 30 min. The DI water containing microplastics was filtered through a sampling
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device that was set to the STS filter on the cassette. After filtration, the STS filter was
oven-dried at 90 ◦C for 1 h and then weighed again. By comparing the injected plastic
weight (winj), the difference in the weights of the STS filter before (Fwini) and after (Fwfin)
filtration was calculated to estimate the recovery rate of the device (Equation (1)).

Recovery rate (%) =
Fw f in − Fwini

winj
× 100 (1)

All procedures for the recovery experiment were conducted while covered with an
aluminum foil to minimize contamination caused by exposure to air, and a cotton lab coat
and neoprene powder-free gloves (Microflex®, Richmond, Australia) were used. All tools
and dishes were washed with filtered ethanol and DI water. After filtration, all filters
containing Petri dishes were sealed with a paraffin film. All pieces of the device were
washed with filtered ethanol and DI water before use. The samples were covered with
aluminum foil after oven drying. The device inlet and all sample passages had no contact
with any filter or cassette. After using the device, all parts were removed, followed by
washing with ethanol and drying in an oven.

The recovery from the pretreatment process was performed using an ultra-microbalance.
The STS filter was weighed before and after each pretreatment process to estimate the re-
covery rate of the sampling device. Pretreatment involved conventional methods such as
wet peroxide oxidation (WPO) and density separation with ZnCl2 [29,30] (Figure 4).
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Figure 4. Pretreatment processes (WPO was performed at 80 ◦C for 3 h; Density separation was
performed at 1.6 kg/L density; Size classification was performed with the sampling device equipped
with three multi-stage filters, a: 45 µm, b: 20 µm, and c: 1 µm).

3. Result and Discussion
3.1. Sampling Device Modifications

First, the passage of samples cause by the occurrence of wrinkles in the existing filter
was minimized, and the loss of samples due to circle-shaped silicon O-rings and low
watertightness was reduced (Figures 5a and S2). Circular silicone O-rings were prone to
microplastic attachment and loss. The second improvement changed the overall support
cross and sealing shape of the cassette so that the filter was positioned inside the gasket.
Therefore, the filter wrinkling phenomenon was further prevented as shown in Table 4. The
height difference due to filter crumpling disappeared via improvements in the sampling
device (Table 4, Figure S2), and watertightness was improved to prevent the sample
from passing through the side of the filter; this was verified by the 3.3 size distribution.
Furthermore, a support structure was added to the cassette to prevent the wrinkling of the
filter and to divide the sampling sites for analysis (Figure 5b). Finally, the upper space of
the device was increased by improving the flow inside the device to weaken turbulence
and flow velocity (Figure 5c).
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Table 4. Filter height change in STS filter after filtration. (Average and standard deviation value of
four side of filter height).

Device 1 Device 2 Device 3

Filter height (mm) 0.30 ± 0.14 0.13 ± 0.05 0.00 ± 0.00
Height reduction: Device 1 to 2 was 56.7%, Device 2 to 3 was 100%.

3.2. Changes in Flow Velocity and Turbulence in the Device

Figure 6 shows the average flow velocity (Superficial velocity to filtration direction; top
to down) via—the sampling devices. Device 1 and 2 showed a relatively low flow velocity
compared to Device 3 in the cases of XX and FX. This indicated that head loss in Device
3 was low compared to the other devices due to its structure. Device 3 had a relatively
larger volume in the space between the cassette and the housing (Figures 2, 5 and 7). On
the other hand, in Device 1, the water flow was obstructed due to the sudden expansion at
the end of the inlet pipe, and the flow between the filter and the top of the housing was
restricted due to the very narrow space between the cassette and the housing. As a result,
the horizontal flow over the filter was restricted, and rapid vortices and turbulences were
formed, intensifying the flow toward the center of the filter. CFD simulation results also
supported this, as shown in Figure 8. In Device 1, unlike the other cases, strong turbulence
formation could be seen at the outer edge of the central inlet pipe. The flow velocity
distribution on the filter surface also showed strong fluctuations in Device 1 as shown in
Figure 9.

This structural feature of Device 1 could lead to two poor outcomes as a sampling
device. One outcome is that microplastics tend to be pushed out of the center of the filter and
accumulate on the sides due to the concentrated central flow (Figure S2). Furthermore, the
lateral flow with strong vortices forces the microplastics into contact with the housing walls
O-ring and increases the risk of microplastic loss during the sampling process. Another
outcome is the deformation of the filter caused by a centralized flow. The relatively
unbalanced flow applies a strong vertical force to the center of the filter, which causes filter
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deformation, as shown in Table 4. In addition, in the case of Device 1, such deformation
may be strongly formed due to the absence of a support under the filter. If the filter is
deformed in this way, it may make it difficult to handle and increase errors in the analysis.

Meanwhile, the reverse flow at the bottom of the filter was confirmed in the CFD
simulation as shown in Figure 8d–f. This reverse flow, which appeared as a rapid change in
flow in a narrow space, was believed to decrease the filtration rate and increase resistance,
as shown in Figure 7. Devices 2 and 3 had similar structural characteristics, but Device 3
had a larger space above and below the filter and a wider filter support. This structural
difference seemed to weaken the reverse flow from the bottom to the top of the filter, as
shown in Figure 8e,f. As a result, the flow in the cassette was relatively stable in Device 3,
and the filtration stability was relatively secure. This flow stability may affect high recovery
during the sampling.
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3.3. Size Distribution of Filtered Reference Microplastics with Device

The size classification was performed by applying a three-stage filter to the sampling
device, where the pores of the STS filter were 1, 20, and 45 µm in size. Three stages were
applied to classify against the minimum particle size of the injected reference material. In
the size distribution experiments, a mixture of the two size range reference materials was
used. The average particle diameter and cumulative diameter of the reference material
filtered through Device 3 are listed in (Tables 4, S5 and S6). Microplastics with an average
target diameter could be sorted using multi-stage filtration. It is confirmed that the median
particle size of microplastics present in the filtered filter increased according to the filter
pores installed in Device 3 and was separated by filter pores. However, when the large
amount of reference material was injected (over 30 mg), the small size of particles could not
enter the next stage due to the fouling of the pores in the first stage. Therefore, the median
particle size of some stages equipped with fouled filter, showed smaller than the installed
filter pore size (Table 5). Microplastics of several microns present in the environment were
difficult to analyze using microscopy and thermal analysis. Therefore, in this study, a
relatively large amount of microplastics were used to evaluate the size classification and
recovery rate of the device. Thus, fouling occurred in the size classification result. However,
since the pretreated microplastic samples from the environments were present in a range of
several micrograms [25,31–34], the fouling phenomenon of the filter was expected to be
significantly reduced.

Table 5. Median (d 50%) value results of size distribution.

3rd Stage 2nd Stage 1st Stage

STS filter pore size 5 µm 20 µm 45 µm
PE 19.2 28.3 61.0

PET 12.0 14.8 77.8
PS 14.9 23.9 105.9
PP 13.8 16.1 24.1

PVC 14.8 17.6 60.0

3.4. Microplastic Recovery Results of the Sampling Device

The final recovery rate of Device 3 was 94.2%, and the overall recovery rate of mi-
croplastics showed an increasing trend as the device improved (Figure 10). In the case
of Device 3, a recovery rate of over 90% was confirmed for all plastics. A comparison of
recovery rates found in previous studies that used the same encapsuled method is shown
in Table 6. The developed device had the highest recovery rate. This rate increased when
the loss in the device where the sample comes into contact with CFD was confirmed and
improved.
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Table 6. Recovery rate of encapsuled methods.

Yuan et al. [35] Harrold et al. [36] This Study

Recovery rate (%) 80.2 88 94.2
Size range of references

materials (µm) 125–150 5–296 5–30

Recovery rate experiment of pretreatment process was performed with Device 3 which
has the highest recovery rate. The recovery rate of wet peroxide oxidation and density
separation was at least 89.5% (Table 7). Thus, a high efficiency was confirmed even when
sampling and pre-processing devices were used, as opposed to the experimental tools and
equipment used in the previous study. Additionally, our proposed device showed less
cross-contamination than was observed in other studies (Table 8). In the case of negative
blank samples, 4–17 and 0–6 contaminating particles smaller than 20 µm appeared during
the sampling and pretreatment processes, respectively.

Table 7. Recovery rate of pretreatment.

No. Species Recovery Rate of WPO
(%)

Recovery Rate of Density
Separation (%)

1 PP 91.4 98.8
2 PS 94.3 98.0
3 PET 99.5 89.5
4 PVC 97.0 99.7
5 PE 92.9 98.1

Table 8. Results regarding the blank sample subjected to the sampling device and pretreatment
process.

No. Concentration
of MPs Phase Control Method Ref.

1 0.172 particles/L Water X Encapsuled [37]
2 91–141 particles Procedure blank X [26]
3 * 5–9 particles Air O Passive air [38]
4 31 particles Water O Manta net [20]
5 ** 4–7 particles Air and water O Encapsuled The current

study6 ** 0–6 particles Pretreatment O Encapsuled
* Over 50 µm. ** Under 25 µm.

For the encapsuled method used in this study, the amount of sample taken per sample
was smaller than other methods. This limitation was improved by replacing the filter
between samples, but this could increase the probability of contamination due to increased
external exposure of samples. As a result, relatively small size and small amount of
plastic contamination still occurred. In addition, since pump power is still required during
sampling, an electrical device or sample transfer process is essential. Applying high-
temperature treatment and using negative-pressure laboratories, methods employed in
other studies, will solve the problem of pollution [17].

The smaller the microplastics, the more easily they can enter the human body and the
greater risk they pose [39]. However, a new and cost-effective filter has a minimum pore
size of 1 µm, and it is difficult to analyze microplastics at a nanoscale using spectroscopic
analysis or thermal analysis. Therefore, the development and improvement of a device
for analyzing microplastics of 10 µm or less will be helpful for tracking and analyzing
microplastics, provided a suitable filter is used.
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4. Conclusions

We proposed a microplastic sampling device and pretreatment process that excludes
plastic from the entire process. In this study, using a highly efficient encapsulation method
of sampling, sample loss and external contamination were minimized, and a device capable
of classification by size was developed. The device was evaluated by using five types of
reference microplastics. While carrying out structural modifications to the device, a CFD
analysis was performed to identify the shape and flow velocity of turbulence that may
occur during sampling. It was confirmed that the efficiency, contamination, minimization
of loss, and the flow of fluids were made more suitable for the sampling via a structural
improvement in the device. In addition, the minimization of the loss of microplastics
contained in a sample has been verified by an experiment of recovery rates depending
on weight of the used filter. As a result of the modification, a recovery rate of over 94%
was confirmed, which is higher than the previous studies. Therefore, it could be easily
applied by separating microplastics from different environmental samples and collecting
microplastic samples of desired size. In conclusion, the proposed device can overcome
existing limitations caused by contaminants generated during the pretreatment process
and can prepare for high-quality microplastic analysis with a high recovery rate.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15053907/s1, Table S1: CFD analysis conditions for the sampling
devices; Table S2: Recovery results using Device 1 with reference material; Table S3: Recovery results
using Device 2 with reference material; Table S4: Recovery results using Device 3 with reference
material; Table S5: Size distribution 10% value size (µm); Table S6: Size distribution 90% value size
(µm); Figure S1: SEM image of STS filter (a) before and (b) after filtration; Figure S2: Visual results
after filtration using the STS filter in (a) Device 1, (b) Device 2, (c) Device 3.
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