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Abstract: The food industry, crucial for emerging economies, faces challenges in refrigeration,
particularly in fish storage. High energy consumption, environmental impact, and improper cooling
methods leading to food waste are significant issues. Addressing these challenges is vital for economic
and environmental sustainability in the food sector, especially concerning fish storage where spoilage
rates are high. In this context, this research proposes a sizing methodology, evaluation, and parametric
simulations based on multi-criteria attributes for a solar PV-powered cold room for storing fish in
traditional markets in Morocco. To identify the cooling load of the system, TRNSYS 16 was utilized
to simulate the transient behavior, while the PV array specifications were determined using SAM
2017.9.5 software. The design process introduced a cold room coupled to a refrigeration unit powered
by a 15.3 m2 PV array with a 1.8 kWp nameplate capacity. Finally, yearly and life cycle metrics
including self-sufficiency, self-consumption, Levelized Cost of Cooling (LCOC), discounted payback
period (DPP), CO2 emissions avoided and total environmental penalty cost savings (TEPCS) are
evaluated to assess the performance of the system and a sensitivity analysis was conducted on these
metrics. The proposed system has an attractive LCOC of 0.131 $/kWhCold and a DPP of 3.511 years.
Using the PV array proved to avoid 437.56 tons of CO2 emissions and generated TEPCS from $100.59
to $866.66. The results of this study highlight the potential for utilizing renewable energy sources in
the refrigeration sector to improve both economic and environmental sustainability.

Keywords: cold storage; levelized cost of cooling; renewable energy sources; techno-economic
metrics; environmental accounting

1. Introduction

The food industry is a crucial sector for the growth and development of many emerging
economies. Efficient food refrigeration processes are extremely important to advance the
food industry. However, food refrigeration faces three significant challenges that impede its
effectiveness. The primary obstacle is the high energy consumption of refrigeration units.
Secondly, the environmental impact of the refrigeration process, which involves either the
release of CO2 emissions or the use of hydrofluorocarbon fluids (HFC), poses a significant
challenge. Finally, improper cooling methods contribute to an alarming amount of global
food waste. Thereby, there is an urgent need for the exploration of alternative sustainable
refrigeration solutions [1–3].

In 2018, the cooling sector which comprises refrigeration, freezing, air conditioning
and heat pumps consumed 3900 TWh globally, equivalent to 3.4% of the global energy
demand [4]. However, this sector’s impact on the environment is not limited to energy
consumption, HFC fluids, commonly used in refrigeration and air conditioning systems,
have a significant greenhouse effect. If the Kigali amendment is not respected, HFC emis-
sions are projected to cause a temperature increase of 0.3–0.5 ◦C by 2100 [5]. Additionally,
emissions from the cooling sector amounted to approximately 4 GT of CO2 emissions
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in 2018 [4]. The cold chain, defined by ASHRAE Terminology, ensures the refrigerated
preservation of perishable foodstuffs from production to consumption [6]. In China, which
has the third-largest capacity of refrigerated warehouses [7], cold chain activities poten-
tially constitute 1–3% of national greenhouse gasses (GHG) [8]. In the UK, greenhouse gas
annual emissions related to the food cooling industry amounted to 12.9 Mtons CO2 during
2019/2020, which represents around 3.2% of UK annual GHG emissions [9]. However, the
environmental impact of the cold chain extends beyond greenhouse gas emissions. The
International Institute of Refrigeration (IIR) estimates that insufficient colds contribute
to 12% of global food waste, equivalent to 526 million tons of food production [10]. To
further emphasize the gravity of the issue, the Food and Agriculture Organization (FAO)
reported that between 702 and 828 million people faced hunger in 2021 [11]. In this regard,
optimizing the cold chain will not only reduce its negative environmental impact but could
also help solve world hunger and improve food quality [1].

Efforts to reduce energy consumption and improve efficiency in the refrigeration sector
have been the focus of numerous studies in recent years. Evans et al. [12] performed an
online survey on more than 329 cold stores to compare multiple factors that could affect
energy consumption. The results proved that the shape factor was the most impactful
parameter on energy consumption. Using the regression method, the results showed
that the store’s volume causes an energy variation of 93%, 56%, and 67% for 126 chilled
stores, 132 frozen stores, and 36 mixed stores, respectively. Another area of research
involves using computational fluid dynamics (CFD) simulations to study the impact of
air circulation on temperature uniformity in cold rooms [13–15]. While some studies have
focused on air velocity and cooling unit location [16], others have considered the impact
of fan rotation velocity and the number of axial fans [17]. Maintaining the appropriate
relative humidity (RH) is also important for preserving food quality and reducing energy
demand. Paull [18] reviewed RH’s effects on food appearance, shelf life, texture, and
nutrition, recommending critical RH values for different food types. Techniques like
fogging can prevent dehydration [19,20]. These studies underscore the importance of
considering various factors affecting energy consumption and food preservation in cold
storage. Optimizing air circulation, humidity, and other parameters could reduce energy
demand and enhance food quality. Another study [21] explored a rotating triplex-tube
latent heat thermal energy storage system. Using the Aguchi design and response surface
method, researchers optimized the fin structure to improve heat absorption efficiency
and melting duration. This optimization resulted in a 7.37% decrease in overall melting
duration and a 7.23% increase in average heat absorption rate by adjusting parameters like
fin length, width, and rotation angle.

In terms of refrigeration systems powered by solar energy, two types of solar cooling
are available. The first type is driven by photovoltaic energy, while the second one makes
use of solar thermal energy as the heat source such as absorption and adsorption [22].
Alrwashdeh and Ammari [23] introduced a comparison between photovoltaic cooling
and thermally driven refrigeration employing solar-evacuated tube collectors. The results
demonstrated that both systems are beneficial compared to their prices. However, the
photovoltaic system proved to have more benefits, such as availability, simplicity, and ease
of maintenance.

Dai et al. [24] proposed a hybrid system that uses solar thermal energy and waste heat
from a gas cooler instead of a traditional CO2 booster refrigeration system. The authors
compared four configurations. Overall, the results showed that the hybrid absorption
system is more beneficial. For example, the COP is 3.05–42.30% higher than that of the base-
line model. Similarly, the annual coefficient of the performance enhancement rate reached
13.65% and 14.47% in Guangzhou and Haikou, respectively. Another study developed a
solar-driven compression-assisted desorption/chemisorption refrigeration/cold energy
storage system [25]. The authors stated that the proposed system can work with hot water
above 70 ◦C as the heat source. When using water with a temperature of 90 ◦C, the system
could supply an evaporative temperature of −10 ◦C, a condensing temperature of 40 ◦C,
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and a COP of 5.5. The purpose of the system is to be used in refrigerated warehouses to pre-
cool freshly harvested fruits and vegetables. Sur et al. [26] proposed a milk chilling system
that utilizes solar heat adsorption. The results showed that for a desorber bed temperature
at 80 ◦C, the specific cooling power is 52–57 kW/kg. In another study [27], solar adsorp-
tion cooling was evaluated across four sites in sub-Saharan Africa. The findings revealed
that Beitbridge emerged as the most suitable location, with a specific cooling power of
3.18 W/kg and a solar coefficient of performance of 0.131. Xu et al. [28] studied an ab-
sorption subcooled compression used for cold storage. An evacuated tube collector was
employed. The results indicated an annual peak energy savings of 68.8 kWh/m2 per collec-
tor surface. As for the economic results, the authors demonstrated a minimum payback
period of 4.96 years and an internal rate of return of 15.4%.

With respect to cold storage facilities powered by photovoltaic (PV) energy, research
shows that it holds a promising future. The work conducted by Liu et al. [29] discusses
the potential of PV power-based energy systems for cold storage facilities in the Ningbo
region of China. The study considered three main scenarios for electricity generation:
PV only, PV with electric energy storage (EES), and PV with cold energy storage (CES).
The assessment considered economic, energy, and environmental factors. The authors
concluded that adopting a PV-based energy system offers significant benefits for the region.
The advantages include avoiding 26.2582 million tons of pollutant emissions, decreasing
60.89% of electricity purchased from the power grid, and 6.64 billion RenMinBi of economic
value. Another study by Luerssen et al. [30] evaluated three different load profiles for
cooling a resort, a hotel, and a storage warehouse located in the Indonesian Rau Islands
province. The results found that a diesel generator and PV coupled with batteries is the
most cost-effective option. However, a combination of battery storage and cooling storage
could prove to be slightly beneficial in the case of the resort since it requires cooling only
in the nighttime. In another study, Ikram et al. [31] investigated a banana storage facility
located in Mardan, Pakistan. The products need to be maintained at a temperature of 15 ◦C
for 4 to 5 days after being preheated to 25 ◦C. The authors proposed a 161 m2 PV array with
48 modules. The payback period of the proposed system is 5.2 years. Du et al. [32] analyzed
the cooling process of a warehouse powered by PV power. Instead of using batteries,
the electricity generated is directly used in the vapor compression refrigeration cycle to
cool the warehouse. The excess cooling generated will be used for a separate cold water
storage unit. The proposed system uses thermal storage as a backup system. Experimental
analyses validated simulation results, showing the system capable of producing daily
cold energy of 155.36 MJ, 135.90 MJ, and 107.78 MJ for sunny, partly cloudy, and cloudy
conditions, respectively. Another study [33] investigated a cold room powered by PV used
for fish storage across 18 African sites, and the research encompassed technical, economic,
environmental, and social metrics. Tripoli, Libya, had the lowest Levelized Cost of Cooling
at $0.1279/kWth, while Yamoussoukro, Ivory Coast, had the shortest discounted payback
period at 1.84 years. Kinshasa, Congo, and Accra, Ghana, showed the highest employment
potential, with 53.47 and 53.617 jobs, respectively.

After a thorough review of the existing literature, it is evident that photovoltaic-
generated power has great potential for use in cold storage facilities. For further details
on various solar refrigeration processes, readers are referred to comprehensive review
papers such as [34]. This study specifically focuses on studying a cold room in a local
market in Fez, Morocco, for fish storage. The research questions addressed in this paper are
as follows:

• A comprehensive investigation to highlight the dynamic behavior of the cold room,
using TRNSYS 16 software, which effectively generates hourly cooling load profiles,
adapted to the prevalent weather conditions.

• Design and simulation of the PV arrays via SAM 2017.9.5 software, which offers a
precise quantification of the electricity generation capability to power cold rooms.
Energy performance involving pertinent annual metrics such as self-sufficiency and
self-consumption is also conducted.
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• An incisive assessment of the project’s economic viability, hinging on an extensive life
cycle assessment encompassing significant metrics including the Levelized Cost of
Cooling and the discounted payback period, which collectively portray the system’s
long-term financial feasibility.

• Determining the environmental impact by calculating the total CO2 emissions avoided
and the consequent total environmental penalty cost savings, offering insight into the
system’s contribution towards sustainability.

The outcomes of this study have a clear impact, by illustrating the benefits of shifting
from conventional local markets towards environmentally sustainable and ecologically
conscious marketplaces in Morocco. The proposed methodology incorporates the updated
cost data for diverse subsystems while including the concept of environmental accounting
in the analysis. The insights and methodologies developed here have the potential to extend
beyond Fez, Morocco, and support transitions in other Moroccan and African markets.

2. Methods
2.1. Fish Storage Unit

The objective of this research is to develop a simulation model for a cold room in the
local market of Fez, Morocco (33.9◦ N/−5.0◦ E), specifically designed for fish storage in
10 selling stands as presented in Figure 1. The proposed refrigerated storage unit is a
standard container with dimensions of 6 m × 4.5 m × 3 m. These dimensions were
determined based on on-site surveys, which indicated that each of the local market’s fish
merchants sell an average of 200 kg of fish daily. The storage capacity is organized into
4 rows, as depicted in Figure 2. A flowsheet displaying the different steps of this research
can be seen in Figure 3.

The walls, roof, and floor of the cold room are constructed using stainless steel with
polyurethane insulation, a commonly utilized material in food storage units [35–37], as
illustrated in Figure 4. The walls consist of four layers, namely stainless steel, polyurethane,
stainless steel and aluminum, with the properties shown in Table 1.
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Table 1. Wall layers thermal parameters.

Material Thickness (mm) Conductivity (W/m K) Density (kg/m3)

Steel 10 15 7800
Polyurethane 78 0.0305 40

Steel 10 15 7800
Aluminium 2 200 2700

2.2. TRNSYS Model

To overcome the limitations posed by conventional computation techniques that rely
on steady-state formulas, TRNSYS 16 [38] software was employed to generate a more
accurate estimation through dynamic thermal modeling of the cold room. Figure 5 presents
the flowsheet of the following simulation methodology in TRNSYS 16.

The simulation model utilizes the TYPE56a component to simulate the cold room’s
temperature behavior. The weather file, generated by the software METEONORM 8 [39],
provides hourly ambient data in the TMY2 file format for the city of Fez (for example
ambient temperature, wind speed, solar irradiation and relative humidity). Regarding
the building specifications, the structure walls, roof and ceiling construction materials are
entered using materials from the TRNSYS 16 internal libraries following Table 1.

The schedule used as an input for the system aligns with the daily work program
of the sellers. The fish sellers work six days a week, with Friday being the only non-
working day. On a typical working day, the process of storing fish in the cold room occurs
between 6 and 9 AM, lasting for one and a half hours. Subsequently, the market activity
starts at 9 AM and finishes by 1 PM. Throughout the working day, the sellers periodically
restock their supplies, with the restocking activity assumed to take one hour, divided into
separate segments.
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For the infiltration rate, the cold room is well insulated so there are only two ways
that ambient air enters the cold room, either through a refrigeration unit or when the door
opens. The door opening is a function of the schedule discussed before. The infiltration
rate is 30% (Vol/h) of the total volume.

As for the cooling conditions, a technical guideline [40] recommends that fish must be
stored at temperature and relative humidity conditions equal to 1.6 ◦C and 90%, respectively.
These values are the set points used in the simulation setup.

TRNSYS 16 incorporates the impact of internal heat gains on the cooling demand load
calculation in addition to the heat lost when inside air is exchanged with outside air. These
internal gains arise from various sources such as lighting, people, and other personalized
gains. In this study, two types of internal heat gains are considered: First, lights with a
total surface of 2 m2, a 40% convective part, and a total heat gain of 5 W/m2. The lights
are scheduled to operate when the sellers are in the cold room, as per the schedule pro-
posed earlier. Second, additional heat gains are accounted for, resulting from the presence
of occupants.

2.3. PV Array Sizing

The electricity load of the given system is ensured by a PV array as presented in
Figure 6. The sizing of the PV array is conducted using the System Advisor Model (SAM)
2017.9.5 [41] software. Hourly outputs generated by SAM 2017.9.5 depend on the weather
file, which was also used in the transient calculations carried out by TRNSYS 16 software.

The electric load of the system can be calculated using Equation (1):

PLoad(t) =

.
Qcold(t)

COP
(1)

where PLoad (kW) is the electricity demanded by the system for a time segment,
.

Qcold (kW)
is the cooling load calculated by TRNSYS 16 for a time segment and COP is the refrigeration
coefficient of performance.
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These values, along with the PV module’s capacity, serve as input. The software uses
these inputs to simulate the behavior of the PV array. The software algorithm takes into
consideration the power generated by the PV and then compares it with the electric load. If
there is an excess of energy generated, it is stored in the battery, and if electricity is needed,
it can be then extracted either from the batteries or directly from the grid. It is important
to emphasize that in this study, the refrigeration system used is a conventional vapor
compression cycle that employs R134a refrigerant and has a coefficient of performance
of 2.7.
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2.4. Performances Indexes

While evaluating the performance of the energy system, it is crucial to consider both
the profitability and environmental impact, along with the energy generation capability.
For this reason, in this study, yearly metrics and life cycle assessment metrics are calculated.
These metrics must entail the effect of inflation, initial capital cost, and yearly costs.

The energy generated by the PV array over a t f inal time period (a year for this study)
in (kWh) is as follows:

EPV =
∫ t f inal

0
PPV(t)dt (2)

where PPV(t) energy produced by the PV system for a given t time segment (kW).
The electricity load (kWh) is determined from the cooling load (

.
Qcold) calculated by

TRNSYS 16 software, and it can be integrated over a t f inal period:

ELoad =
∫ t f inal

0
PLoad(t)dt (3)

where PLoad(t) energy demanded by the cold room for a given t time period in (kW).
The PV electricity in (kWh) utilized by the cold room for a selected time segment t is

as follows [42]:
PPV−Load(t) = min(PPV(t); PLoad(t)) (4)

The energy in (kWh) provided by the PV array to the cooling demand is

EPV−Load =
∫ t f inal

0
PPV−Load(t)dt (5)

Finally, the electric power (kW) consumed from the electric grid for a selected time
segment can be calculated following two conditions:

PGrid−Load(t) =
{

PLoad(t)− PPV(t) i f PLoad(t) > PPV(t)
0 i f PLoad(t) ≤ PPV(t)

(6)
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2.4.1. PV Self-Sufficiency Rate

The self-sufficiency rate is the proportion of electricity drawn directly from the PV
array compared to the energy needed by the cold room. It can be calculated as follows [43]:

SS =
Energy consumed f rom PV

Total Energy demanded by the load
=

EPV−load
Eload

(7)

2.4.2. PV Self-Consumption

The self-consumption is the ratio of electricity generated by the PV system that is
consumed by the cold room compared to the total amount of PV energy produced. It can
be calculated by following [44,45]:

SC =
Energy consumed f rom PV

Total Energy produced by PV
=

EPV−load
EPV

(8)

2.4.3. Levelized Cost of Cooling

Levelized Cost of Cooling (LCOC) is a commonly used indicator in the literature
for assessing the project costs of various technologies over their anticipated operating
lifetimes [46]. It takes into consideration the capital recovery costs, capital costs for con-
struction, operating costs, interest on loans, maintenance, discount rate and inflation. LCOC
represents the cost per kilowatt hour of cooling (kWhCold) demanded by the project. It is
calculated following this formula [47]:

LCOC =
Investment + ∑n

t=1
Annual costs(t)

(1+r)t

∑n
t=1

.
QAnnual
(1+r)t

(9)

where the investment is

Investment = CPV + CRe f + CCold−Room (10)

The project capital cost will be based on three main parts of the system: Firstly, the
cold room, which entails the lateral walls, the floor, the ceiling, the shelves and the door.
Secondly, the refrigeration system, which consists of different cooling apparatuses. And
thirdly, the PV array, which encompasses the PV modules, batteries, and inverters.

The annual costs are for a year n take into consideration the operational and mainte-
nance costs, as well as the electricity cost for a given year [43]:

Annual costs(t) = Ot + Mt +
(

Eload − EPV−load × (1 − d)t
)
× ckwh−grid (11)

Equation (9) considers the capital cost of the project calculated using Equation (10)
and annual indexes considered in this system are calculated using Equation (11).

2.4.4. Discounted Payback Period

Payback time can be defined [48] as the duration needed for the cumulative savings to
become equal to the total initial investment. It is a technique that measures the economic
performance of an investment. Specifically, the discounted payback period presents the
number of years required to pay back the initial capital while discounting future cash
flows and the rate of inflation (iinf). The discount rate plays a crucial role in determining
the present value of future cash flows from the project. It reflects the cost of capital, or
the expected return on investment, and takes into account factors such as inflation, risk,
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and the time value of money. DPP (discounted payback period) can be calculated as [49]
follows [49]:

DPP =
ln
[

Investment
Annual savings ×

(
iin f − r

)
+ 1

]
ln
( 1+iin f

1+r

) (12)

The annual savings entail the cost of electricity consumed by the ice machine. Firstly,
the thermal energy necessary for producing a specific mass of ice (J/kgIce) is

Q̂Th = Cp−water ×
(

Ti − Tf reez

)
+ l + Cp−ice ×

(
Tf reez − Tf

)
(13)

where Cp−water is the water-specific heat capacity (J/kgIce·◦C), Cp−ice is the ice-specific heat
capacity (J/kgIce·◦C), l is the latent heat for water solidification (J/kg), Ti is the initial ice
temperature (◦C), Tf reez is the freezing point temperature of water (◦C) and Tf is the ice’s
final temperature (◦C).

The electricity needed to produce a specific mass of ice (kWh/kgIce) is calculated in

Q̂El−Ice =
Q̂Th

COPIce−machine
(14)

where COPIce−machine is the ice machine coefficient of performance.
The savings achieved from the project are the ice machine electricity cost avoided;

hence, the annual savings are as follows:

Annual savings = Q̂El−Ice ×
.

mdaily−ice × ckwh−grid × NSellers × Ndays (15)

where
.

mdaily−ice is the daily ice consumption (kgIce/days), NSellers is the number of sellers,
and Ndays is the number of days the market is open in a year (days).

2.4.5. Total Equivalent Warming Potential

The TEWI is an index that is used to evaluate and quantify the environmental im-
pact of greenhouse gases from refrigeration systems [50]. It takes into account the direct
warming effect of refrigerant losses, the indirect effect due to the combustion of fossil
fuels for electrical power generation, or the carbon footprint of PV power generation
for this study case. The total equivalent warming potential when using the PV array
(TEWIPV) and the reference system (ice machine) (TEWI Ice−machine) can be calculated using
Equations (16) and (17), respectively.

TEWIPV = FLeak × L × n +
n

∑
t=1

(
Eload − EPV−load × (1 − d)t

)
× FElectric−grid + EPV−load × (1 − d)t × FPV (16)

TEWI Ice−machine =
(

FLeak × L + FElectric−grid × EIce−machine

)
× n (17)

where FLeak, FElectric-grid, FPV, L, n and EIce−machine stand for GWP values for refrigerant
leakage (kgCO2/kg), GWP for electricity production (kgCO2/kWh), the carbon footprint
of PV power generation (kgCO2/kWh), leakage rate (% per year), project duration (years)
and ice machine electricity consumption (kWh), respectively.

2.4.6. Total Environmental Penalty Cost Savings

Total environmental penalty cost saving (TEPCS) serves as a crucial metric within
environmental accounting. It quantifies the cost savings resulting from renewable en-
ergy projects’ capacity to mitigate CO2 emissions. These savings are directly linked to
carbon pricing initiatives, as renewable energy presents an effective avenue for reducing
environmental costs through emission reduction. The following equation is used [49]:
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TEPCS =
[

FElectric−grid × EIce−machine −
(

FElectric−grid × Egrid−load + FPV × EPV

)]
×

cCO2

r − iin f

[
1 −

(1 + iin f

1 + r

)n
]

(18)

where cCO2 is the penalty cost for carbon emissions ($/kgCO2).

2.5. Study Assumptions

Estimation of previously mentioned metrics is carried out by considering the set of
assumptions summarized in Table 2.

Table 2. The research assumptions.

Parameter Value

Set temperature [40] 1.6 ◦C
Set relative humidity [40] 90%

Project duration 20 years
Cold room refrigeration coefficient of performance 2.7

Cold room cost $8270
Refrigeration unit [51] $2580
PV module cost [52] 0.33 $/Wp

Inverter cost [53] 0.43 $/Wp
Battery cost [54,55] 327.6 $/kWh

PV panels’ annual degradation rate [56] 0.05%
Annual operation and maintenance costs [31] 1% of the initial investment

Cost for Moroccan electricity consumption from the grid [57] 0.106 $/kWh
Discount rate [58] 3%
Inflation rate [59] 8.2%

Ice inlet temperature 20 ◦C
Ice final temperature −10 ◦C

Ice machine coefficient of performance 2
Daily ice consumption (kgIce/days) 200 kgIce/days

GWP for R134a [60] 1300 kgCO2/kg
Annual R134a refrigeration leakage [61] 10%

Initial refrigerant charging amount per cooling load [61] 2 kg/kW
Carbon footprint for PV [62] 40 gCO2/kWh

Carbon footprint for electric grid [62] 627.4 gCO2/kWh

The calculation of the cold room cost was determined by examining multiple commer-
cially available cold rooms online [63–67] with an additional 10% for installation costs for
a conservative approach. Based on this analysis, the projected cost of the cold room was
approximated to be 102.06 $/m3.

The PV array parameters are represented in Table 3:

Table 3. PV array parameters.

PV Array Specifications Inverter Specifications

PV module maximum power Pmp (Wdc) 149.988 Maximum AC power (Wac) 1490
PV module max power voltage Vmp (Vdc) 34.8 Maximum DC power (Wdc) 1552.7
PV module max power current Imp (Adc) 4.3 max DC voltage (Vdc) 400

Nominal efficiency 11.7361%
Battery specifications

Desired bank capacity (kWh) 5

3. Results and Discussion

The next section is dedicated to presenting key sizing results, simulation outputs, and
evaluation of the different system results in terms of energy, economy, and environment
indexes. Also, it serves to provide sensitivity analyses of main parameters affecting overall
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performance such as the PV capacity, inflation rate, discount factor, initial investment and
the penalty cost for CO2 emissions.

3.1. Cold Room Cooling Load

Using TRNSYS 16, Figure 7 displays the hourly cooling load of the cold room in Fez,
Morocco. As expected, the outcomes demonstrate that the cooling load rises during the
hotter months of the year, making it favorable for energy systems that rely on solar power
generation because irradiation is more prevalent during the warm periods, as shown in
Figure 8. Figure 9 represents the ambient temperature for all hours of the year. It can be
observed that the heat load follows a similar pattern to the ambient temperature, indicating
that the ambient temperature significantly influences the cooling load.
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It must be pointed out that the cold room’s initial temperature state is set to the
ambient temperature. Hence, the initial values depicted in Figure 7 for the cooling load
are significant, as they indicate that the refrigeration system requires additional energy to
lower the cold room temperature to the desired level.

The maximum hourly cooling load in a year is 2053.61 W. This value corresponds to
the cooling load target to be met by the solar-driven cold unit. By numerically integrating
these loads, the cumulative cooling load is determined to be 8230.17 kWh/year.

3.2. Model Verification

To prove the validity of the simulation process, COOLPACK 1.5 software was used to
verify the results. Five simulations were conducted with various cold room set temperatures
(1.0 ◦C, 1.5 ◦C, 2.0 ◦C, 2.5 ◦C and 3.0 ◦C) during the hottest day with a maximum ambient
temperature of 43.7 ◦C. COOLPACK 1.5 [68] is a commercial software that comprises a set
of tools associated with refrigeration that can be employed to size different refrigeration
systems. These programs were created employing the Engineering Equation Solver (EES).

Table 4 illustrates the peak cooling load (W) obtained from both TRNSYS 16 and
COOLPACK 1.5 simulations at varying cold room set temperatures (◦C). To verify the
accuracy of the results, the same ambient temperature of 43.7 ◦C was set throughout the
entire year in the TRNSYS 16 software, just like in COOLPACK 1.5. The errors ranged from
5.19% to 6.06%, which confirms the accuracy of our model. It should be noted that this set
ambient temperature is only used for the validation and the other calculations were based
on a transient annual simulation.

Table 4. Cooling load (W) in function of different set temperatures (◦C).

Temperature (◦C) TRNSYS Peak
Cooling Load (W) COOLPACK (W) Relative Error (%)

1.0 2662.92 2522 5.29%
1.5 2627.38 2491 5.19%
2.0 2620.28 2434 5.16%
2.5 2591.85 2403 6.09%
3.0 2556.31 2372 6.00%
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3.3. Energy Output of the PV Panels

The selection of an appropriate PV array capacity is a crucial aspect of this study, as
it depends on several factors such as the electricity demand of the system and weather
conditions. Therefore, PV capacities ranging from 0.9 kWp to 2.7 kWp are simulated.
Choosing the adequate capacity is based on self-sufficiency and self-consumption metrics.

Figure 10 presents the variation of self-sufficiency and self-consumption as a function
of different PV capacities. Self-consumption starts at 100% because all the energy produced
by the PV array is consumed. However, it starts to decrease gradually because not all the
energy generated is consumed by the electric load because of the incompatibility between
the load and PV generation profiles. With regard to self-sufficiency, the reverse tendency
is observed. The intersection between the two curves is an ideal configuration that can
be recommended as the final design. The intersection point has self-sufficiency and self-
consumption equal to 85.6% and 86.19%, respectively. This configuration entails 3 strings
of 4 modules with a total capacity of 1.8 kWp. Figure 11 displays the average daily profile
of PV energy production for each month of the year using the results obtained from the
SAM 2017.9.5 software. It can be seen that for a selected month, for example, June, during
the early morning hours, a part of the electricity demand is generated by the PV array.
However, because there are low irradiation values, the remaining electricity is provided
by either the electric grid or the batteries. As the day progresses, the system directly
consumes the electricity generated by the PV array, while any excess energy is stored in the
batteries for later use. As the nighttime period approaches and sun irradiation decreases,
the remaining electricity demand is provided by the batteries charged before, or by the
electric grid when there is insufficient energy stored.
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3.4. Project Profitability

Figure 12 displays the LCOC as a function of different parameters, including PV
capacity and discount rate. When varying the discount rate, the LCOC values range from
0.14 $/kWhCold to 0.2464 $/kWhCold. It can be observed that LCOC increases with PV
capacity. When reviewing the literature [69,70], both proved that the discount rate highly
impacts the LCOE in a similar way to the results of the study presented. Nevertheless, an
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interesting finding was that LCOC remained relatively lower than what is reported in the
literature [71–73]. For the chosen PV capacity (1.8 kWp), the LCOC is 0.131 $/kWhCold.
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One more crucial factor to consider when assessing the profitability of a given system
is the discounted payback period (DPP). Figure 13 further evidences the impact of inflation
and discount rate on the DPP for a PV capacity of 1.8 kWp. This configuration results in
a discounted payback period equal to 3.511 years. It is seen that inflation rate increases
cause a reduction in DPP, meaning there is more competitiveness of the proposed design
compared to a conventional ice machine that relies on electricity for the grid.
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3.5. Environmental Metrics

In order to accurately assess the environmental impact of the proposed solution, both
the total equivalent warming potential (TEWI) and the total environmental penalty cost
savings (TEPCS) are calculated. Using the solar-driven cold proves to avoid a total of
437.56 tons of CO2 emissions, as shown in Table 5. To understand the environmental
benefits of this system, the TEPCS metric is used to present its economic benefits. Figure 14
represents the total environmental penalty cost savings as a function of different parameters
such as the inflation rate, discount rate, and different values for a penalty for CO2 emissions
for the PV capacity of 1.8 kWp. When considering the penalty of 40 $/tons CO2, the savings
are at least $100.59, and the savings could reach $346.66, $520, $693.33 and $866.66 for
the 40, 60, 80 and 100 $/tons CO2 penalty costs, respectively. For the chosen capacity, the
TEPCS is equal to $287.36 and $718.41 for the 40 $/tons CO2 and 100 $/tons CO2 penalties,
respectively. These savings are relatively low compared to the literature [49,74], the reason
is that the electricity load is very small. If the local market is subjected to extension, the
electric load of the cooling system will be more significant, implying a larger PV plant.

Table 5. Direct and indirect CO2 emissions (kg CO2).

Total Equivalent Warming Potential

Direct emissions (tons CO2) 10.400
Indirect emissions (tons CO2) of the reference system 463.767
Indirect emissions (tons CO2) using renewable energy

system 26.204Sustainability 2024, 16, x FOR PEER REVIEW 18 of 23 
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Figure 14. Total environmental penalty cost savings ($) for different CO2 penalties is the function of
inflation and discount rates.
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4. Conclusions

Refrigeration is a critical process in the food industry and improving its efficiency
can have significant economic and environmental benefits. This study focuses on the
conception and assessment of an economically and ecologically optimized solar-powered
cold storage facility, dedicated to the preservation of fish within a traditional marketplace
in Fez, Morocco. The cold room’s energy requirements are provided via a PV array, battery
storage, and electrical grid. This PV-driven approach not only promotes the adoption of
clean, renewable energy in traditional markets but also ensures sustainability. Utilizing
advanced simulation tools like TRNSYS 16 to model thermal behavior and SAM 2017.9.5
to analyze PV energy generation, this research offers a clear vision of the future of sus-
tainable refrigeration solutions. Through rigorous yearly and life cycle metrics, this study
substantiates the system’s prowess. The key findings are as follows:

• The cold room’s peak hourly cooling load is 2053.61 W, with a yearly cumulative
cooling demand of 8230.17 kWh/year.

• The designed solar PV array consisted of 3 strings of 4 modules and had a nameplate
capacity of 1.8 kWp. Results from hourly simulations indicated that the proposed
PV system has self-sufficiency and self-consumption equal to 85.6% and 86.19%,
respectively.

• The Levelized Cost of Cooling and the discounted payback period are equal to
0.131 $/kWhCold and 3.511 years, respectively.

• Regarding environmental metrics, when using the PV array to generate electricity for
the cooling system instead of fully powering it using the electric grid, 437.56 tons of
CO2 emissions can be avoided.

• When considering a 40 $/ton CO2 carbon dioxide penalty, at least $100.59 can be saved,
and up to $866.66 when considering a 100 $/ton CO2 penalty.
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Nomenclature

cCO2 Penalty cost for carbon emissions ($/kgCO2)
Ccold−room Cold room cost ($)
ckwh−grid Electricity delivered from the grid cost ($/kWh)
cp−ice Ice specific heat (J/Kgice.◦C)
cp−water Water specific heat (J/Kgice.◦C)
CPV Cost of the PV system ($)
Cre f Cost of the refrigeration unit ($)
d PV modules degradation (%)
EGrid−load Yearly electricity consumed from the electric grid (kWh)
EIce−machine Yearly ice machine electricity consumption (kWh)
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Eload Electricity load (kWh)
EPV Yearly value of electricity generated by the PV array (kWh)
EPV−load Yearly value of electricity consumed by the load from the PV (kWh)
FElectric−grid GWP for electricity production (kgCO2/kWh)
Fleak GWP values for refrigerant leakage (kgCO2/kg)
FPV PV electricity generation carbon footprint (kgCO2/kWh)
iin f Inflation rate (%)
l Latent heat for water solidification (J/kg)
L Leakage rate (% per year)
.

mdaily−ice Daily ice consumption (kgIce/days)
Mt Maintenance costs ($)
n Project duration (years)
Ndays Number of days when the market operates
NSellers Fish sellers’ number
Ot Operation cost ($)
PGrid−load Electricity consumed by the load from the electric grid for a time segment (kW)
PLoad Electricity demanded by the system for a time segment (kW)
PPV Electricity generated by the PV array for a time segment in (kW)
PPV−LOAD Electricity consumed by the load from the PV array for a time segment (kW)
.

Qcold Yearly cooling load determined by TRNSYS (kWh/year)
Q̂El−Ice Electricity needed to produce a specific mass of ice (kWh/kgIce.◦C)
Q̂Th Thermal energy needed to produce a specific mass of ice (J/kgIce.◦C)
r Discount rate (%)
Ti Initial water temperature (◦C)
Tf Ice final set temperature (◦C)
Tf reez Water freezing temperature (◦C)

Abbreviations

DPP Discounted payback period (years)
GHG Greenhouse gases
GWP Global warming potential
HFC Hydrofluorocarbon fluid
LCOC Levelized Cost of Cooling ($/kWhcold)
RH Relative humidity (%)
SC PV array self-consumption rate (%)
SS PV array self-sufficiency rate (%)
TEWI Ice−machine Total equivalent warming potential of the ice machine (tons CO2)
TEWIPV Total equivalent warming potential of the PV array (tons CO2)
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