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Text S1. Before and after sampling, processing of filter membrane, and storage of 
samples. 

PM2.5 was continuously collected by a medium-flow sampler (HC-1010, Qingdao, 

China) at a flow rate of 100 L min−1 from 08:00 a.m. to 07:00 a.m. the next day (Beijing 

time). Before sampling, the quartz microfiber filters (Φ90 mm) were pre-baked at 450℃ 

for 4 h to remove residual organics and other impurities; during sampling, masks and 

gloves were worn, and clean tweezers were used to clip the filter membrane; after 

collection, the samples were individually sealed and preserved in darkness at -20℃ for 

further analysis. Before and after sampling, filters were weighed using an analytical 

balance after balancing for 48 h in a drying dish. At the beginning and end of sampling, 

one blank sample was collected as a control. 

Text S2. Details of Desert Research Institute (DRI) Model 2015 carbon analyzer. 

When the samples were being analyzed, a 0.5 cm2 sample was extracted from each 

filter and loaded into the sample boat, then passed into the 100% He. The filter samples 

were gradually heated up to 120°C, 250°C, 450°C, and 550°C under no-oxygen 

conditions to volatilize organic carbon into OC1, OC2, OC3, and OC4. Then, they were 

passed into the mixture of 2% O2 and 98% He and continued to be heated up to 550°C, 

700°C, and 800°C to volatilize the elemental carbons EC1, EC2, and EC3 in the sample. 

The released organics were catalyzed and oxidized to CO2 under the action of MnO2, 

then reduced to CH4 in the reduction furnace, and finally quantitatively detected by a 

flame ionization detector (FID). During the whole process of heating up, a 633 nm laser 

was used to irradiate the sample and measure the pyrolyzed organic carbon (OPC). OC 

and EC were defined as follows[25]: 

OPC4OC3OC2OC1OCOC ++++=               (S1) 

OPC3EC2EC1ECEC —++=                     (S2) 

Text S3. The calculation method of primary organic carbon (POC) and secondary 

organic carbon (SOC). 

The EC tracer method was used to estimate the concentration of SOC and POC; 

the formulas are expressed as follow[62, 63]: 



 

 

SOC = OC – EC × (OC/EC)min                        (S3) 

POC = EC × (OC/EC)min                           (S4) 

where OC is the mass concentration of the total organic carbon, μg m−3, and 

(OC/EC)min is the minimum value of OC/EC. 
Text S4. Detailed pretreatment process for water-soluble ions (WSIIs). 

First, a 2*12 mm sample was cut from the filter membrane sample and placed in 

a glass flask, 20 mL of ultrapure water was added, and ultrasonic extraction was used 

for 30 min; the temperature did not exceed 20°C during the extraction process. 

Thereafter, a 0.45 μm injection filter was filtered and then measured separately using 

an ion chromatograph (Dionex, ICS-2500; Dionex, DX-600). 

Text S5. The calculation of WSIIs acidity, alkalinity, sulfur oxidation rates (SOR) 

and nitrogen oxidation rates (NOR). 
The charge balance of the anion and cation can be used to estimate the pH of PM2.5. 

The AE was defined as the anionic equivalent and the CE as the cation equivalent. With 

AE/CE>1, PM2.5 is acidic, and otherwise, it is alkaline[64]. The formulas for AE and CE 

are defined as the following: 
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In order to gain insight into the conversion process of SO2 to SO42− and NO2 to 

NO3−, the ratio of sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) is 

usually calculated to determine the degree of secondary conversion. 

In order to understand the conversion process of SO2 to SO42− and NO2− to NO3−, 

the degree of aerosol secondary conversion is usually judged by calculating SOR and 

NOR. The higher the SOR and NOR values, the higher the degree of secondary 

conversion of aerosols[65]. The SOR and NOR were calculated using the following 

formulas： 
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Text S6. Post-processing of positive matrix factorization (PMF) model. 

The positive matrix factor method (PMF) is a commonly used receptor model for 

source analysis of atmospheric particulate matter[66]. The model allowed the users to 

review the chemical concentration data, including the signal-to-noise ratio (S/N) and 

the specified importance of the chemicals as either “strong,” “weak,” or “bad”[67]. 

According to the model assumption that there was little change in the transport of the 

tracers from source to receptor, some chemicals that were less dependent on the source 

strength would be excluded. The concentrations of chemicals below the method 

detection limits (MDLs) were substituted with half MDL, and their uncertainties were 

calculated with the formula U = K × C, where K represents analytical uncertainty, and 

C is the measured chemical concentrations[68, 69]. Missing values and uncertainties were 

imputed by the median concentration of the component and four times the median 

values to decrease their influence on the results. Rotation ambiguity was controlled by 

the FPEAK and FKEY parameters[70]. 

The analytic formula is defined as the following: 
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where Xij is the mass concentration of substance j in the sample i, Gik is the relative 

contribution of the pollution source k to the sample i, Fkj is the content of substance j in 

the pollution source k, p is the total number of pollution sources, Eij is the measured 

mass concentration of substance j in sample i and the residual difference of its analytical 

value, and uij is the uncertainty of the substance j in the sample i. 

In the PMF model, the data were processed as follows: the average values below 

MDL were removed, the substance concentrations below MDL were converted to half 



 

 

of the MDL, and the missing values were replaced by the median of the substance 

concentration. 

The uncertainty calculation formula of the components below the MDL is 

expressed as the following: 

Unc = 5/6×MDL                               (S11) 

The formula of the substance concentration above the MDL and the uncertainty 

was expressed as follows: 

22 MDLcEFUnc +×= ）（
                      (S12) 

where Unc represents the uncertainty; EF represents the measurement error ratio 

of each component; c represents the measured concentration of the component; and 

MDL represents the method detection limit. 

At the same time, in order to ensure the scientific nature of the PMF model, the 

components participating in the simulation are screened: when the signal/noise ratio 

(S/N) is less than 0.2, the relevant components do not participate in the calculation; 

when S/N is greater than 0.2 but lower than 2, the weight of the components should be 

reduced to “Wake”; when S/N is greater than 2, the weight of the components 

participating in the regression is set to “Strong.” 

Text S7. Details of potential source contribution function (PSCF) model and 

concentration weight trajectory (CWT) model. 

Meteorological data were obtained from GDAS data provided by the National 

Centers for Environmental Prediction (NCEP) of the National Oceanic and 

Atmospheric Administration (NOAA). Using the Euclidean distance method, all the 

trajectories reaching the hit point were clustered, and the number of clusters was 

determined using the total spatial variance (TSV) method. XN and QL were divided 

into 1°×1° grids, respectively, and the 500 m simulation height was selected as the 

average flow field of the boundary layer to reflect the flow characteristics of the surface 

airflow area and reduce the influence of ground friction[71]. The simulated trajectory 

lasted 48 hours with a time resolution of 1 hour. When using the PSCF model for PM2.5, 



 

 

OC, EC, O3, and WSIIs source analysis, the selected threshold was 70% of the mean. 

PSCF was used to determine the contribution of each grid to the affected region 

by calculating the ratio of the residence time of the total trajectory in the pathway 

region[72]. The selected study area was divided into i×j grids. PSCF is defined as the 

ratio of the number of contaminated trajectories passing through these grids (mij) to the 

total number of trajectories (nij), and the formula is expressed as the following: 
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Since PSCF only reflects the proportion of the contaminated trajectories in the 

grids and not the contamination extent of the trajectory, CWT was used to weigh the 

trajectory of the relevant concentrations. CWT was calculated using the following 

equation[73]: 
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Where CWTij (μg m−3) is the average pollution weight concentration of the grid (i, j), 

nij is the total number of traces passing through the grid (i, j), Ck is the corresponding 

contaminant concentration when the trajectory k passes through the grid, and aijk is the 

time when the trajectory k stays in the grid (i, j). 

Text S8. Values of Wij in Xi'an (XN) and Qinling (QL). 

The value of Wij was determined by the average of all junctions of all trajectories 

through all grids, and the average value shall be an integer greater than the calculated 

value. The numbers of all junctions for all trajectories and all grids were 49392 and 945 

in XN, respectively, so its average value was 54, and the formula and Wij in XN was 

expressed as (15). The numbers of all junctions for all trajectories and all grids were 

37534 and 945 in QL, respectively, so its average value was 4, and the value of Wij in 

QL was shown in formula (16). 



 

 

              𝑊 = ⎩⎪⎨
⎪⎧      1                        𝑛 > 2160.70            54 < 𝑛 ≤ 2160.42              27 < 𝑛 ≤ 540.17                         𝑛 ≤ 27⎭⎪⎬

⎪⎫
                    (S15) 

          𝑊 = ⎩⎪⎨
⎪⎧     1                        𝑛 > 1600.70             40 < 𝑛 ≤ 1600.42               20 < 𝑛 ≤ 400.17                          𝑛 ≤ 20⎭⎪⎬

⎪⎫
                   (S16) 

WPSCF = PSCF × W                                 (S17) WCWT = CWT × W                                 (S18) 



 

 

 
Figure S1 The wind rose diagram of XN and QL in summer.



 

 

 

Figure S2. Correlation of OC and EC in winter and summer in XN and QL. 
  



 

 

Table S1. Average mass concentration of 10 water-soluble ions (WSIIs) at XN and QL 
and the ratio to PM2.5. 

Water-soluble ions (μg m−3) XN QL 
F− 0.130 0.046 
Cl− 0.930 0.296 

NO2− 0.279 0.025 
SO42− 2.268 3.051 
NO3− 1.762 0.708 
Na+ 0.086 4.948 

NH4+ 2.356 1.008 
K+ 0.694 0.254 

Mg2+ 0.583 0.058 
Ca2+ 1.270 0.460 

WSIIs 10.359 10.860 
WSIIs/PM2.5 19.40% 39.37% 

AE/CE 0.410 0.280 
SOR 0.200 0.516 
NOR 0.051 0.139 

  



 

 

Table S2. WSIIs correlation analysis in XN and QL. 

XN F− Cl− NO2
− 

SO4
2

− 
NO3

− Na+ NH4
+ K+ Mg2+ Ca2+ 

F− 1          
Cl− 0.149 1         

NO2
− 0.081 0.015 1        

SO4
2− 0.020 0.061 0.016 1       

NO3
− 0.055 0.008 0.087 0.588 1      

Na+ 0.009 0.110 0.813 0.179 0.005 1     
NH4

+ 0.035 0.037 0.064 0.222 0.305 * 1    
K+ 0.029 0.037 0.004 0.073 0.023 0.577 0.042 1   

Mg2+ 0.100 0.033 0.001 0.031 0.036 * 0.094 0.207 1  
Ca2+ 0.095 0.135 0.012 0 0.007 0.005 0.026 0.043 0.460 1 

           

QL F− Cl− NO2
− 

SO4
2

− 
NO3

− Na+ NH4
+ K+ Mg2+ Ca2+ 

F− 1          
Cl− 0.011 1         

NO2
− 0.003 0.010 1        

SO4
2− 0.140 0.005 0.053 1       

NO3
− 0.026 0.007 0.309 0.244 1      

Na+ 0.008 0.082 0.212 0.039 0.003 1     
NH4

+ 0.073 0.002 0.178 0.708 0.546 0.002 1    
K+ 0.160 0.321 0.009 0.258 0.010 0.147 0.189 1   

Mg2+ 0.152 0.005 0.002 0.202 0.003 0.039 0.005 0.136 1  
Ca2+ 0.183 0.009 0.004 0.150 0.001 0.016 0.006 0.140 0.931 1 

* Denoted missing values. 
  



 

 

Figure S3. The relationship between O3 and PM2.5 in QL.  



 

 

Figure S4. PMF source resolution map of the environmental elements in XN during 

the sampling periods. 
  



 

 

 
Figure S5. PMF source resolution map of the environmental elements in QL during the 

sampling periods. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table S3 Calculation results of PMF models in XN and QL during the sampling periods. 
QL Factor Profiles (conc. of species) Factor Profiles (% of species sum) 

Species Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 
F− 0.049933 0.04073 0.055551 34.15062853 27.85642962 37.99294185 
Cl− 0.18044 0.073885 0.46224 25.18124664 10.31099761 64.50775575 

SO42− 0.47965 0.46341 2.5685 13.65917142 13.1966989 73.14412967 
NO3− 0 0.30234 2.6666 0 10.18343247 89.81656753 
Na+ 0.10286 0.058562 0.034765 52.42956975 29.850092 17.72033825 
K+ 0.084382 0.050448 0.14979 29.64724896 17.72468555 52.62806549 

Mg2+ 0.065053 0.010207 0.022148 66.78404238 10.47860545 22.73735217 
Ca2+ 0.90573 0.058613 0.12142 83.41875713 5.398323575 11.18291929 
PM2.5 24.663 19.101 0 56.35453798 43.64546202 0 
OC 0.61336 3.0126 0.35057 15.42450327 75.75951898 8.815977749 
EC 0.0095946 0.52202 0.077896 1.574148177 85.64576235 12.78008947 
QL Factor Profiles (conc. of species) Factor Profiles (% of species sum) 

Species Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 
F− 0.018146 0.021822 0.014076 33.5763452 40.37821035 26.04544445 
Cl− 0.11122 0.054291 0.052556 51.00267349 24.89647677 24.10084974 

SO42− 0.66223 2.5046 0.51302 17.99611397 68.0625569 13.94132913 
NO3− 0.18989 0.4376 0 30.26183684 69.73816316 0 
Na+ 2.5925 0.84314 2.2235 45.81084758 14.8987302 39.29042222 

NH4+ 0 1.1092 0 0 100 0 
K+ 0.11266 0.056288 0.11295 39.96480997 19.96750598 40.06768406 

Mg2+ 0.044789 0.0012963 0.013331 75.38167136 2.181724544 22.4366041 
Ca2+ 0.35419 0.0092232 0.14671 69.43224696 1.808033824 28.75971922 
PM2.5 13.005 3.9393 16.803 38.53641625 11.67293383 49.79064992 
OC 1.814 0.50916 2.9339 34.50597863 9.685261344 55.80876003 
EC 0 0 0.72777 0 0 100 

 
 
 
 
 
 



 

 

 

Figure S6 (a) The WPSCF and (b) WCWT of carbon components (OC and EC) and 

major WSIIs during the sampling periods in XN. 
  



 

 

 

Figure S7 (a) The WPSCF and (b) WCWT of carbon components (OC and EC) and 

major WSIIs (Na+, SO42−, and NH4+) during the sampling periods in QL. 
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