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Abstract: Understanding the spatio-temporal differentiation of carbon intensity factors is crucial
for setting scientific and reasonable carbon emission reduction targets. This study, based on rel-
evant data from the western regions for the years 2010–2019, analyzes the influencing factors of
the spatio-temporal distribution differences in carbon intensity in these areas. Additionally, the
Grey Forecasting Model was utilized to predict the development trend of average carbon intensity
in the western regions. The results indicate the following: (1) The temporal dimension of carbon
intensity in the western regions shows an overall declining trend with local rebounds, while the
high-value areas of spatial carbon intensity are concentrated in the northern part of the study area.
(2) Per capita Gross Domestic Product, energy consumption per unit of Gross Domestic Product and
investment in industrial pollution control have a positive impact on carbon intensity, whereas invest-
ment in the energy industry and per capita disposable income of residents have a negative impact.
(3) Energy consumption per unit of Gross Domestic Product is the factor with the highest degree
of explanation in univariate analysis; interaction detection results suggest that the core factors of
spatial distribution differences in carbon intensity are energy consumption and urban development.
(4) Predictions using the Grey Forecasting Model for the development of carbon intensity in the
western regions show a year-by-year decline, consistent with carbon intensity control targets. Based
on these conclusions, this paper proposes policy recommendations focusing on improving regional
economic coordination mechanisms, increasing investment in industrial pollution control, managing
energy industry expenditures, adjusting the proportion of the urban population, and enhancing the
per capita disposable income of residents.

Keywords: western region; carbon intensity; STIRPAT model; Geo-detector model; GM (1:1) model

1. Introduction

Climate change is primarily driven by the release of greenhouse gases, with carbon
dioxide being a major contributor [1,2]. The consequences of climate change, including
elevated global temperatures, heightened frequency of extreme weather events, and rising
sea levels, are increasingly posing a substantial threat to global society, the economy, and
the environment. The international community has been proactively responding to the
challenges posed by climate change. The Kyoto Protocol demarcated that a global effort
in climate change mitigation aims to reduce GHG emissions from countries (developed
countries) by 5.2%, with the year 1990 as baseline in the first commitment period of 2008–
2012 [3]. The Glasgow Climate Pact underscored the necessity for swift, substantial, and
enduring diminutions in worldwide greenhouse gas emissions to cap global warming
at 1.5 ◦C [4]. The long-run goal of the Paris Agreement is to maintain the global mean
temperature increase below 2 ◦C over the pre-industrial period and to pursue an effort
to limit the temperature rise to 1.5 ◦C [5]. The shift from the Kyoto Protocol to the Paris
Agreement signifies a global acknowledgment of the severity of the climate change issue.
The coming into force of the Paris Agreement has ushered in a new dawn for global
cooperation on climate change [6].
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China has taken proactive measures to address the global climate change challenge. The
country has made commitments to peak carbon dioxide emissions by 2030 and achieve carbon
neutrality by 2060 in alignment with the global response to climate change [7,8]. In light of
this, China has adopted the carbon intensity control target as the low-carbon-emission
reduction objective, aligning it with the country’s specific circumstances. This approach
ensures the fulfillment of low-carbon responsibilities while concurrently safeguarding the
progress of economic development. Carbon intensity represents the amount of carbon
dioxide emissions per unit of GDP (Gross Domestic Product) and is influenced by the
interplay between the economy and carbon emissions [9,10]. It serves as a crucial metric
for assessing both economic development and progress toward low-carbon initiatives. The
extensive area and notable carbon emissions linked to economic activities position China’s
western region as a pivotal area for economic and environmental research. To discern the
key determinants affecting the disparities in carbon intensity distribution within these
regions, this study harnesses regional data, positing carbon intensity as the dependent
variable. A selection of independent variables known to influence carbon intensity was
methodically analyzed. The STIRPAT (Stochastic Impacts by Regression on Population,
Affluence, and Technology) model was utilized to assess factors affecting the temporal
variation of carbon intensity, while the Geo-detector (Geo-graphy detector) model was
deployed to explore the spatial determinants. Finally, a comprehensive analysis of these
factors was conducted, and the GM (1,1) model (Gray Forecast Model) was employed
to forecast the development of carbon intensity in the western regions. Focusing on the
specifics of carbon intensity management in the western regions paves the way for the
development of informed policies. This detailed examination improves the distribution
of resources, directly influencing the practical application of sustainable solutions. Such
an approach not only propels these regions towards sustainable development but also
ensures that strategies are grounded in real-world applications, fostering environmental
sustainability alongside economic growth.

2. Literature Review

Current research on the spatial and temporal differentiation of carbon intensity primar-
ily involves scholars analyzing the spatial and temporal distribution of carbon intensity and
exploring the factors influencing the differences in the spatial and temporal distribution.
In analyzing the spatial and temporal distribution of carbon intensity, Congqi Wang and
Pengzhen Liu conducted a path analysis of the spatial and temporal evolution of green
finance and carbon emissions in the Pearl River Delta (PRD) region, and investigated the
direction of the spatial evolution of green finance and carbon emissions and the spatial
spillover effect of carbon emissions [11]. Lang Xu and Zhihui Yang analyzed the spatial and
temporal evolution characteristics and spillover effects of carbon emissions from shipping
trade in EU coastal countries, and found that carbon emissions from shipping trade in
EU coastal countries have positive spatial correlation and spatial clustering [12]. Xiaoyan
Sun calculated the power generation intensity of 30 provinces, and analyzed the spatial
and temporal characteristics of power generation carbon emission intensity and the spa-
tial spillover effects of the drivers in each province in China [13]. Ying Zhou and Dan
Hu identified the main influencing factors and calculated their impacts using the LMDI
model. They then explored the decoupling relationship between carbon emissions and
economic output using the Tapio decoupling index. Finally, they analyzed the temporal
and spatial evolution of carbon emissions through spatial autocorrelation theory [14]. In
the study of Lei Li and Junfeng Li, an exploratory spatial data analysis (ESDA) framework
was constructed through spatial autocorrelation, kernel density estimation and standard
deviation ellipse to analyze the spatio-temporal evolutionary characteristics of carbon
emissions in the Greater Bay Area, and to identify various influencing factors of carbon
emissions in the Greater Bay Area by combining geographically and temporally weighted
regression (GTWR) models [15]. Fuqiang Han and Alimujiang Kasimu et al. used the
arid regions of Northwest China as their research subject and analyzed the carbon balance
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under land use changes by combining top-down and bottom-up approaches [16]. Suwen
Xiong and Fan Yang analyzed the carbon balance patterns of city clusters in the central
Yangtze River region. Combined with comprehensive trend predictions, they proposed a
mechanism for regulating carbon balance [17]. Yao Zhang and Jing Quan used the city of
Xi’an as their research subject to construct a model for estimating regional carbon emission
fines based on energy consumption and NPP-VIIRS type NTL data, and quantitatively
analyzed multi-scale carbon emissions from 2000 to 2021 [18]. Lanyi Zhang and Dawei
Weng studied the provincial road transportation carbon emissions in China from 2006
to 2021, finding that China’s road transportation carbon emissions exhibit an east-high
and west-low distribution. They analyzed five factors influencing transportation carbon
emissions [19]. Lijuan Su and Yatao Wang measured the spatial and temporal evolution
characteristics and convergence of agricultural carbon emissions, conducted a comparative
analysis of regional differences, and investigated the spatial correlation and spatial spillover
effects using panel data from 31 provinces in China from 2005 to 2020 [20].

In exploring the factors influencing the differences in the spatial and temporal distribu-
tion, some scholars have consolidated insights from previous studies on the characteristics
of spatio-temporal variations in carbon intensity. They analyzed these variations using
various influential factor analysis models. Kaile Zhou and Jingna Yan analyzed the spatio-
temporal evolution characteristics and spillover effects of regional carbon emissions in
China. They found that the level of regional technological innovation dampens carbon
emissions and that an increase in neighboring regions will similarly dampen local carbon
emissions [21]. Shengnan Cui and Yanqiu Wang analyzed the multifactorial spatio-temporal
carbon emissions in China from a holistic governance perspective, constructing a spatio-
temporal decomposition method and a two-dimensional separation model [22]. Yi Yang
and Huan Qin investigated the spatio-temporal and regional heterogeneity of carbon peak
uncertainty and its triggers in China, discovering that the carbon peak depends on the
rate of change in carbon intensity and per capita GDP. They also found that the drivers for
carbon decoupling vary across provinces [23]. Siying Chen studied 108 cities in the Yangtze
River Economic Belt and used a combined coordination degree model and an optimal
parameter-based geoprobe model to assess the synergy level between pollution control
and carbon reduction, as well as to identify its driving factors [24]. Xiaoying Liang and
Min Fan used 30 provinces in China as their research subjects to calculate the spatial and
temporal distribution characteristics of energy carbon emissions using the carbon emission
coefficient method. They also analyzed the driving factors behind the differences in the
spatial and temporal distribution characteristics [25]. Hao Lu, Chengyou Xiao, and Liudan
Jiao analyzed the impact mechanism from three perspectives: vehicle intelligence, road
intelligence, and cloud data. They empirically analyzed the spatial differences in carbon
emission control based on panel data from 285 cities in China [26]. Miao He expanded the
traditional STIRPAT framework to examine the impact of market integration on carbon
emission coefficients and heterogeneity in Eastern China, as well as to identify factors
influencing carbon intensity and low-carbon pathways in market development [27]. Xiaoyi
Shi and Xiaoxia Huang employed Social Network Analysis (SNA) to study the spatial
correlation network of China’s carbon emissions (CCESCN) from 2011 to 2020, analyzing
the factors influencing the evolution characteristics of carbon emissions [28].

The field of low-carbon development, particularly in studies of carbon intensity, fo-
cuses primarily on two key areas. First, it includes the analysis of carbon intensity’s
spatial and temporal disparities. Second, it involves investigating the current spatial and
temporal variations in factors that influence carbon intensity. Understanding both the
spatial–temporal characteristics of carbon intensity and the factors that affect it is crucial
for crafting effective carbon emission reduction policies and strategies. This understanding
not only aids in the development of scientifically based reduction measures but also offers
valuable insights for fostering inter-regional collaboration in reducing carbon emissions.
Despite the comprehensive nature of existing research on the spatial and temporal differ-
ences in carbon intensity and the analysis of its influencing factors, our literature review
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indicates a strong scholarly emphasis on exploring the factors influencing spatial differ-
ences. Some researchers have adopted an analysis method focusing on influencing factors
across two dimensions to study carbon intensity disparities. However, this method may
not sufficiently highlight the dominant role of influencing factors within a specific dimen-
sion. Building on previous studies, this paper analyzes the influencing factors associated
with spatial and temporal differences in carbon intensity, considering both dimensions to
provide a more nuanced understanding.

3. Research Design
3.1. Variable Selection
3.1.1. Selection of the Dependent Variable

Carbon intensity signifies the interplay between carbon emissions and economic
growth, serving as a crucial indicator for assessing the extent of carbon peaking in a city.
Carbon intensity (Y) is determined by dividing carbon emissions by GDP [9,10,29], as in
this study. This study focuses on the western regions of China, excluding Tibet due to
its unique geographical and socio-economic challenges that complicate data collection
and analysis, potentially affecting data accuracy and comparability. The research aims to
identify and analyze trends and factors relevant across the western regions, excluding areas
like Tibet that require distinct, specialized analytical methods. Thus, Tibet’s exclusion does
not impact the overall research findings, ensuring a focused and applicable analysis for the
targeted regions.

3.1.2. Choice of Independent Variables

Given that carbon intensity serves as a comprehensive indicator derived from carbon
emissions and GDP, the choice of independent variables for assessing carbon intensity
should encompass factors related to both carbon emissions and GDP. The independent vari-
ables for carbon intensity include energy consumption, urban development level, economic
development level, and pollution control. In the context of carbon emissions, the dynamics
of carbon intensity are shaped by the interplay of energy consumption and pollution control.
Energy consumption comprises elements like investment in the energy industry, overall
energy consumption, and energy consumption per unit of GDP. Meanwhile, pollution
control encompasses investments directed at industrial pollution control measures. The
carbon intensity is influenced by both the degree of urban development and economic
advancement, with a focus on GDP. The urban development level encompasses factors
such as the proportion of the urban population, per capita disposable income, and the
total regional population. On the other hand, the economic development level involves
per capita GDP and the proportion of the secondary and tertiary industries in the GDP
composition. The total number of indicators, considering both carbon emissions and GDP
perspectives, amounts to nine, as illustrated in Figure 1.
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3.1.3. Data Sources

Data on the spatial and temporal variations of carbon intensity were obtained from
several authoritative publications: China Statistical Yearbook, China Environmental Sta-
tistical Yearbook, China Social Statistical Yearbook, China Population and Employment
Statistical Yearbook, and China Energy Statistical Yearbook. To compensate for the short-
comings of these datasets, interpolation was used to supplement the missing information.
In addition, the carbon emission data used to calculate carbon intensity were obtained from
the provincial inventories of the China Carbon Accounting Databases (CEADs).

3.2. Research Methodology
3.2.1. The STIRPAT Model

The STIRPAT model, an advancement over the IPAT equation originally proposed by
York, R and Dietz, T addresses the limitations inherent in the IPAT’s approach to quantifying
human environmental impact [30]. The IPAT equation, which represents the impact of
human activities on the environment, considers factors such as population size, affluence,
and technological progress. However, its reliance on single and fixed influence factors
restricts its applicability. In contrast, the STIRPAT model enhances the IPAT framework by
allowing for the inclusion of a broader range of indices in the analysis of influence factors,
thereby offering a more flexible and comprehensive approach. This model has become a
prevalent method in contemporary environmental research [31–34]. The basic formulation
of the STIRPAT model is as follows:

I = aPb AcTde (1)

In this model, I, P, A, and T represent environmental pressure, population size, afflu-
ence, and technology, respectively. The coefficients b, c, and d denote the elasticity of the
respective drivers: population size, affluence, and technological progress. The coefficient
a is a constant that anchors the model, while e represents the error term in the model. To
linearize the relationship, logarithms are taken on both sides of the equation, resulting in
the following form:

ln I = ln a + b(ln P) + c(ln A) + d(ln T) + ln e (2)

The model can be extended to:

ln C = ln a + B1(ln X1) + B2(ln X2) + B3(ln X3) + B4(ln X4) + B5(ln X5)+
B6(ln X6) + B7(ln X7) + B8(ln X8) + B9(ln X9) + ln e

(3)

where C denotes carbon intensity; a is the coefficient of the model; X1 is the GDP per
capita; X2 is the energy industry investment; X3 is the proportion of secondary and tertiary
industries in GDP; X4 is the proportion of urban population; X5 is the disposable income
per capita; X6 is the total energy consumption; X7 is the energy consumption per unit of
GDP; X8 is the amount of investment in the treatment of industrial pollution; X9 is the total
population of the region; e is the error of the model; Bi is the elasticity coefficient of each
variable, which means that a 1% change in Xi will cause the carbon intensity to change to
% will cause the carbon intensity of Bi% change.

3.2.2. Geoprobe Model

Spatial differentiation is the spatial manifestation of natural and socioeconomic pro-
cesses, and probes are statistical methods for detecting spatial variability, as well as re-
vealing the driving factors behind it [35,36]. The causal relationship between independent
variables and dependent variables makes both of them have certain spatial distribution
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similarities, and detectors are chosen for spatial differentiation factor analysis to reveal the
driving force of each influencing factor on the spatial differentiation of carbon intensity [37].

q = 1 −

L
∑

h=1
Nhσ2

h

Nσ2 = 1 − SSW
SST

(4)

SSW =
L

∑
h=1

Nhσ2
h , SST = Nσ2 (5)

where q represents the explanatory power of the factor (its value range is [0, 1]; the closer to
1, the greater the explanatory power); h is the independent variable or dependent variable
into (Strata), that is, categorized or partitioned; Nh and N are the number of cells in the layer
h and the whole region, respectively; σh and σ2 represent the variance of the independent
variable in the layer h and the whole region, respectively; SSW and SST are the sum of
Within Sum of Squares (Within Sum of Squares) and the total variance of the whole region
(Within Sum of Squares), respectively. Within Sum of Squares).

3.2.3. Temporal and Spatial Development Forecasting Models

Grey system theory is the study of the solution of grey system analysis, modeling,
prediction, decision-making and control of the theory [38,39]. This paper adopts the grey
system in the GM (1:1) for series prediction [40], as follows:

(1) Let the original series be x(0) =
{

x(0)(1), x(0)(2) · · · x(0)(M)
}

, and perform one accu-

mulation on x(0) to obtain the new series x(1) =
{

x(1)(1), x(1)(2) · · · x(1)(M)
}

.

(2) Approximate the differential equation:

dx(1)/dt + αx(1) = µ (6)

where α is the developmental gray; µ is the endogenous control gray.
(3) Solved by least squares fitting α, µ:[

α
µ

]
= (BT B)

−1
BTYM (7)

(4) Substituting the required value into the time response function:

x̂(1)(k + 1) =
[

x(1)(1)− µ

α

]
e−αt +

µ

α
(8)

(5) Derivative reduction of the above equation yields the predictive model:

x̂(0)(k + 1) = −α
[

x(0)(1)− µ

α

]
e−αt (9)

(6) The gray prediction formula is tested for its accuracy level. If the accuracy test fails,
the prediction model needs to be adjusted to obtain the Small Error Probability Test
(p) and the Variance Ratio Test (C).

4. Results and Analysis
4.1. Differences in the Spatial and Temporal Distribution of Carbon Intensity

Firstly, carbon intensity within the western region was calculated by comparing carbon
emissions to GDP. Temporal variations in carbon intensity were visually depicted using
Origin 2021 software, with point and line maps created to illustrate fluctuation trends over
time. Furthermore, spatial differences in carbon intensity were illustrated through regional
grading utilizing ArcGIS 10.2 software, as demonstrated in Figures 2 and 3.
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As depicted in Figure 2, the overall temporal trend of carbon intensity demonstrates a
year-on-year decrease. However, specific localities exhibit notable fluctuations, particularly
in Ningxia, Xinjiang, and Inner Mongolia.

In Ningxia, the carbon intensity initially experiences a decline, followed by an upward
shift. The most significant fluctuation in carbon intensity occurred between 2013 and
2016, with a subsequent decreasing trend. In Xinjiang, there is an initial increase in carbon
intensity, succeeded by a decline. The period from 2016 to 2019 witnessed the most
substantial fluctuation in carbon intensity, followed by a decreasing trend. Inner Mongolia,
conversely, displays an initial decrease in carbon intensity, succeeded by a subsequent rise.
The years from 2016 to 2019 witnessed a noticeable increase in carbon intensity fluctuations.
In contrast, the remaining western regions consistently exhibited a decreasing trend in
carbon intensity year after year.

Over a broad temporal scale, the annual reduction in carbon intensity reflects China’s
progress in enhancing energy efficiency and transitioning towards a low-carbon economy.
This progress is likely associated with a suite of national-level energy-saving and emission-
reduction policies, along with technological innovations. Despite the general trend of
declining carbon intensity, the trends in Ningxia, Xinjiang, and Inner Mongolia reveal
significant inter-regional differences. These discrepancies may be attributed to variations
in economic structure, energy configuration, industrial layout, and technological levels
across regions [41–44]. Therefore, policy formulation needs to take into account regional
economic and energy structure characteristics in order to design low-carbon development
strategies that are appropriate to local realities.

Figure 3 illustrates a distinct concentration of carbon intensity in the western region,
particularly evident with higher levels in the north-central compared to the southern part.
Notably, a consistent year-by-year decline in carbon intensity is observed.

In the year 2010, the Inner Mongolia Autonomous Region, the Ningxia Hui Au-
tonomous Region, and Guizhou Province exhibited notably elevated levels of carbon
intensity. During this period, carbon emissions were approximately 5 to 6 times the re-
spective regional GDP. This emphasizes a significant carbon footprint associated with the
developmental activities in these regions. The high carbon intensity underscores the intri-
cate relationship between economic development and heightened carbon emissions within
these areas. In 2013, a comparison with 2010 revealed relatively stable carbon emissions
in the Ningxia Hui Autonomous Region. Despite the stability, carbon intensity remained
persistently high. Concurrently, Inner Mongolia and Guizhou experienced a transition
from high to medium carbon intensity levels during this period.

Moving to 2016, there was a general decline in carbon intensity across all western
regions, except for Xinjiang and Inner Mongolia, where levels remained relatively stable.
Notably, in 2019, Inner Mongolia is anticipated to experience a rebound in carbon intensity,
while other regions are expected to maintain their existing levels with no significant changes.
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This temporal analysis underscores the dynamic nature of carbon emissions, reflecting both
stability and fluctuations in different regions over the specified time frame.
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The distribution of carbon intensity exhibits different trends over time and space. This
distribution may be attributed to factors such as industrial structure, energy consumption
patterns, economic development levels, and geographical and climatic conditions [44,45].
The northern region’s reliance on heavy industry and fossil fuels such as coal likely con-
tributes to its elevated carbon intensity. However, the entire western region demonstrates
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a year-over-year declining trend in carbon intensity, indicating progress in enhancing
energy efficiency and reducing carbon emissions. This progress is likely due to national
initiatives for green, low-carbon development, adjustments in the energy structure, and the
application of clean energy technologies [46].

4.2. Analysis of Temporal Factors Influencing Carbon Intensity

The STIRPAT model was employed to analyze the influencing factors depicted in
Figure 1, identifying the determinants of carbon intensity over time in the western regions.
The operational procedure of the STIRPAT model begins with the identification of signif-
icant factors that impact carbon intensity. This is followed by an analysis of collinearity
using ordinary least squares (OLS). Finally, ridge regression analysis is conducted based on
the significance analysis and ordinary least squares analysis.

The chosen variables undergo a rigorous scientific selection process, where significant
independent variables are selected using the stepwise regression forward and backward
method. As depicted in Table 1, the resulting variables GDP per capita, energy industry
investment, disposable income per capita, total energy consumption, energy consumption
per unit of GDP, and investment in industrial pollution control exhibit potential relation-
ships with the dependent variable. To delve deeper, linear regression was employed to
further validate these relationships.

Table 1. Description of model variables.

Name (of a Thing) Forward Method Backward Method

GDP per capita insignificant 0.001
Energy industry investment insignificant p < 0.001

Share of secondary and tertiary
industries in GDP insignificant insignificant

proportion of urban population insignificant insignificant
Disposable income per capita insignificant p < 0.001

Total energy consumption insignificant 0.003
Energy consumption per unit of GDP p < 0.001 p < 0.001

Investment in industrial pollution control p = 0.016 p < 0.001
Total population insignificant insignificant

Based on the findings of the significance analysis, GDP per capita, energy industry
investment, disposable income per capita, total energy consumption, energy consumption
per unit of GDP, and investment in industrial pollution control were selected as indepen-
dent variables, with carbon intensity serving as the dependent variable for analysis using
ordinary least squares (OLS). The results are presented in Table 2. The model successfully
passed the F-test (F = 517.676, p = 0.000 < 0.05), indicating that at least one of GDP per
capita, energy industry investment, disposable income per capita, total energy consump-
tion, energy consumption per unit of GDP, and investment in industrial pollution control
significantly influences carbon intensity. The study examined the relationships between
GDP value, energy industry investment, disposable income per capita, total energy con-
sumption, energy consumption per unit of GDP, and industrial pollution control investment
amount, to determine their impact on carbon intensity. Additionally, a multiple covariance
test applied to the model identified a VIF (Variance Inflation Factor) value exceeding 10 for
energy industry investment, signaling a covariance issue. This indicates that the coefficients
obtained from the results of the ordinary least squares fitting cannot be reliably guaranteed,
and, consequently, cannot serve as a solid scientific foundation.
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Table 2. Analysis of ordinary least squares results.

Non-Standardized
Coefficient

Standardized
Coefficient

t p
Covariance Diagnosis

B Standard
Error Beta VIF Tolerance

A constant (math.) −2.178 2.728 - −0.798 0.469 - -

GDP per capita 1.158 0.118 0.237 9.813 0.001 1.820 0.550

energy industry
investment −1.623 0.130 −0.710 −12.475 0.000 10.067 0.099

disposable income per
capita −2.313 0.249 −0.254 −9.288 0.001 2.332 0.429

total energy consumption 0.812 0.131 0.302 6.191 0.003 7.415 0.135

energy consumption per
unit of GDP 2.960 0.070 1.019 42.502 0.000 1.788 0.559

investment in industrial
pollution control 1.381 0.088 0.656 15.609 0.000 5.501 0.182

R2 0.999

Adjustment R2 0.997

F F (6,4) = 517.676, p = 0.000

D-W value 2.531

Note: Dependent variable is carbon intensity; p < 0.05; p < 0.01.

To mitigate the interference resulting from the multiple covariances inherent in panel
data, and to preserve a more substantial amount of information from both the independent
variables and the dependent variable, the ridge regression method was adopted for data
analysis. This approach addresses the challenges posed by multiple covariance interference
in panel data analysis while maximizing the retention of critical information from the inde-
pendent and dependent variables. To effectively address the issue of multiple covariance
interference in panel data and better preserve the information contained in the independent
and dependent variables, the data were reanalyzed using the ridge regression method.

The ridge regression program was implemented using SPSS 25.0 software. The analysis
involved equations, ridge trace plots, and goodness-of-fit assessments across various values
of the ridge parameter (k). The independent variables included per capita GDP, energy
industry investment, per capita disposable income of residents, total energy consump-
tion, energy consumption per unit of GDP, and investment in the treatment of industrial
pollution. Carbon intensity was the designated dependent variable.

Upon setting k = 0.05, the ridge coefficients exhibited stabilization, and the model’s
R-squared value reached 0.983. This indicates that per capita GDP, energy industry invest-
ment, per capita disposable income, total energy consumption, energy consumption per
unit of GDP, and investment in industrial pollution control collectively explain 98.3% of
the variance in carbon intensity. Detailed results of the ridge regression at k = 0.05 are
presented in Table 3. Furthermore, the model underwent an F-test, yielding a statistically
significant result (F = 37.766, p = 0.002 < 0.05). This implies that at least one of the vari-
ables, namely per capita GDP, energy industry investment, disposable income per capita,
total energy consumption, energy consumption per unit of GDP, or industrial pollution
control investment, significantly influences the relationship with carbon intensity. The
non-standard coefficient equation derived from ridge regression aligns with the STIRPAT
model equation.

ln C = 7.031 + 1.256(ln X1)− 0.810(ln X2)− 2.753(ln X5)
+0.172(ln X6) + 2.611(ln X7) + 0.956(ln X8)

(10)
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where C denotes carbon intensity; X1 is GDP per capita, X2 is energy industry invest-
ment, X5 is disposable income per capita, X6 is total energy consumption, X7 is energy
consumption per unit of GDP, and X8 is investment in industrial pollution control.

Table 3. Results of ridge regression at k = 0.05.

Non-Standardized Coefficient Standardized
Coefficient

t p VIF Value
B Standard

Error Beta

A constant (math.) 7.031 7.507 - 0.937 0.402 -

GDP per capita 1.256 0.372 0.257 3.378 0.028 1.339

energy industry
investment −0.810 0.260 −0.354 −3.120 0.036 2.971

disposable income per
capita −2.753 0.722 −0.303 −3.813 0.019 1.453

total energy consumption 0.172 0.296 0.064 0.582 0.592 2.792

energy consumption per
unit of GDP 2.611 0.210 0.899 12.409 0.000 1.210

investment in industrial
pollution control 0.956 0.219 0.454 4.360 0.012 2.505

R2 0.983

Adjustment R2 0.957

F F (6,4) = 37.766, p = 0.002

Note: Dependent variable is carbon intensity; p < 0.05; p < 0.01.

The regression analysis reveals noteworthy findings regarding the impact of various
factors on carbon intensity. Specifically: The regression coefficient for per capita GDP
is 1.256 (t = 3.378, p = 0.028 < 0.05), indicating a significant positive influence on carbon
intensity. Energy industry investment is associated with a regression coefficient of −0.810
(t = −3.120, p = 0.036 < 0.05), signifying a significant negative impact on carbon inten-
sity. Per capita disposable income exhibits a regression coefficient of −2.753 (t = −3.813,
p = 0.019 < 0.05), suggesting a significant negative effect on carbon intensity. Total en-
ergy consumption’s regression coefficient is 0.172 (t = 0.582, p = 0.592 > 0.05), implying a
non-significant positive impact on carbon intensity. The regression coefficient for energy
consumption per unit of GDP is 2.611 (t = 12.409, p = 0.000 < 0.01), indicating a significant
positive influence on carbon intensity. Industrial pollution control investment is associated
with a regression coefficient of 0.956 (t = 4.360, p = 0.012 < 0.05), signifying a significant
positive impact on carbon intensity.

Results derived from the STIRPAT model indicate that per capita GDP, energy con-
sumption per unit of GDP, and investment in industrial pollution control significantly
contribute to the increase in carbon intensity. Conversely, investment in the energy sector
and per capita disposable income are associated with a significant reduction in carbon
intensity. In this analysis, total energy consumption does not have a statistically signifi-
cant impact on carbon intensity. Per capita GDP’s rise is tied to higher carbon intensity,
suggesting economic growth’s environmental toll. Clean energy investments are inversely
related to carbon intensity, indicating efficiency gains. Higher incomes align with greener
consumption, aiding emission cuts. Energy use per GDP unit reflects efficiency deficits
in high-intensity economies. Despite pollution control investments suggesting increased
industrial activity, a holistic strategy promoting sustainable growth, clean energy, and
low-carbon habits is key to reducing carbon intensity, with policy evaluations needing to
account for complex economic-social dynamics.
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4.3. Analysis of Factors Affecting Carbon Intensity in the Spatial Dimension

The Geo-detector model was utilized to analyze the influencing factors illustrated
in Figure 1, precisely identifying the determinants of carbon intensity within the spatial
dimension of the western regions. Initially, the reclassification tool in ArcGIS was employed
to convert the original continuous data raster. Subsequent calculations were performed
in Excel 2016, with the Geo-detector 2015 software acting as a macro within the Excel
spreadsheet to directly process the data for analysis. The outcomes included both univariate
and bivariate analyses. The results of the univariate and bivariate analyses are detailed in
Tables 4 and 5.

Table 4. Explanatory power of factors influencing carbon intensity in the western region.

Impact Level Detection Indicators
Explanatory Power (q-Value)

2010 2013 2016 2019 Synthesize

Energy Consumption
Investment in the energy industry 0.178 0.254 0.230 0.172 0.209

Total energy consumption 0.192 0.320 0.526 0.364 0.351
Energy consumption per unit of GDP 0.814 0.636 0.735 0.834 0.755

Pollution Control Investment in industrial pollution
control 0.304 0.190 0.248 0.105 0.212

Urban Development
Share of urban population 0.171 0.113 0.100 0.446 0.208

Per capita disposable income 0.042 0.847 0.340 0.512 0.435
Total population of the region 0.368 0.458 0.464 0.386 0.419

Economic Development GDP per capita 0.319 0.105 0.120 0.221 0.191
Share of secondary and tertiary

industries in GDP 0.113 0.120 0.087 0.059 0.095

From the results of the Single-factor analysis of variance (Table 4), it is evident that
energy consumption per unit of GDP and the total regional population exerts a more
substantial explanatory influence on the spatial variation of carbon intensity in the western
region. Particularly noteworthy is the average explanatory power of energy consumption
per unit of GDP, which attains 0.755, signifying the highest degree of impact on the spatial
differentiation of carbon intensity. Conversely, the category with the least explanatory
power regarding the spatial distribution differences in carbon intensity is the proportion
of secondary and tertiary industries to GDP, registering an average explanatory power of
0.095. Assessing the level of influence, it is discerned that energy consumption and urban
development wield a more pronounced effect on carbon intensity.

The results of the two-factor analysis of variance (Table 5) reveal that the impact of
two-factor interaction on the spatial differentiation of carbon intensity in the western region
surpasses that of a single factor, demonstrating non-linear enhancement and two-factor
synergies. In 2010, the most robust interaction effect occurred between the proportion
of urban population and energy consumption per unit of GDP, yielding an explanatory
power of 0.996. This underscores that changes in the urban population proportion and
energy consumption per unit of GDP were the primary driving forces behind the spatial
variation in carbon intensity. In 2013, the interaction between total regional population and
GDP per capita exhibited the highest level of influence, boasting an explanatory power of
0.996. This suggests that the total regional population and GDP per capita played pivotal
roles in shaping the spatial distribution of carbon intensity. Similar to 2013, 2016 witnessed
the most potent interaction between the total regional population and GDP per capita,
registering an explanatory power of 1.000. The paramount two-factor explanatory power
in 2019 was associated with the total regional population and urban population share, with
an explanatory power of 0.998.
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Table 5. Interactive detection results of carbon intensity in the western region.

Particular Year X1 X2 X3 X4 X5 X6 X7 X8 X9

2010

X1 0.319
X2 0.519 0.178
X3 0.394 0.471 0.113
X4 0.574 0.612 0.312 0.171
X5 0.638 0.901 0.451 0.478 0.042
X6 0.892 0.434 0.603 0.560 0.992 0.192
X7 0.992 0.897 0.992 0.996 0.901 0.990 0.814
X8 0.894 0.406 0.499 0.542 0.973 0.446 0.961 0.304
X9 0.920 0.510 0.474 0.474 0.833 0.485 0.950 0.451 0.368

Particular Year X1 X2 X3 X4 X5 X6 X7 X8 X9

2013

X1 0.105
X2 0.449 0.254
X3 0.367 0.481 0.110
X4 0.403 0.692 0.878 0.113
X5 0.989 0.983 0.994 0.996 0.847
X6 0.965 0.600 0.994 0.672 0.986 0.320
X7 0.989 0.701 0.994 0.703 0.983 0.693 0.636
X8 0.808 0.490 0.800 0.808 0.876 0.930 0.991 0.190
X9 0.996 0.626 0.994 0.560 0.994 0.615 0.680 0.972 0.459

Particular Year X1 X2 X3 X4 X5 X6 X7 X8 X9

2016

X1 0.120
X2 0.360 0.230
X3 0.372 0.619 0.087
X4 0.367 0.741 0.754 0.099
X5 0.670 0.493 0.710 0.678 0.340
X6 0.967 0.748 0.965 0.976 0.842 0.526
X7 0.880 0.845 0.976 0.889 0.841 0.819 0.735
X8 0.375 0.693 0.668 0.375 0.651 0.952 0.913 0.248
X9 1.000 0.787 0.907 0.814 0.575 0.802 0.805 0.859 0.464

Particular Year X1 X2 X3 X4 X5 X6 X7 X8 X9

2019

X1 0.221
X2 0.679 0.172
X3 0.987 0.593 0.059
X4 0.681 0.681 0.638 0.446
X5 0.905 0.994 0.945 0.919 0.512
X6 0.878 0.445 0.593 0.878 0.751 0.364
X7 0.987 0.991 0.856 0.946 0.952 0.991 0.834
X8 0.681 0.249 0.593 0.681 0.619 0.422 0.987 0.105
X9 0.750 0.974 0.942 0.998 0.703 0.729 0.959 0.732 0.386

Note: Single underlined data are nonlinear enhancements, bolded and boldface data are two-factor enhancements.

In summary, the explanatory power of two-factor interactions during the period 2010–2019
spans from the proportion of urban population and energy consumption per unit of GDP
to the total regional population and GDP per capita, and ultimately to the total regional
population and the proportion of urban population. The dynamic evolution of interaction
explanatory power suggests that the primary influence on spatial variation in carbon
intensity stems from the interaction between energy consumption and urban development.

The rationale behind the observed spatial variance in carbon intensity being impacted
by energy consumption and urban development may lie in the fact that energy serves as a
fundamental indicator of economic development. Simultaneously, energy consumption
directly results in carbon emissions, influencing both GDP values and carbon emissions,
thereby affecting carbon intensity. Moreover, cities and towns represent focal points
of human activities, and their developmental levels directly impact regional economies.
The processes associated with human activities contribute to carbon emissions, further



Sustainability 2024, 16, 3364 15 of 19

influencing carbon intensity. Consequently, the interaction between energy consumption
and urban development, as core factors influencing carbon intensity, emerges as the central
explanatory power for spatial disparities in carbon intensity distribution.

Results obtained using the Geo-detector model reveal that in the univariate analysis,
energy consumption per unit of GDP and Disposable income per capita exert the strongest
influence on the spatial variation of carbon intensity. Bivariate interaction analysis discloses
that the proportion of the proportion of the urban population and energy consumption per
unit of GDP, as well as the Total population and per capita GDP, have the most pronounced
impact on the spatial variation of carbon intensity at different time intervals.

4.4. Projections of Spatial and Temporal Development of Carbon Intensity

This study employs raw data related to carbon intensity in the western regions from
2010 to 2021 and utilizes the GM (1:1) grey prediction model to forecast the development
of carbon intensity. With the assistance of MATLAB 2019a software, Equations (6)–(9)
are applied to process the raw data, yielding predicted values for the carbon intensity
development in the western regions. Precision testing and error analysis of the develop-
ment forecast are conducted (see Table 6 for detailed criteria), resulting in a Small Error
Probability Test (p) value of 1, and Variance Ratio Test (C) values of 0.032, 0.028, 0.014, 0.028,
0.050, 0.025, 0.017, 0.086, 0.183, 0.155, and 0.157, respectively. Through rigorous accuracy
testing and error analysis, the prediction model demonstrates high precision.

Table 6. p and C value accuracy prediction level.

Predictive Accuracy (Name) Excellent Qualified Medium Unqualified

Variance Ratio Test (C) >0.95 >0.80 >0.70 ≤0.70
Small Error Probability Test (p) ≤0.35 ≤0.50 ≤0.65 ≥0.65

As evident from Figure 4, the actual average carbon intensity for the western regions in
2021 was 2.14. This indicates that the total carbon emissions were 2.14 times the Gross Do-
mestic Product (GDP) of the region, highlighting the correlation between regional economic
development and an increase in carbon emissions. The outcomes of the prediction model
reveal a yearly decreasing trend in regional average carbon intensity. The predicted average
carbon intensity for 2029 stands at 1.576, suggesting a declining ratio between the economy
and the environment. This implies a reduction in environmental loss during economic
development and an enhancement in environmental protection benefits throughout the
economic construction process.
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Building on the analysis of factors influencing the spatio temporal distribution of
carbon intensity, the current trend in the average actual carbon intensity in the western
regions is affected by energy consumption per unit of GDP, per capita GDP, investment in
industrial pollution control, investment in the energy sector, per capita disposable income,
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and the urban population ratio. Model predictions suggest that from 2021 to 2029, the
average carbon intensity in the western regions is expected to decrease annually by 7.01%.
Compared to the national target set in the “14th Five-Year Plan” of reducing carbon intensity
by 65% by 2030 relative to 2005 levels, the current trajectory appears promising. To maintain
this positive trend in carbon intensity, it is imperative to address and reinforce the temporal
and spatial factors influencing it. Policy recommendations should stem from these factors,
including energy consumption per unit of GDP, per capita GDP, investment in industrial
pollution control, investment in the energy sector, per capita disposable income, and the
urban population ratio.

5. Conclusions

The spatial and temporal variations in carbon intensity within the western region are
pronounced. Temporally, there has been a general downward trend in carbon intensity
over the years, albeit with localized fluctuations. Specifically, regions like Ningxia and
Inner Mongolia exhibit a pattern where carbon intensity first decreases and then increases.
Conversely, in Xinjiang, the trend in carbon intensity initially increases before decreasing.
Spatially, areas with a high carbon intensity ratio are predominantly located in the northern
part of the western region, with Ningxia, Inner Mongolia, and Xinjiang continuing to be
regions with a high ratio.

In this study, we employ the STIRPAT model to examine the trend of changes over time
and utilize stepwise regression to screen nine categories of influencing factors, ultimately
identifying significant factors such as per capita GDP, investment in the energy sector, per
capita disposable income, total energy consumption, energy consumption per unit of GDP,
and investment in industrial pollution control. Further analysis through ridge regression
reveals that, in the temporal dimension, per capita GDP, energy consumption per unit of
GDP, and investment in industrial pollution control significantly positively impact carbon
intensity. Conversely, investment in the energy industry and per capita disposable income
exhibit a significant negative effect on carbon intensity.

This study employs geographic probes to analyze the spatial patterns and factor
interactions affecting carbon intensity. Single-factor analysis reveals that the northern
region’s high carbon intensity primarily stems from its energy consumption per GDP unit
and population size. Interaction analysis shows varying significant two-factor interactions
over time. In 2010, urban population and energy consumption per GDP unit had the
highest explanatory power (0.996), shifting in 2013 to total population and per capita GDP,
maintaining the same explanatory power. By 2019, the most explanatory interaction was
between the total population and urban population proportion, with an explanatory power
of 0.998.

Finally, we forecast the spatio-temporal evolution of the average carbon intensity in the
western region, achieving a high degree of fit and prediction accuracy. The results indicate
a decreasing trend in the carbon intensity ratio, suggesting that harmonizing economic and
environmental development represents the future trajectory of progress. In the endeavor to
balance economic and environmental objectives, it is crucial to consider the variations in
spatial and temporal distributions and to engage in multi-regional coordination to mitigate
emissions and foster development.

6. Policy Proposals

Upon analyzing the outcomes and key conclusions, it is determined that the principal
elements influencing the spatial and temporal fluctuations of carbon emission intensity
include energy consumption per unit of GDP, GDP per capita, investment in industrial
pollution control, investment in the energy sector, per capita disposable income and the
urban population ratio. In light of these findings, the subsequent policy recommendations
are proposed:

Firstly, it is essential to implement comprehensive strategies to enhance mechanisms
for coordinated regional economic development and tackle the disparities in carbon inten-
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sity’s spatial and temporal distribution. Initially, creating a robust regional cooperation
framework involving government agencies, businesses, and research institutions will sup-
port information exchange and collective decision-making. Secondly, adopting policies and
incentives tailored to the specific conditions of each region can efficiently reduce variations
in carbon intensity. Furthermore, investments in renewable energy infrastructure, the
enhancement of energy efficiency standards, the promotion of green technologies, and the
encouragement of public awareness and participation through educational and outreach
programs are pivotal. These actions will facilitate a more equitable and sustainable de-
velopment trajectory, simultaneously addressing the spatial and temporal differences in
carbon intensity distribution effectively.

Secondly, enhancing investment in industrial pollution control and optimizing invest-
ment in the energy sector are critical steps towards mitigating the spatial and temporal
disparities in carbon intensity. Initially, bolster financial input for the research, develop-
ment, and dissemination of environmental protection technologies, thereby elevating the
level of environmental safeguarding in industrial production. Secondly, institute effective
regulatory frameworks to ensure that corporations comply with environmental laws and
standards during their operational processes, which in turn will lower carbon emissions.
Moreover, by advocating for and aiding businesses in the adoption of clean energy and
low-carbon technologies, the adverse effects of the energy sector on carbon intensity can
be minimized. Addressing the spatial and temporal variations in carbon intensity can be
achieved more effectively through the application of region-specific industrial pollution
control policies. Collectively, ensuring prudent investment alongside the execution of
all-encompassing environmental measures will facilitate the harmonious development of
carbon intensity across various regions.

Thirdly, strategically managing the urban population ratio and elevating residents’
per capita disposable income represent crucial strategies for mitigating the spatial and
temporal disparities in carbon intensity. Firstly, optimizing urban and rural development
policies to foster population mobility can alleviate the population density in areas with
high carbon intensity, thereby reducing carbon emissions. Secondly, enhancing residents’
per capita disposable income encourages behaviors conducive to low-carbon consumption,
diminishes activities associated with high carbon emissions, and ultimately reduces carbon
intensity levels. Furthermore, by bolstering urban planning and construction efforts to
improve the quality of life and environmental sustainability in urban areas, it is possible
to attract migration from rural areas, contributing to reduced carbon emissions in those
regions. A holistic approach to understanding the influence of population restructuring
and income growth on carbon intensity can significantly ameliorate the spatial and tem-
poral variations in carbon intensity, fostering harmonious economic and environmental
development.
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