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Abstract: The spatial forms of hill-neighboring blocks and the wind–thermal environment are crucial
components of urban planning and urban ecology. Understanding their correlation is significant for
creating a healthy community and enhancing the sustainable level of buildings and their systems.
Therefore, Jinan, a multi-mountainous city in China, is taken as the research area, and the ideal
model of hill-neighboring blocks is built based on categories of all these block types by aerial imagery
and a semantic segmentation algorithm. Then, we use the CFD simulation software PHOENICS
and the evaluation system weighted by random forest to simulate and assess the wind–thermal
environment. Ultimately, the correlations and specific mathematical equations between the spatial
form indicators and wind–thermal environment are obtained by a parametric method. The results
demonstrate that the interface density on the near-hill side and hill surface roughness are the most
related indicators to the overall wind–thermal environment. The variation in block spatial form has
the most distinct influence on the proportion of breeze area and PMV. The relationship determined
herein can provide strategic recommendations for decision makers for optimizing the outdoor air
flow of blocks and enhancing the thermal comfort of pedestrians, which helps to create a healthy and
comfortable outdoor environment in multi-mountainous cities.

Keywords: CFD simulation; hill-neighboring block; wind–thermal environment; spatial form indicator;
deep learning; random forest

1. Introduction

The world is becoming more and more urbanized, and this trend will continue for
the foreseeable future; with only 2% of the world’s population living in urban areas in
1800 [1], it is expected that by 2050, the world’s population will reach 70% urbanization
and 100% by 2092 [2]. As the country with the fastest urbanization rate in the past 30 years,
China’s urban areas have grown at an average annual rate of 7.9%, which is 2.14% higher
than the world average. It is still likely to be the world’s fastest-growing country in the
future. Rapid urbanization will severely change the earth’s surface. And artificial surfaces
will release and absorb more heat energy than natural surfaces, significantly changing the
thermal environment at the surface [3]. As essential components of the urban environment,
the urban thermal environment and wind environment are closely related and are often
considered simultaneously in urban design and other fields. The deterioration of the
wind–thermal environment will exacerbate the urban heat island effect and air pollution
and increase the energy consumption of indoor cooling and mechanical ventilation. This
will lead to heat-related diseases and even death, seriously affecting human health [4].

Urban form may affect the wind–thermal environment in a variety of ways, and many
scholars have concentrated on urban design and related guidance under the influence of
the wind–thermal factor. The relevant research can be roughly divided into five categories:
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The first is the management and control method [5,6]. Relevant policies, planning manage-
ment [7,8], control modes, control indicators, and the framework of urban design [9,10] that
are conducive to improving the urban wind–thermal environment are explored through
the perspective of urban planning and urban design. This kind of research mainly solves
macroscopic problems, and its practicability and actual improvement of the wind–thermal
environment are slight now. The second is the optimization strategy, which relies on
relevant numerical simulation [11], spatial analysis [12] and other methods to propose
spatial optimization and update strategies for specific areas under different proposals.
The matters solved by this kind of research are not highly reproducible and are limited to
specific districts. The third is scheme selection, which chooses the optimal solution such
as site selection and layout and urban design from the perspective of wind and thermal
environments [13–16], limited to settle problems under specific districts and proposals,
too. The fourth is the evaluation system, which establishes appropriate measurements for
specific research objects [17,18], mostly involving the climate comfort degree [19]. And
there is a low reference value for other aspects. The fifth is correlation exploration, which
explores the relevance between typical urban spatial elements. Some scholars take streets
as research objects to explore the impact of street spatial form on the wind environment and
air quality [20–22]. Some other scholars also focus on the shape of a newly built area or the
whole city, and explore the relationship between it and the wind environment from a more
macro perspective [23,24]. In addition, some scholars explore the relationship between
the urban thermal environment, landscape, architecture, street and other comprehensive
perspectives [25–27]. This kind of research has a comparative reference value, but the indi-
cators selected by the existing research are on an urban and architectural scale [28–30], and
the factors selected on a block scale are not comprehensive and systematic enough [31,32].
The research is not deep enough, either. In addition, there is a great lack of relevant re-
search on special landforms, such as mountain cities, basin cities, coastal cities, and so
on. As a country rich in natural landform characteristics, there are a wide variety of block
types, especially mountainous cities. Hills have been integrated into urban construction,
and the existence of hills not only affects the texture of the city, but changes the type of
surrounding microclimate, affecting the urban wind–thermal environment. In addition,
the determinants of the wind–thermal environment vary at different scales, and the cost of
calculation and design in actual studies is also diverse. As the basic unit of urban structure,
the correlation between blocks’ spatial form and the wind–thermal environment provides a
reference value for enhancing the city health index. So, the specific correlation between
the spatial forms and the wind–thermal environments of the urban block adjacent to the
natural hill (hill-neighboring block) is worthy of further research.

As one of the typical representatives of hill-neighboring cities in northern China, Jinan
has a large-scale hill in the south, which is a natural ecological barrier of the city, and a
small hill scale in the downtown area, which is integrated into the city block to form a rich
form of hill-neighboring block. There are 72 hills closely adjacent to urban blocks within the
Jinan Ring Expressway encircled area, including Qianfo Mountain, Fohui Mountain, Jinji
Mountain, Xiaogui Mountain, etc., with adequate samples. We used DJI Mavic 3 Classic
UAV (unmanned aerial vehicle, DJI Innovation, Shenzhen, China) to obtain aerial images
of these hill-neighboring blocks, and carried out feature extraction and identification with
the help of computer vision algorithms (Figure 1). Semantic segmentation technology
combined with deep learning has been applied to many aspects in the field of computer
vision now, which has a good effect on image semantic segmentation [33,34]. In this
research, we used the Deeplav3+ model to train the model based on a set of 1000 relevant
aerial urban images, including mountains, buildings and benchmark urban scenes. Using
this model, we extracted the spatial form features related to the hill-neighboring blocks.
On the basis of the semantic segmentation results, this study divides these hills into three
categories and seven sub-categories of prototypes (Appendix A), which are the encirclement
of the hill around the block, the tangent of the hill on the block, and the embedding of
the hill into the block. The enclosure of the hill around the block refers to the enclosed
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relationship between the hill and the block, which can be subdivided into four types:
round-shaped, L-shaped, U-shaped, and point-group shaped according to the different
degree and direction of enclosure. The tangent of the hill on the block refers to the tangent
relationship between the hill and the block, which can be subdivided into corner and
linear on the basis of the different scale and the various tangency modes of the hill. The
embedding of the hill into the block refers to the occlusal relationship between the hill and
the block, which can be subdivided into a semi-embedded hill and block and a block along
the hill according to the different orientation and occlusion degree of the hill. Most of the
hills in the built-up area of Jinan are point-shaped hills, and the L-shaped enclosure in the
hill and block enclosure is the main form of existence. This research takes this model as an
example for variations in spatial form indicators and the latter wind–thermal environment
numerical simulations. And it explores the correlation between the spatial form indicator
and the wind–thermal environment of Jinan’s hill-neighboring blocks, so as to provide a
reference for the optimization of the wind–thermal environment of similar types of blocks
in Jinan and other similar northern cities in China.
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Figure 1. Example of semantic segmentation (Taking Xiaogui mountain, Muniu mountain, Ganniu
mountain, Kuang mountain as examples).

2. Materials and Methods
2.1. Spatial Form of Hill-Neighboring Block
2.1.1. Selection of Spatial Form Indicators

In this research, the spatial form indicators of the hill-neighboring block are selected
based on three criteria: “relating to the wind-thermal environment, characteristics of the
hill-neighboring area highlighting, and CFD (Computational Fluid Dynamics) simulations
valuing”. The indicators can be categorized into five categories (Table 1), namely hill-block
relationship, hill scale, terrain undulation degree, interface density and block structure.
Among them, the hill–block relationship parameter mainly refers to the hill–block distance
(d). The distance between the hill and block has an impact on the “narrow pipe effect” (it
refers to the effect of narrow terrain on air flow. When the air flows from the open area
into the canyon formed by the terrain, because the air mass cannot accumulate in large
quantities, it accelerates through the canyon, and the wind speed increases. As it flows out
of the canyon, the air slows down again) that may occur between the hill and the block.
The junction mode of the hill–block has different effects on the wind speed, temperature,
and incoming flow angle due to the orientation of the hill, the degree of enclosure of the
hill around the block, and the degree of the embedding. Hill scale parameters mainly
include the height (h), slope (i), and surface roughness (Ra). The height of the hill may
affect the temperature and pressure of the valley wind. The slope may affect its wind
pressure, wind speed, and incoming flow angle. The surface roughness may also affect
the wind speed and pressure. For the remaining three categories, this research selects the
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degree of terrain undulation (R), the interface density on the side of the hill (De) [35], and
the angle between the direction of important streets and prevailing winds (θ) for in-depth
investigation. Among these indicators, the changing degree of terrain undulation may
affect the flow of vertical winds within the block. The interface density on the hill side may
affect the wind force when valley wind enters the block, which is related to the “narrow
tube effect” between the hill and block. The alignment of the main streets to prevailing
winds has a strong relationship with the emergence of undesirable wind fields in the block
and the improvement of the wind environment.

Table 1. Spatial form indicators of hill-neighboring block.

Categories Indicators Specific Illustrations

Relationship between hill and block Distance between hill and block (d)

The distance between the building
property line of the block and the green

line of the hill (the control line of the
no-construction zone).

Hill scale
Height of hill (h), slope of hill (i) The average slope of the hill is used to

refer to the slope of the hill.

Surface roughness of hill (Ra)

Terrain undulation Degree of terrain undulation (R)
R = Hmax − Hmin (Hmax and Hmin

They are the maximum and minimum
elevations in the block, respectively.)

Interface density Interface density of near-hill side (De)
De = ∑n

i=1
Wi
L (where Wi represents the

width of the projected surface of the
building along the street in section i)

Block structure Angel between the direction of important
streets and prevailing winds (θ)

2.1.2. Setting of Spatial Form Indicator Variations

The simulation of the outdoor wind–thermal environment generally includes two
types: the real block model and the ideal block model. The real block model is suitable for
discussing the merits and demerits of wind–thermal environment under different design
schemes, or assessing the wind–thermal environment of specific blocks. The ideal block
model is more appropriate for investigating the impact of the change in a single spatial
form indicator on the wind–thermal environment around the building group. Based on this,
this study chooses to establish an ideal model to explore the correlation between the spatial
form indicators of the hill-neighboring block and the wind–thermal environment. The ideal
model is extracted from the results of semantic segmentation, which has investigated the
shapes and junction patterns of these blocks. Firstly, a benchmark model is established.
Through the field investigation of the wind–thermal environment in the earlier stage, it
is known that the wind–thermal environment of the block where the height of the hill
is in the range of 70–180 m is positively different from that of another block of the same
type. And at this time, the association between the height of the hill and the wind–thermal
environment has a certain value for research. In order to facilitate the later discussion
of indicator variations, the height of the benchmark model is set at 120 m. And in this
research, only the hill closest to the block is considered, other surrounding hills’ effect
on the block is under no consideration. Referring to the formula associated with the hill
terrain, the height-to-width ratio H/L1 (note: H is the height from the top of the slope to
the ground, that is, the height of the hillside. L1 is the horizontal distance from a point on
a hillside that is half the height of the top of the slope to the top of the slope, called the
length of the half slope, and H/L1 is the aspect ratio) is used to describe the shape and
size of the hill. And it takes the height and width ratio H/2L1 as the average slope [36]. In
addition, for the built part of the block, given that most of the block adjacent to the hill
in the built-up area is a medium-height to high-height residential district, the research
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follows the specific requirements of the standard for urban residential area planning and
design for building height, building density, plot ratio, and minimum distance for sunlight
of residential district, etc. [37]. The ideal model of the hill-neighboring block as the basic
condition is set as shown in Figure 2. The block size is 300 × 300 m. The building unit size
is 40 × 18 m, the building height is 27 m, the building north–south spacing is 36 m, the
east–west spacing is 14 m, the building density is 0.2, the layout of building is the basic
row–row type, and the building boundary is 30 m away from the plot boundary. The ideal
model is used as a benchmark model for the analysis of the variables in the later stage, and
in order to make the results of the study more focused, only Figure 2a has been chosen to
be discussed here, and the other two types will be explored at a later stage (Figure 2).
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Figure 2. Benchmark models of three types of hill-neighboring blocks extracted from real blocks:
(a) the encirclement; (b) the tangent; (c) the embedding.

The control variates method is adopted to set the variation of each indicator to in-
vestigate the influence of spatial form changes on the wind–thermal environment of the
hill-neighboring block (Table 2); a corresponding physical model is established to reflect
the variation. Indicator A series changes the spatial form of the hill-neighboring block by
setting the distance between the hill and the block. Based on the benchmark model, the
distance (d) between the hill and the block is changed, and the distance between the block
and the green line of the hill is decreased and increased by 3 m, 6 m, and 9 m, respectively.
Indicator B1 series sets the height of the hill (h) on the basis of its benchmark model by
decreasing and increasing the height of the hill by 15 m, 30 m, and 45 m, separately. Indi-
cator B2 series changes the average slope of the hill (i) by changing the height-to-width
ratio of the hill on the basis of the benchmark model by setting the average slope to 0.3,
0.45, 0.6, 0.75, 0.9, and 1.05. Indicator B3 series changes the surface roughness (Ra) of the
hill based on the benchmark model. They are set to 0.1, 0.15, 0.20, 0.25, 0.30, 0.35. Indicator
C series sets the change in indicators by referring to the grading of the relevant slopes,
limiting the slopes to those between slopes and steep slopes, i.e., 5–35◦, which translates to
a degree of undulation of about 8–55 m. Indicator C1 series sets the elevation of the hill
side lower than that of the far hill side, and the difference in elevation is 9 m, 18 m, 27 m,
36 m, 45 m, and 54 m. Indicator C2 series sets the elevation of the hill side higher than
that of the far hill side, and the difference in elevation is the same as that of C1. Indicator
D series, under the premise of guaranteeing minimum distance for sunlight of buildings
in block, changes the width of the projected surface of the hill side street by changing the
depth of the building on the hill side, so as to change the interface density on the hill side
(De). The depth of the buildings on the hill side is decreased and increased by 1 m, 2 m,
and 3 m. Indicator E is based on the benchmark model, and the angle between the main
street direction (east–west arrangement) and the prevailing wind direction is changed to
0◦, 15◦, 30◦, 90◦, 105◦, and 120◦, respectively. The settings for each working condition are
shown in Table 2. The modeling software Sketchup (v2023) is suitable for multi-scale urban
modeling, and can be exported or converted to a variety of formats at a later stage to be
compatible with CAD (v2022), PHOENICS (v2022), and other software.
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Table 2. Setting of variations in each spatial form indicator.

Indicator A series: setting of distance between hill and
block variation Indicator B1 series: setting of the height of hill variation
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2.2. Wind–Thermal Environment of Hill-Neighboring Block
2.2.1. Wind–Thermal Environment Simulation

In this research, PHOENICS (v2022) is used to simulate the wind–thermal environment
in the hill-neighboring blocks. It is an early commercial numerical simulation software,
which has been widely used in the field of architecture design, and to simulate the wind–
thermal environment at small and medium scales. It is fast and open, and the number
of iterations and the simulation accuracy can be adjusted manually [38]. The simulation
process is divided into three modules: pre-processing, calculation, and post-processing.
The pre-processing module mainly includes the establishment of the model, the import, and
the setting of boundary conditions. The calculation module is responsible for calculating
the wind–thermal base value, and the process can detect the fluctuation in the residual
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value. When the obtained convergence is within the error tolerance, it can be confirmed
that the experiment has a reference value, and otherwise, it will return to the pre-processing
module for correction. The post-processing module is for the acquisition and visualization
of data, which can obtain the specific wind–thermal data of each point, and export the wind
speed, wind pressure, thermal environment, and other related diagrams.

When proceeding with the wind–thermal simulation, this research sets the mete-
orological parameters by referencing the annual standard meteorological data of Jinan
in the China Meteorological Network (The related weather dataset can be adopted at
https://data.cma.cn, accessed on 10 July 2023). It includes the dominant wind direction,
wind speed, wind pressure, temperature, and solar radiation in summer. And model
indicators such as the roughness of the subsurface, the material of the building surface,
the corresponding radiance, and the thermal conductivity of the relevant materials are
set with reference to the hill-neighboring block of Jinan. The computational domain is
set according to the size of the model. The appropriate turbulence model, energy model,
and number of iterations are selected according to the scale of the simulated block and the
required accuracy of the results. The season is set to be summer, the simulated wind speed
is set to be 2.8 m/s, prevailing winds direction is east–southeast, and the solar radiation
at noon is taken to be 800 W/m2. The influence of the range of the wind field is limited,
and it requires sufficient space to simulate the wind flow. So the computational domain
is reserved to 5 times the length of the modeling area in the X-axis and Y-axis directions,
and 3 times the maximum height of the model in the Z-direction. We choose the standard
k-ε equation for the turbulence model to better simulate the wind flow at the block scale.
It is a two-equation turbulence model proposed by Jones et al. in 1972, which can satisfy
most engineering problems and has good numerical simulation results under most wind
angles [39]. And the IMMERSOL model (Formula (3)) based on the basic formula of radia-
tion heat transfer, namely Stephan-Polz law, is used as the radiation model [40,41]. Their
formulas are as follows:

K equation:
∂(ρk)

∂t
+∇(ρUk) = ∇[(µ +∇(k)] + PG − ρε (1)

ε equation:

∂(ρε)

∂t
+∇(ρUε) = ∇

[(
µ +

µt

σε
∇(ε)

]
+ C1

ε

k
PG − C2ρ

ε2

k
(2)

∇

 1

0.75 ∗
(

a + s + 1
L

) ∗ ∇E3

 = (a + s) ∗ (E12 − E3) (3)

In the formula, ut is the viscosity coefficient of turbulence, µt = Cµρ K2

ε . U represents
the velocity vector of the fluid. E3 is the comprehensive emissivity, representing the net
amount of radiation energy gained or lost per unit volume; E12 is the average radiant force
on the surface of the first and binomial fluid; a is the absorption rate of the medium; s is the
scattering coefficient of the medium; L is the distance between two solid radiating surfaces
for calculation. The values of the empirical constants included in the governing equation
are shown in the Table 3 below, where the first term on the left side of the equation is zero.

Table 3. Empirical constant of model.

Constant Cµ C1 C2 σT σk σε

Value 0.09 1.44 1.92 0.9–1.0 1.0 1.3

And by the numerical experiments and comparisons, it can be found that when the
number of iterations is 2000, the residual value of the model will fall within the range of
1 × 10−4~1 × 10−5, which can be judged to be convergent. Therefore, 2000 times are

https://data.cma.cn
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selected as the reference iterations for the simulation. At the same time, the convergence
result, the propriate boundary condition settings, and the real measured results are used to
verify that the CFD simulation is reliable.

2.2.2. Selection and Assessment of Wind–Thermal Environment Indicator

The evaluation factors’ selection process of the wind–thermal environment is based on
the consideration of three criteria: the ease of measurement, the convenience of comparing
the changes they produce, and their appropriateness to the scale of the block. Most of the
evaluations related to the wind environment are focus on the mechanical effects of wind on
people. The relevant indicators are instantaneous value, average value, ratio, probability,
inhomogeneity factor, ventilation potential coefficient of wind speed, and proportion of
breeze area, etc. These indicators focus on wind comfort and wind safety at the height of
pedestrians [42]. This research selects the average wind speed, average wind speed ratio,
inhomogeneity factor of wind speed, and proportion of breeze area (Table 4). Among them,
the average wind speed is the mean value of the instantaneous wind speed in a given
time, which is certainly representative of the wind strength. The average wind speed ratio
can be used to assess the comfort of the wind environment when meteorological statistics
are absent. The inhomogeneity factor of wind speed can characterize the degree of wind
speed distribution in a certain region; the higher the score, the lower the inhomogeneity.
The proportion of breeze area refers to the ratio of the sum of the area in the breeze zone
in the study to the total area of the study area, which has a large negative impact on the
suitability of walking on the street. It can be used to characterize the safety and comfort of
the regional wind environment.

Table 4. Selected results of evaluation indicators of wind–thermal environment.

Categories Indicators Specific Illustration

Wind environment
entry 2

Average speed
The accuracy of the description of real-time wind speed is

controlled according to the time interval. The larger the time
interval, the rougher the description.

Average speed ratio
R = Vr/V0 (Vr represents the average wind speed at the testing

point, and V0 represents the average wind speed at 10 m height of
the local standard landform.)

Inhomogeneity factor of
wind speed

∆ui = ui − uN(i = 1, 2, 3, . . . , n)

σ =

√
∑n

i=1(ui−uN)
2

n−1
Inhomogeneity factor of wind speed (horizontal) Ku = σu

uN

Proportion of breeze area
Generally, the wind speed is 0~0.2 m/s, and the average wind

speed at a height of 10 m from the ground is less than 0.2 m/s, that
is, zero-level wind.

Thermal environment PMV
In a steady-state thermal environment, the greater the thermal load,

the farther away from the thermal comfort state.
PMV = [0.303exp(−0.036M) + 0.0275]TL

The evaluation related to thermal environment is a multidimensional perception
process, involving the combination of physiological, physical, psychological, and behavioral
factors. These include skin temperature, perspiration rate, temperature, humidity, wind
speed, solar radiation, specific thermal expectations of different populations, thermal
acclimatization, and thermal sensing ability, etc. [43]. There are a number of indicators
that combine these factors [44,45]. The most widely used ones are predicted mean vote
(PMV), physiologically equivalent temperature (PET), thermal comfort vote (TCV), thermal
sensation vote (TSV), and mean radiant temperature, etc. Among them, the predicted mean
vote (PMV) refers to the average value of the hot and cold sensations of most people in the
same environment, which integrates the physiological and physical factors of the human
body and environmental variables, and is suitable for the evaluation of the comfort of
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the steady-state thermal environment. Additionally, the predicted mean vote (PMV) is an
appropriate choice for block-scale thermal environment assessment.

In order to make an objective assessment of the changes in the wind–thermal envi-
ronment under different circumstances, we adopt the random forest method to help build
a wind–thermal evaluation system (Figure 3). The random forest is a machine learning
method which includes multiple decision tree classifiers [46]. And the relative weight of
each evaluation factor can be obtained when combined with the Gini index. In total, 70% of
the data set is taken as training data and 30% as test data for random selection of samples.
With the help of the machine learning analysis platform LIGHT Scholar (v2023), the value
of mtry (max features) is adjusted according to the principle of minimum average error
(Figure 4). And we use K-fold cross-validation with K = 10 to prevent overfitting. The
accuracy, Kappa coefficient, and AUC values of the training set and test set are 0.760, 0.252,
0.9976, 0.753, 0.221, and 0.9875, respectively (Table 5). The results show that the model is
reliable and can be used to calculate the weight of each evaluation factor (Figure 5).
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Figure 4. Oob Error Distribution under different random eigenvalues and the ROC curve of random
forest: (a) Oob Error Distribution under different random eigenvalues; (b) ROC curve of random forest.

Table 5. Performance of random forest.

Performance Metric Accuracy Kappa AUC

Training set 0.760 0.252 0.9976
Testing set 0.753 0.221 0.9875

In the specific scoring of the wind–thermal simulation results for each condition, the
wind–thermal numerical score of the benchmark model is defined as 0, and the other
simulated conditions are compared with it, with positive scores for better than the base
condition and negative scores for worse than it. The optimization degrees of 0–10%,
10–20%, 20–30%, 30–40%. . . and 90–100% correspond to 1, 2, 3, 4. . .10 points, respectively.
However, considering that some spatial form indicators have prominent impacts on the
wind–thermal environment and the fluctuation range is more than 100%, they take a
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differential score on these metrics. For the inhomogeneity factor of wind speed (P3), when
the variation is 100–150%, 150–200%, 200–250%, 250–300%. . . and 550–600%, it corresponds
to 11, 12, 13, 14. . .20 points, respectively. For the proportion of breeze area (P4) indicator,
11, 12, 13, 14. . .20 points correspond to when the change is 100–120%, 120–140%, 140–160%,
160–180%, 180–200%. . . and 280–300%, respectively. For the PMV (P5), when the change is
b 0–1%, 1–2%, 2–3%, 3–4%, 4–5%. . . and 9–10%, it corresponds to 1 point, 2 points, 3 points,
4 points. . . and 10 points. When the change is 10–20%, 20–30%, 30–40%. . .90–100%, and
greater than 100%, it corresponds to 11 points, 12 points, 13 points, 14 points. . . and
20 points. Similarly, when the result is worse, all of the above receive negative scores
(Table 6).
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Table 6. Differential scoring reference to part of the wind–thermal environment.

Categories
Variation 100–150% 150–200% 200–250% 250–300% 300–350% 350–400% 400–450% 450–500% 500–550%

Inhomogeneity factor
of wind speed 11 12 13 14 15 16 17 18 19

Categories
Variation 100–120% 120–140% 140–160% 160–180% 180–200% 200–220% 220–240% 240–260% 260–280%

Proportion of breeze
area 11 12 13 14 15 16 17 18 19

Categories
Variation 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100%

PMV 11 12 13 14 15 16 17 18 19

2.3. Correlation Analysis

In order to explore the correlation between the selected spatial form indicator and
the wind–thermal environment and their specific laws, correlation analysis and regression
analysis are chosen to analyze the relationships between the two variables. The correlation
analysis adopts Pearson analysis and Spearman analysis. Pearson can determine the
strength and direction of the linear relationship between the two variables, and Spearman
can judge the nonlinear relationship. Employing these two methods can determine the
linear and nonlinear correlation between the selected spatial form indicator and the wind–
thermal environment. Regression analysis can derive mathematical formulas between two
variables to help predict future trends. The coefficient of determination is used as the main
index. The value of the coefficient of the determination ranges from [−1, +1]; the larger the
absolute value of the coefficient, the stronger the correlation, and the higher the goodness of
fit of the regression equation. If the two are linearly correlated, the coefficient is a positive
number for positive correlation and a negative number for negative correlation, and if they
are non-linearly correlated, they need to describe their changes with the help of specific
regression equations.

This study visualizes and demonstrates the results obtained by means of correlation
heatmaps and scatter plots. The correlation heat map can specifically show the linear
correlation between two variables, which is the result of Pearson correlation analysis. A
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scatter plot can specifically show the linear correlation and nonlinear correlation of the
variables and the regression curve, the higher the correlation, the closer the fitted curve is
to the actual curve direction.

3. Results
3.1. Wind–Thermal Environment of Hill-Neighboring Block
3.1.1. Simulation of Wind–Thermal Environment

By importing the physical model corresponding to the change of each indicator into
PHOENICS for simulation, the results of the wind–thermal environment under each
working condition can be obtained, including wind speed cloud image, temperature
cloud image, and PMV cloud image, etc., as shown in Figure 6. The color change in
the figure corresponds to the change in the value. With the help of the legend on the
left, the wind speed, temperature, and PMV values in the block can be more clearly and
intuitively understood. In order to provide a more targeted assessment of the wind–thermal
environment in the hill-neighboring block, this research does not consider the wind–thermal
simulation results on the hill, and selects 12 typical testing sites in four categories inside the
block, including the interface near the hill, the outermost side of the block, the typical public
space surroundings, and the perimeter of the important ventilation corridors. The average
value of the wind–thermal data of these 12 testing sites under each circumstance is used to
represent the overall wind–thermal environment of the block (Appendix B). According to
these basic wind–thermal data, the value of each indicator in the comprehensive evaluation
system of the wind–thermal environment is calculated. It can be seen that the wind speed
fluctuates between 1.5 m/s and 3.8 m/s, the average temperature between 33 ◦C and
42 ◦C, and the PMV value fluctuates between 2 and 2.9 under the variation of the setting
of indicators A–E (Appendix B). The fluctuations of average wind speed under different
indicators are different. And compared with the benchmark model, the enhancement of
the average wind speed under the changes of each indicator is higher than the reduction,
the average temperature shows a slight enhancement as a whole, and the PMV average
value shows a reduction in general.
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Figure 6. Visualization results of wind–thermal simulation (take CaseA-1 for example): (a) wind
nephogram; (b) temperature nephogram; (c) PMV nephogram.

3.1.2. Assessment of the Wind–Thermal Environment

The wind–thermal environment simulation results under different circumstances are
graded, and the overall scores under each circumstance are compared with the single-factor
scores (Figure 7). It can be seen that there is little difference in the overall scores of the
wind–thermal environment for the series of cases A–E. But there are obvious contrasts
among the single-factor scores of the average wind speed, the inhomogeneity factor of
wind speed, and PMV. It is presumed that the selected spatial form indicators have a
comparative degree of influence on the overall wind–thermal environment of the block,
but there is some variability in the influence on the single factors of the wind–thermal
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environment. In the comprehensive evaluation of the wind–thermal environment, the
effect of hill surface roughness is more prominent, with a highest score of roughly six. The
scores of average wind speed, average wind speed ratio, and PMV for each case are mostly
positive numbers, and it is speculated that these spatial form indicators have a significant
effect on the improvement of these wind–thermal factors. There are more negative scores
of the inhomogeneity factor of wind speed and the proportion of breeze area, and it is
possible that these spatial form indicators are prone to negatively affecting these two types
of wind–thermal factors. The interface density on the side of the hill has the highest score
under the average wind speed factor, with an average value of roughly three. The height
of the hill and average slope of the hill have the highest scores under the average wind
speed ratio factor, with an average value of about two. The distance between the hill and
the block has the smallest negative effect on the inhomogeneity factor of wind speed, with
an average value of about −1. The interface density on the side of the hill has the most
positive effect on the proportion of breeze area, with an average value of about four. The
hill height scores highest in the evaluation of the PMV factor, with an average value of
about seven. The score can visualize and quantify the influence of spatial form indicators
on the wind–thermal environment factor, but its specific correlation needs to be clarified by
further correlation analysis.
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Figure 7. Comparison of evaluation results of each case of wind–thermal environment.

3.2. Association between Spatial form and Wind–Thermal Environment
3.2.1. Correlation Determination

The pairwise Pearson correlation between the hill-neighboring block’s spatial form
indicators and the wind–thermal environment evaluation factors is shown in Figure 8. The
distance between the hill and the block and the height of the hill are strongly positively
correlated with the overall wind–thermal environment; the surface roughness of the hill,
and the angle between the main street direction and prevailing wind direction are obviously
negatively correlated with the overall wind–thermal environment, whereas no significant
correlation is found between the degree of terrain undulation of the block and the overall
wind–thermal environment. In addition, the distance between the hill and block shows an
obvious positive correlation with PMV. The interface density on the side of the hill shows a
distinct negative correlation with the average wind speed and the inhomogeneity factor
of wind speed. The height of the hill, average slope of the hill, surface roughness of the
hill, and the degree of terrain undulation of the block all show clear negative correlations
with the proportion of breeze area. The degree of terrain undulation of the block, the
angle between the direction of the main street, and the prevailing wind direction showed
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remarkable negative correlations with PMV. The correlation between two single factors of
the same type is not a valuable reference, so this paper does not discuss this in detail. In
addition, non-linear correlations may exist, which need to be further investigated using
non-linear regression analysis.
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Figure 8. Pearson correlation statistics of spatial form indicators and wind–thermal environment
factors of hill-neighboring blocks.

Through linear and nonlinear regression analyses of the relationship between the
spatial form factors of the hill-neighboring block and the factors of the wind–thermal
environment, the correlation results and rankings are obtained. Among the seven selected
spatial form indicators, six of them, namely, the distance between the hill and block, height
of the hill, average slope of the hill, surface roughness of the hill, hill-side interface density,
and the angle between the main street direction and the prevailing wind direction, have
clear correlations with the wind–thermal environment. And the correlation strengths of the
above indicators are: hill-side interface density > surface roughness of the hill > average
slope of the hill > height of the hill > angle between the main street direction and the
prevailing wind direction > the distance between the hill and block (Figure 9), among
which the interface density on the side of the hill is the indicator with the highest degree
of fitness. Among the correlations between these seven spatial form indicators and the
wind–thermal single factor, the five indicators related to the proportion of the breeze area
are, in descending order of fitness: surface roughness of the hill > average slope of the hill
> the degree of terrain undulation (C2) > height of the hill > degree of terrain undulation
(C1). The fitting degree of the three indicators related to PMV is ranked from high to low as
follows: the degree of terrain undulation (C2), the angle between the direction of the main
street and the prevailing wind direction, distance between the hill and block.
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Figure 9. Results of correlation between spatial form factors and wind–thermal environment factors
of hill-neighboring blocks (ns means that the correlation is not significant, * means that the p value is
<0.1, ** means that the p value is <0.01, ˆ means that the correlation is non-linear).

3.2.2. Specific Regression Analysis

In the correlation analysis between the spatial form of the hill-neighboring block
and the overall wind–thermal environment, the interface density of the hill-neighboring
side and the surface roughness of the hill have distinct linear negative correlations, with
correlation coefficients of −0.8915 and −0.8856, respectively. The distance between the
hill and block and the height of the hill have significant linear positive correlations, with
correlation coefficients of 0.8117 and 0.8463, respectively. The average slope of the hill, the
angle between the direction of important streets and the prevailing wind direction, and the
overall wind–thermal environment of the hill-neighboring block are nonlinearly correlated
with each other, with correlation coefficients of 0.8536 and 0.8235, respectively. The average
slope of the hill, the angle between the direction of important streets and the prevailing
wind direction, and the overall wind–thermal environment of the hill-neighboring block
are nonlinearly correlated with each other, with correlation coefficients of 0.8587 and 0.8436,
respectively. The comprehensive scores of the wind–thermal environment of the former
firstly increase and then decrease, and then reach a peak when the average slope is 0.3. In
the latter case, the comprehensive score of the wind–thermal environment firstly decreases
and then increases, and reaches a peak at the angle of 0◦. Their specific regression equations
are shown in Figure 10.

In the single-factor correlation analysis, four types of indicators, namely, the height
of the hill, average slope of the hill, surface roughness of the hill, and degree of terrain
undulation of the block, showed apparent linear negative correlations with the proportion
of breeze area, with correlation coefficients of −0.8654, −0.8879, −0.9940, −0.8043, and
−0.8805, respectively. With the increase in hill height and average slope, it is easy to
form more breeze areas. An increase in the roughness of the hill surface would affect the
ventilation performance of the block due to the change in the roughness of the underlying
surface, resulting in the formation of more breeze areas. Both types of changes in the degree
of terrain undulation of the block are clearly correlated with the score of the proportion
of breeze area. Such as if the trend of the terrain is low on the near side and high on the
far side of the hill, the change is distinctly negatively correlated, and the score decreases
as the value of the elevation difference increases. If the trend of the terrain changes to
high on the near side and low on the far side of the hill, then the proportion of breeze
area increases with the increment of the value of the elevation difference, and there is a
significant positive correlation. It is assumed that if the terrain on the far side of the hill is
high, the “narrow tube effect” may be formed within a certain range in the hill-neighboring
block, which reduces the proportion of breeze area. And if the terrain on the near side of
the hill is high, it will be superimposed on the effect of the original hill, which will increase
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the wind shadow area of the block to a certain extent, and thus increase the proportion
of breeze area. At the same time, the thermal comfort of the block is affected; in this
case, the degree of terrain undulation of the block and the PMV show a significant linear
negative correlation, with a correlation coefficient of −0.9149. The interface density of the
hill-neighboring side with the average wind speed and the inhomogeneity factor of wind
speed are both significantly linearly negatively correlated, with correlation coefficients of
−0.8944 and −0.8799, respectively. The overall wind speed and the stability of the wind
speed decreased with the increase in the interface density on the hill-neighboring side.
The correlation between the distance between the hill and block, the angle between the
important street and the prevailing wind direction, and PMV are linearly positive and
negative, with correlation coefficients of 0.8514 and −0.9080, respectively, which shows
that the thermal comfort of the block increases with the increment of the distance between
the hill and block, and decreases with the increment of the angle between the important
street and the prevailing wind direction within a certain range. The specific regression
equations predicted for the wind–thermal single factor and the spatial form factor of the
block are shown in Figure 11.
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4. Discussion
4.1. Application to Urban Planning and Sustainable Development

Furthermore, as the smallest administrative unit in urban planning, blocks are con-
ducive to urban planning departments and managers to execute relevant controls [27].
Therefore, based on our research results, suggestions for sustainable and green development
of hill-neighboring blocks are put forward in the aspects of public space transformation,
green plant planning and tree species matching, planning and controlling mode, building
form, and layout optimization.

Firstly, among the six spatial form indicators with significant correlations with the
overall wind–thermal environment, the three indicators of the height of the hill, the slope
of the hill, and the surface roughness of the hill are all hill-related parameters, and it
is difficult to intervene artificially with natural hills in most of the developed block, so
planning should focus on how to impair the negative feedback they may generate and
enhance their positive feedback. From the analysis of this research, it can be seen that
they both have a distinct linear negative correlation with the score of the proportion of
breeze area. Therefore, in the renewal construction of the block, the “corner space” and
“enclosed space”, which may become breeze area, should be intervened and transformed,
so as to reduce their negative impact on the wind–thermal environment in extreme cases.
In addition, heat stress in cities can be reduced, and extreme summer temperatures can be
ameliorated by the planning of greenery, such as choosing vegetation with a lower density
of foliage for better wind cooling [47] and planting more trees and shrubs next to buildings.
The near-surface wind–thermal environment can be improved by a mixture of planting
various tree species and adding vertical greening.

Then, the distance between the hill and block, the interface density of the hill-neighboring
side, and the angle between the important street direction and the prevailing wind direction
belong to the parameters related to the hill–block relationship and block interface and
structure, and should be planned in advance under the premise of considering economic
development and intensive land utilization of the undeveloped block. With reference to
prevailing wind direction, the road traffic engineering arrangement, red line, and building
property line in municipal construction should be set, so that the positive feedback of
the indicators on the wind–thermal environment of the block can be maximized within a
reasonable range. For the developed block, in order to optimize the overall wind–thermal
environment of the block, the spatial form of the block near the hill should be modulated
through the addition of walking green paths along the hill, micro-alteration of the building
form of the block, controlling the interface density, the skyline of the hill side, and linking
the street with other important ventilated spaces.

Ultimately, there is no obvious correlation between the degree of terrain undulation of
the block and its overall wind–thermal environment, and the reason may be related to the
hill within the block. There is already special terrain such as hills in the hill-neighboring
block, and the effect of changing the degree of terrain undulation of the block on the overall
wind–thermal environment is relatively negligible. However, the correlation with the
wind–thermal single-factor scores of the proportion of breeze area and PMV is significant,
which still has an impact on the wind–thermal environment. This correlation can be used to
create local micro-terrain in the block to reduce the generation of breeze area and increase
the thermal comfort of the block, thus optimizing the overall wind–thermal environment
of the block and enhancing the livability of the block.

4.2. Limitations and Prospects

Although the ideal benchmark model and the setting of relevant simulation param-
eters in this research are based on the city of Jinan, the correlation between the spatial
form of the block and the wind–thermal environment as well as the specific mathematical
laws obtained in this paper are still of high reference value for similar northern moun-
tainous cities or southern cities with similar block types. And it has certain reference
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significance for optimizing the spatial form of blocks and improving the level of sustainable
urban development.

However, the wind–thermal environment of a block is a multidimensional perception
system, which is affected by different seasons, weather, location, diurnal variation, and
other factors [48,49]. Deeper research for specific objects on other aspects is needed in the
future. Otherwise, there are regional differences in the attributes of blocks in different cities
in China and even worldwide, which shows a lack of systematic summarization. In the
future, more comprehensive and interdisciplinary [50,51] research should be established
based on building climate zoning combined with regional characteristics. And the results
can be applied to the spatial analysis of urban design and block regeneration, which will
provide more informative support for planning strategies.

5. Conclusions

Based on investigation, deep learning, CFD simulation and correlation analysis, the
relationship between the spatial form of hill-neighboring blocks and the wind–thermal en-
vironment has been quantitatively analyzed. The following original conclusions are drawn:

(1) Interface density on hill side and the surface roughness of the hill are the most vital
indicators, with correlation coefficients of −0.8915 and −0.8856. (2) The distance between
the hill and block and the height of the hill are linearly positively correlated with the
overall wind–thermal environment, while interface density on the hill side and the surface
roughness of the hill are linearly negatively correlated with it. The relationships between
the average slope hill and the angle between the important streets and the prevailing wind
and the wind–thermal environment are nonlinear, and they reach the peak value when the
average slope is 0.3 and the angle is 0◦, respectively. (3) The proportion of breeze area is the
most correlated factor; height, average slope, surface roughness of the hill, and the degree
of terrain undulation are all correlated with it. The second is PMV, which is correlated with
the distance between the hill and block, the degree of terrain undulation, and the angle
between important streets and the prevailing wind. Therefore, in the renewal construction
of blocks, we should focus on those factors that may affect the proportion of breeze area.
The space that may become a “breeze zone” is interfered with by a method of urban design,
so that the wind can flow as much as possible inside the block. And from the perspective
of green planting planning, we should reduce the negative impact of the high PMV value
of the hill-neighboring block. In addition, we should optimize the spatial form of the
hill-neighboring block by controlling the building density and skyline of the near-hill side,
or optimize the wind–thermal environment by creating local micro-topography within the
block. These findings could provide references for urban planners and decision makers to
enhance the spatial form and quality of the wind–thermal environment. Meanwhile, the
systematic research process of investigation, physical modeling, numerical simulation, and
mathematical analysis is reproducible for exploring the correlation between the urban form
of other scales and dimensions and the natural environment.
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Appendix A

Table A1. Introduction of hill-neighboring blocks prototypes.

Categories Sub-Categories Spatial Characteristics Type Schematic

The encirclement

Round-shaped Facing the hills on all sides, the enclosure is round-shaped
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Appendix B

Table A2. Simulation results of wind–thermal under different cases.

Indicator Case
Average
Speed
(m/s)

Average
Temperature

(◦C)
Average

PMV Indicator Case
Average
Speed
(m/s)

Average
Temperature

(◦C)
Average

PMV

A

A-0 2.18 38.57 2.78

C1

C1-0 2.18 38.57 2.78
A-1 2.84 36.76 2.74 C1-1 2.43 36.81 2.65
A-2 2.30 38.78 2.81 C1-2 1.97 39.34 2.73
A-3 2.27 40.87 2.82 C1-3 2.71 35.52 2.58
A-4 1.81 35.33 2.60 C1-4 2.58 37.13 2.42
A-5 2.06 38.59 2.65 C1-5 2.44 33.81 2.01
A-6 2.62 39.88 2.65 C1-6 2.98 35.82 2.49

B1

B1-0 2.18 38.57 2.78

C2

C2-0 2.18 38.57 2.78
B1-1 2.26 38.36 2.52 C2-1 3.10 42.74 2.86
B1-2 2.96 39.18 2.59 C2-2 2.64 36.33 2.67
B1-3 3.00 39.15 2.59 C2-3 3.81 40.79 2.97
B1-4 2.78 39.19 2.57 C2-4 2.72 33.65 2.08
B1-5 2.76 39.15 2.55 C2-5 2.65 35.24 2.49
B1-6 2.78 39.25 2.57 C2-6 2.52 35.32 2.08

B2

B2-0 2.18 38.57 2.78

D

D-0 2.18 38.57 2.78
B2-1 2.39 38.89 2.88 D-1 1.97 39.85 2.77
B2-2 1.97 39.34 2.73 D-2 2.18 39.91 2.62
B2-3 2.70 38.52 2.58 D-3 2.42 41.45 2.61
B2-4 3.09 40.12 2.77 D-4 1.99 38.53 2.73
B2-5 3.05 40.36 2.94 D-5 1.96 39.66 2.72
B2-6 2.56 39.68 2.89 D-6 1.95 40.03 2.72

B3

B3-0 2.18 38.57 2.78

E

E-0 2.18 38.57 2.78
B3-1 2.01 38.08 2.47 E-1 2.76 35.04 2.25
B3-2 1.86 38.79 2.60 E-2 2.30 37.89 2.65
B3-3 2.13 36.95 2.36 E-3 2.22 40.84 2.64
B3-4 2.12 37.97 2.64 E-4 1.54 34.46 2.58
B3-5 2.00 39.43 2.67 E-5 1.74 37.75 2.39
B3-6 2.21 38.58 2.64 E-6 1.62 39.53 2.61
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