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Abstract: In the summer of 2022, an intense heatwave swept through Northern Europe, with London
bearing a significant impact. While nature-based solutions are often considered to be ideal responses
to such heatwaves, experiences from the 2022 heatwave and others revealed potential drawbacks,
particularly for urban green spaces. Prolonged dry spells, frequently accompanying heatwaves, result
in excessively dry soil and the subsequent decline of vegetation in large parks. In the present study,
microclimate simulations were conducted for Hyde Park in London, a location that experienced such
drought during the 2022 heatwave, to examine its microclimatic performance in terms of thermal
comfort and tree health. In alignment with the observations, ENVI-met could replicate the lack of
noticeable cooling effects during the daytime and only marginal cooling during the nighttime. To
address these challenges, mitigation scenarios were explored, incorporating heat mitigation measures
such as part-time irrigation, temporary sun sails, and façade greenery. The findings demonstrated that
implementing these measures could reduce heat stress by up to 13 K PET (physiologically equivalent
temperature). These practical solutions emerged as effective remedies for mitigating the impact of
heatwaves on urban green spaces and, hence, improving future urban development overall.

Keywords: ENVI-met; heat stress; thermal comfort; plant health; UHI; PET; shading; trees; drought

1. Introduction

In the last decade, Europe has experienced a notable increase in the frequency and
severity of heatwaves, even extending up to the traditionally cooler northern regions [1].
This trend was exemplified by the 2022 heatwaves that hit the United Kingdom from June
to August, where air temperatures exceeding 40 ◦C led to widespread ecological damage,
including droughts, desiccated riverbeds, wildfires, and the spread of diseases, harming
ecosystems all over the country [2–4]. The significant impact on public health—indicated
by a rise in heat-related mortality exceeding 3400 deaths—categorizes UK to be among
those in Europe which experience notably elevated levels of heat-related fatalities during
the summer period [5,6].

This persistence of heatwaves in Europe is often associated with atmospheric block-
ing patterns, wherein high-pressure systems stagnate over a region, prolonging extreme
weather conditions such as heatwaves, heavy rainfall, or cold spells [7–9]. Urban areas,
which tend to absorb and retain more heat than their surroundings, experience intensified
heat during these events, exacerbating the formation of heat islands and posing challenges
to urban residents [10,11]. Projections indicate that as climate change continues, the fre-
quency of these summer blocking events is likely to increase, further deteriorating urban
climate conditions [12,13]. Given the challenges faced by London during the 2022 heatwave,
characterized by the interaction of local urban heat islands (UHIs) and broader climatic
shifts, it is evident that extreme weather events may occur more frequently in northern
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regions of Europe in the future due to climate change [12,14,15]. This underscores the
necessity to prepare our cities for the increased occurrence of such extreme events [16].

The severe impact of this crisis was evident in Britain’s urban areas, revealing sig-
nificant inadequacies in their capacity to manage such conditions [17]. City parks, vital
for mitigating the UHI effect [18], became deserted landscapes due to water scarcity and
intense heat [19]. In the context of urban resilience and climate change adaptation, nature-
based solutions (NBSs) have emerged as potential strategies to mitigate the impacts of
extreme weather events [20,21]. However, the effectiveness of NBSs, such as large urban
green spaces, during extreme events like the 2022 heatwave in London, is not straight-
forward [22]. The severity of the situation underscores the need for researchers, urban
planners, and landscape architects to devise new strategies aimed at transforming cities and
their green spaces into resilient structures capable of enduring future climate impacts [23].
This necessitates a reevaluation of urban green spaces and the overcoming of outdated
concepts regarding city landscapes.

Gaining insights into the complex dynamics of urban heat stress during the 2022
heatwave in London is essential for devising effective adaptation strategies and resilience
measures. Microclimate simulations, facilitated by tools such as ENVI-met, provide a
valuable method for analyzing the thermal behavior of urban environments with high
spatial resolution [24–26]. Using these modeling approaches, researchers can evaluate how
various design elements, vegetation distribution, and land use configurations impact local
microclimates, thereby informing about targeted interventions aimed at improving thermal
comfort and mitigating heat stress.

In recognition of this, the study conducts a thorough analysis of the performance
of an urban green space in London during the extreme events of 2022. London’s urban
green spaces, often referred to as the “green lungs” of the city, vary in size and shape,
enhancing the urban landscape and providing extensive recreational opportunities for the
city’s residents [27,28]. Moreover, they play a vital role in promoting urban biodiversity
by creating habitats for diverse animal and plant species [29]. Among these green spaces,
Hyde Park stands out, covering over 350 acres in the heart of London. The park’s popularity
is further accentuated by its diverse cultural events, with the expansive Parade Ground
serving as a renowned year-round venue for festivals such as the British-Summer-Time
Festival and Winter Wonderland, appealing to both locals and tourists alike. However,
during the summer of 2022, its media coverage primarily featured images depicting its
previously verdant and meticulously tended grasslands, now rendered parched and barren
fields as a result of the heatwaves.

It should hence be a common objective to develop strategies that improve human
thermal comfort and promote vegetational health both within and outside of the park,
while preserving its unique character and socioeconomic functions. The study subsequently
assesses the efficacy of these strategies and initiates discussions on the essential rethinking
of urban parks to adequately address the challenges posed by future climate change.
Assessing Hyde Park’s microclimate dynamics and evaluating current heat mitigation
measures within the park are crucial for informing evidence-based strategies aimed at
enhancing its resilience to future heat events [30–32]. The present study hence finds itself
within a wide field of different topics and directions revolving around urban climate and
possible heat mitigation measures. Related studies, for example, covered specific measures
like cool surfaces or cool/green roofs [33–35], the correct tree selection [36], an ideal green
space arrangement regarding trees’ leaf temperatures [37], or specific site studies [38,39].
London-specific studies comprise, for example, an investigation of UHI measurements [40]
and a mesoscale modeling study [41]. While previous studies often focused on already
hot and arid regions like the Mediterranean or Hong Kong, heat stress investigations for
Northern Europe and London in particular were marginally existent. Following the 2022
heatwave, the topic’s relevancy for this region rose strongly and resulted, for example,
in the microclimate modeling analysis of different green coverage and cool pavement
configurations [42]. This study now aims to bridge a gap between general advice about
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heat mitigation measures from sensitivity studies and site-specific measures that have
been applied in different climate zones already. It seeks to evaluate the cooling impact of
realistic urban planning scenarios for a famous site in one of the largest and most popular
metropolitan regions worldwide.

2. Materials and Methods

To evaluate the impact of different heat mitigation measures on thermal comfort and
plant health, microclimate simulations were conducted with the holistic three-dimensional
model ENVI-met [43–46]. Different validation studies found the model to accurately re-
semble parameters like air temperature/air humidity/wind speed [24,47,48], mean radiant
temperatures (MRT) [49], or plant water flux [50], hence representing a viable tool for
the study. In the following, the simulation setup (Section 2.1) as well as the analyzed
parameters regarding outdoor thermal comfort (Section 2.2) and plant health (Section 2.3)
are presented.

2.1. Simulation Setup

To reduce simulation time while keeping a reasonably high resolution, the model area
for the investigation only covers the northeastern part of Hyde Park (Figure 1). Additionally,
it includes parts of the city districts Mayfair and Hyde Park Estate in order to analyze
both the microclimatic conditions within the park and the surrounding built-up areas.
Furthermore, it allows the investigation of possible park cooling effects on surrounding
areas. The model area’s extent equals 1602 × 912 m with a grid resolution of 6 × 6 × 2.5 m.
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The model area creation was performed using the Geodata to ENVI-met plugin in
QGIS. Building footprints and heights were obtained by the EMU Analytics dataset for
London [51], tree data were provided by the Royal Parks organization [52], and soil profiles
were digitized using satellite imagery. All buildings were defined with the insulated
concrete wall/roof material ID 000000.

Two areas are expected to exhibit strong signs of thermal hazards. The first area
is the large Parade Ground, which is assumed to show very high heat stress. However,
implementing effective strategies to enhance thermal comfort in this area poses challenges
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due to its use for events requiring ample space. Permanent structures or vegetation are
not feasible due to the limitations, necessitating the adoption of compact and easily re-
movable measures as the most viable option. The second problematic area comprises the
built-up regions surrounding Hyde Park. These areas are characterized by impervious-
ness and limited space, requiring measures that can accommodate these constraints. In
response to these considerations, the following three scenarios were developed containing
mitigating measures:

1. By applying 5 liters of water per square meter every morning and evening all over
Hyde Park, the irrigation strategy aims to provide essential moisture to the vegetation.
This practice should prevent excessive drying of the soil, supporting the vitality
of plants and contributing to the overall cooling effect within the park. While it
may not be feasible to scale this irrigation strategy to cover the entire park, it can
serve as a model for identifying specific areas where targeted irrigation can make a
notable difference.

2. In the second scenario, sun sail shading devices are incorporated into the model area.
A total of 22 sun sails are placed all over the Parade Ground to provide shading
to park visitors. While shading structures of this nature are commonly employed
on a smaller scale in gardens and streets [53,54], their presence at larger outdoor
events, such as festivals, is becoming increasingly prevalent and showing promising
results. Sun sails also constitute a suitable solution to integrate shading to the area
without necessarily being a stationary measure. In fact, with a basic infrastructure
set, assembly and disassembly can be accomplished reasonably fast, whenever long
periods of heat are imminent (Figure 2a). Sun sails were defined as Single Walls in
ENVI-met by taking the default database item for sun sails and adjusting the basic
parameters for absorption (0.25), transmission (0.25), and reflection (0.5).

3. In order to directly address the heat issues in the built-up areas surrounding Hyde
Park, the third scenario proposes the implementation of façade greening as an in-situ
measure (Figure 2b). Façade greening is effective in reducing high temperatures
both inside and outside buildings by means of transpiration and interception of solar
radiation. Consequently, it helps to maintain a comfortable indoor temperature during
the summertime while also providing thermal insulation during colder periods [55,56].
Furthermore, the advantages of façade greening extend beyond their climatic benefits:
they include aesthetic improvement, enhanced air quality, noise reduction, and they
provide habitats for insects and small wildlife. On the contrary, there are also several
disadvantages, for example, regarding maintenance effort, water consumption due to
irrigation, and high costs [57]. While roof greening applications are more complicated
due to the need for substrate and irrigation, façade greening can be applied more easily,
e.g., using soil-bound ivy. In this hypothetical scenario, urban planning directives
yield a strong greening of the urban quarter, for example, by implementing tax
incentives or subsidies, leading to our presented approach, where 50% of all buildings
were greened based on a random selection. To avoid application issues with the
impervious soils near buildings, i.e., pavements and streets, we assume the greening
to represent greenery-substrate-modules, which are attached to the wall. They cause
less damage for underlying wall materials than directly grown ivy. However, they
would need an automatic irrigation system, which likely has a high maintenance effort
to be covered by urban planning services. In ENVI-met, these items were defined by
the default database ID 02AGSS, containing a simple plant with a height of 30 cm
and an LAI of 1.5 m²/m², as well as an automatically irrigated substrate consisting of
sandy loam and Styrofoam layers [58,59].
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Four simulations were, hence, carried out in total, with the first one resembling the
status quo of Hyde Park, with no measures taken, but drastically reduced soil humidity as
present in heatwaves. It is important to note that the subsequent three scenarios resemble
stages of added-up heat mitigation measures, i.e., every following scenario also includes
the measures of the previous scenario(s). Scenario 4 is, thus, expected to show the highest
cooling impact, as it includes all measures of irrigation, temporary sun sails, and façade
greenery (Figure 2b). Table 1 shows the model area and simulation settings for both status
quo and mitigation scenarios.

Table 1. General model area and simulation settings.

General Properties

Start date and time (local) 4 August 2022 05:00:00
Duration 48 h

Meteorological boundary conditions Full forcing
Location latitude (lower left corner) 51.50608◦

Location longitude (lower left corner) −0.17160◦

Dimensions 267 × 152 × 30
Resolutions (X, Y, Z) (m) 6.0, 6.0, 2.5

Lowest grid cell split Yes
Telescoping: factor and starting height 20%, 20 m

Height of 3D model domain 833.09 m
Model rotation out of grid north −9.95◦

Altitude angle high res. 15◦

Azimuthal angle high res. 15◦

Altitude angle low res. 30◦

Azimuthal angle low res. 30◦

IVS high-resolution height boundary (m) 10
Wind speed (m/s) 1.3

Wind direction 230◦

Building indoor temperature (◦C) 25.50
Initial soil temperature upper layer (◦C) 20.00
Initial soil temperature middle layer (◦C) 20.00
Initial soil temperature deep layer (◦C) 20.00

Initial soil temperature bedrock layer (◦C) 20.00
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Table 1. Cont.

Specific Properties Status Quo Scenario Mitigation Scenarios

Initial soil humidity upper layer (%) 5 45
Initial soil humidity middle layer (%) 10 45
Initial soil humidity deep layer (%) 15 55

Initial soil humidity bedrock layer (%) 20 75
Precipitation 0 5 mm at 07:00 and 19:00

To ensure comparability, all four simulations use the same climatic boundary condi-
tions, which resemble the hot conditions of the summer days as experienced in London
during the 2022 heatwave. The used full forcing file therefore comprises clear sky condi-
tions with very hot nighttime temperatures greater than 25 ◦C (Figure 3). Wind speed was
held constant at 1.3 m/s with a wind direction of 230◦. In the heat mitigation scenarios,
precipitation of 5 mm, i.e., 5 L per square meter, is added to the soil at 07:00 h in the
morning and 19:00 h in the evening by using the precipitation parameter in the full forcing
file (Table 1).

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 17 
 

Specific Properties Status Quo Scenario Mitigation Scenarios 
Initial soil humidity upper layer (%) 5 45 
Initial soil humidity middle layer (%) 10 45 
Initial soil humidity deep layer (%) 15 55 

Initial soil humidity bedrock layer (%) 20 75 

Precipitation 0 
5 mm at 07:00 and 

19:00 

To ensure comparability, all four simulations use the same climatic boundary condi-
tions, which resemble the hot conditions of the summer days as experienced in London 
during the 2022 heatwave. The used full forcing file therefore comprises clear sky condi-
tions with very hot nighttime temperatures greater than 25 °C (Figure 3). Wind speed was 
held constant at 1.3 m/s with a wind direction of 230°. In the heat mitigation scenarios, 
precipitation of 5 mm, i.e., 5 L per square meter, is added to the soil at 07:00 h in the morn-
ing and 19:00 h in the evening by using the precipitation parameter in the full forcing file 
(Table 1). 

(a) (b) 

Figure 3. Full forcing boundary conditions used for all scenarios depicting direct shortwave (black 
line), diffuse shortwave (dashed line), and longwave radiation (dotted line) (a) as well as potential 
air temperature (black line) and specific air humidity (dashed line) (b). 

2.2. Human Thermal Comfort 
Extreme heat poses a significant burden on the human body, profoundly impacting 

individuals’ wellbeing and overall health. Prolonged exposure to high air temperatures 
can lead to dehydration, heat exhaustion, and, in severe cases, life-threatening heatstroke 
[60,61]. Furthermore, the discomfort caused by extreme heat can lead to sleep disturbances 
and reduced productivity among people in the affected areas [62,63]. It can hinder their 
ability to concentrate, affecting their performance in both work and daily activities. Cer-
tain vulnerable groups are at higher risk during extreme heat events, including elderly 
individuals, pregnant women, infants, and children, as well as those suffering from 
chronic diseases [64,65]. 

The analysis of human thermal comfort will rely on investigating the physiological 
equivalent temperature (PET) rather than the simple parameter of potential air tempera-
ture. PET is a metric used in environmental science and meteorology to gauge the human 
perception of thermal comfort [66–68]. It provides a comprehensive evaluation of how 
weather conditions, including air temperature, humidity, wind speed, and radiation, 

0

100

200

300

400

500

600

700

R
ad

ia
tio

n[
W

/m
²]

Time

10

11

12

13

14

15

16

17

18

24

25

26

27

28

29

30

31

32

33

Sp
ec

. H
um

id
ity

 [g
/k

g]

Po
t. 

Te
m

pe
ra

tu
re

 [°
C

]

Time

Figure 3. Full forcing boundary conditions used for all scenarios depicting direct shortwave (black
line), diffuse shortwave (dashed line), and longwave radiation (dotted line) (a) as well as potential air
temperature (black line) and specific air humidity (dashed line) (b).

2.2. Human Thermal Comfort

Extreme heat poses a significant burden on the human body, profoundly impacting
individuals’ wellbeing and overall health. Prolonged exposure to high air temperatures can
lead to dehydration, heat exhaustion, and, in severe cases, life-threatening heatstroke [60,61].
Furthermore, the discomfort caused by extreme heat can lead to sleep disturbances and
reduced productivity among people in the affected areas [62,63]. It can hinder their abil-
ity to concentrate, affecting their performance in both work and daily activities. Certain
vulnerable groups are at higher risk during extreme heat events, including elderly indi-
viduals, pregnant women, infants, and children, as well as those suffering from chronic
diseases [64,65].

The analysis of human thermal comfort will rely on investigating the physiological
equivalent temperature (PET) rather than the simple parameter of potential air tempera-
ture. PET is a metric used in environmental science and meteorology to gauge the human
perception of thermal comfort [66–68]. It provides a comprehensive evaluation of how
weather conditions, including air temperature, humidity, wind speed, and radiation, col-
lectively influence how humans experience and feel their surroundings. The PET index
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aims to estimate the equivalent temperature that a person would perceive in a typical
indoor environment, making it easier to compare different outdoor weather conditions.
By considering various meteorological factors and the human body’s thermoregulatory
response, it offers a far more comprehensive measure of thermal comfort. The PET index
categorizes various grades of physiological stress, ranging from “extreme cold stress” to
“extreme heat stress” [69,70].

2.3. Plant Health

Considering the substantial influence of trees on urban heat effects, it becomes im-
perative to integrate their wellbeing into the development of climate mitigation strategies.
Insufficient water supplies and rising air temperatures can subject the tree to severe drought
and heat stress, triggering the activation of stomatal regulation, i.e., the plant closes its
stomata to prevent excessive water loss during dry conditions. As a result, the leaf’s ability
of transpiration cooling is drastically reduced, causing potential overheating, which can
ultimately lead to its wilting and scorching. Drought stress also causes the capillary forces
inside the plant to rise to a point where air bubbles can be drawn into the xylem. This
leads to the formation of cavitations which hinder water and nutrient transport inside the
organism. Over time, these effects can severely weaken the tree, making it susceptible to
pests and diseases, leading to eventual death [71–73]. In the short term, stomatal closing
leads to a reduced photosynthesis and transpiration rate [74], hence hindering a tree’s
cooling impact. Due to these mechanisms, tree wellbeing can be evaluated by investigating
transpiration rates and leaf temperatures.

To assess the health of the park’s trees, physiological data from two prevalent tree
species in Hyde Park were analyzed and compared between status quo and the irrigated
Scenario 1. To compare the variations between different development stages within a tree
species, representatives from three distinct age groups—young, medium-aged, and old
trees—were observed in each case. Physiologically, they mainly differ in height, width, and
root diameter, as well as leaf area density (LAD) and distribution in ENVI-met [75]. One
of the tree species represents the London plane, which is the most abundant tree species,
comprising approximately 40% of all trees in Hyde Park [76]. The other species is the
small-leaved lime, which covers around 4% of the total trees [76]. Both are characterized
to be rather resistant against hot and dry conditions, while the London plane typically
comprises a higher LAD [77,78]. The observed trees’ locations within the model domain
are displayed in Figure 4.
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Due to the different plant parameters as well as varying sites within the park, the
trees’ responses are expected to behave differently over the course of simulation. Due to
the large variation in their shape, density, and location, the six examined trees should be
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analyzed exemplarily for most trees of Hyde Park. Following Simon et al. 2018 [50], they are
tagged to be observed in the ENVI-met simulation to obtain summed-up transpiration rates
and averaged leaf temperatures for each of the examined trees over the whole course of
the simulation.

3. Results

In the following, results are presented regarding thermal comfort conditions during
both the daytime and the nighttime (Section 3.1) as well as the tree health development
over the course of the simulations (Section 3.2).

3.1. Thermal Comfort

Looking at the PET values of the status quo simulation at 1 p.m., we find significant
differences between shaded and nonshaded areas. On the open Parade Ground, PET values
of up to 57 ◦C can be observed, hence showing strong signs of heat stress. This indicates that
the on-site turf vegetation is not at all able to provide sufficient cooling to its surroundings.
Contrarily, shaded areas, i.e., the street canyons in the built-up areas surrounding Hyde
Park, clearly show more tolerable values around 32 to 34 ◦C and, therefore, only represent
slight to moderate heat stress. Street canyons in direct exposure to solar radiation, however,
show similarly high PET values to Parade Ground. Overall, the combination of shading
and transpiration in areas adjacent to trees creates the lowest PET values of around 29 ◦C.
Consequently, on a hot summer day, these areas can be expected to be primarily used as
recreational spaces. However, the park’s impact on the climate of the surrounding built-up
areas during the daytime is negligible (Figure 5a).

At nighttime, considerable differences in PET can be perceived between park areas
and the surrounding street canyons. While park areas cool down strongly to a range of 20
to 22 ◦C, the dense built-up areas show significantly higher PET values of around 26 to
31 ◦C, maintaining slight to moderate heat stress. Increased heat absorption over the day,
due to the higher thermal mass of asphalt and concrete, as well as lower wind speeds which
reduce the cooling capacity in these areas, cause the significantly higher PET values. In
contrast to the daytime situation, a slight impact of the park’s cooling can be observed at
the northeastern transition into the built-up areas (Figure 5b).

Analyzing the results of the heat mitigation simulations, it becomes evident that the
irrigation strategy implemented in Scenario 1 does not improve local thermal comfort
significantly during peak temperatures in open fields. Despite the substantial water dis-
tribution to the turf fields, the intensity of solar radiation remains very high, leading to
rapid evaporation and minimal cooling at noon. However, areas in close proximity of
trees benefit from the irrigation due to increased transpiration rates causing a decrease in
PET values by around 2 to 5 ◦C (Figure 6a). Nevertheless, the effect is rather localized,
and no observed impact on the adjacent built-up areas can be attested, indicating that the
proposed irrigation strategy has a limited effect on increasing human thermal comfort at a
larger scale.

The introduction of sun sails demonstrates notable reductions in PET values on Pa-
rade Ground. Shading provided by the sun sails leads to an average decrease of around
7 ◦C PET, with some areas experiencing even greater differences of up to 13 ◦C. Despite
this improvement, the overall high absolute PET values of the status quo, reaching up to
57 ◦C, would, in this scenario, only see a maximum reduction down to around 44 ◦C.
As this still falls within the category of “extreme heat stress” on the PET index scale, the
sun sail approach cannot be considered a complete success in this context. Nevertheless,
individuals may be able to spend more time engaging in activities in the shaded areas.
Also, it needs to be considered that the sun sails reduced direct solar radiation by 75% and
therefore decreased the harming UV exposure of park visitors significantly. It is important
to note, however, that the sun sails also have no visible impact regarding PET on the
built-up areas in the surrounding despite the on-site improvements (Figure 6b).
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In this regard, façade greening proves to be the only effective approach, exerting a
positive influence on the microclimate. PET values near the greened areas show an average
decrease in PET of around 4 to 6 ◦C compared to the status quo scenario. In terms of
physiological stress grades, façade greening significantly reduces the heat stress by one or
two grades depending on the location (Figure 6c).

During the nighttime, the irrigation strategy has minimal impact on evapotranspira-
tion for both turf and tree areas. Within Hyde Park, only slight decreases of up to 0.6 ◦C can
be observed. Furthermore, the irrigation strategy—like during the daytime—only shows
little to no effect in the built-up areas. Overall, it can be stated that there are no significant
differences compared to the status quo scenario (Figure 7a).
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Figure 7. Nighttime PET comparison maps for 10 p.m. at a cut height level of 1.25 m showing
differences between status quo and the scenarios using irrigation only (a), additional sun sails (b),
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implemented the corrected PET calculations with V5.5.

While the sun sails manage to significantly reduce PET values during the daytime,
they tend to impede radiative cooling at night significantly. PET values beneath the sun
sails are approximately 2 ◦C to 4 ◦C higher compared to the status quo due to the sun sail
blocking of longwave radiation emitted by the ground. The increase in PET through the
sun sails also has a slight impact on the adjacent built-up areas in the east, where PET was
slightly increased by 0.2 ◦C to 0.5 ◦C (Figure 7b).

By implementing façade greening, the slightly negative impact on the built-up areas
is eliminated, as they significantly reduce PET values by an average of 3 ◦C to 4 ◦C.
The greened façades intercept solar radiation during the daytime, resulting in less heat
absorption of the building surfaces and therefore reduced heat emissions during nighttime.
As a result, the widespread moderate heat stress observed in the status quo is significantly
decreased to slight or no heat stress (Figure 7c).

3.2. Tree Health

In normal, nonstressed conditions, transpiration rates in a day can be expected to rise
with an increase in ambient temperature (TA) and photosynthetically active radiation (PAR).
PAR can be defined as the portion of the electromagnetic radiation from the sun that is being
used by plants for photosynthesis. Consequently, on a cloudless summer day, transpiration
rate would normally peak around midday, when both TA and PAR reach their maximum.
Drought stress, on the other hand, can be identified by a drastically decreasing transpiration
activity during TA and PAR peaks. This characteristic phenomenon can be observed in
the data of all lime trees, as transpiration rates drop by about a third to almost half from
around 11 a.m. to 4 p.m. (Figure 8b). The deficits in transpiration activity cause hot average
leaf temperatures of above 40 ◦C, particularly on the second day (Figure 8c). At this point,
protein degradation starts to set in, causing damage to the leaf’s tissue [79–81]. While the
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lime trees suffer, the observed plane trees show almost no signs of drought stress during TA
and PAR peaks (Figure 8a). This is also reflected by the average leaf temperatures, which
lie around a rather cool 28 to 30 ◦C (Figure 8c). However, in addition to the more sufficient
transpiration cooling by the plane tree, the observed lower leaf temperatures can also be
attributed to the higher LAD. This contributes to a greater amount of shade provided by
the outer leaf layers of the canopy, protecting inner layers from shortwave direct radiation.
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Regarding the performance of the tree species’ different age groups, significant vari-
ations are evident in transpiration rates, likely due to differences in root and foliage
development (Figure 8a,b). However, when it comes to leaf temperatures, no notable
distinctions are observed among the various age groups (Figure 8c).

The irrigation strategy results in a noteworthy enhancement in the overall health of
the observed lime and plane trees. There is a substantial increase in transpiration rates
for all trees, indicating a higher metabolic activity and, consequently, a greater potential
for growth. Furthermore, two of the lime trees no longer exhibit any signs of drought
stress. However, the old lime tree still shows some signs of drought stress on the second
day, suggesting that the current irrigation approach may not fully meet its water demands
(Figure 8b).

The increased transpiration rates also lead to significantly lower leaf temperatures for
all the trees, with even the lime trees remaining well below the 40 ◦C threshold. Notably,
the old lime tree shows the highest temperatures among them, once again highlighting its
vulnerability to the prevailing conditions (Figure 8d).
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4. Discussion and Conclusions

This study focuses on the urgent issue of escalating heat during summers in Europe
and its impact on urban parks, exemplified by Hyde Park in London. The analysis of
human thermal comfort during daytime revealed that inside Hyde Park, the expansive
Parade Ground experienced extremely high PET values due to the absence of shading
and desiccation of local turf fields. Conversely, areas adjacent to trees demonstrated
significantly lower potential for thermal stress. The surrounding built-up areas exhibited
varying degrees of heat stress depending on their sun exposure. However, during the
nighttime, these areas displayed distinct disadvantages as their cooling potential was
notably lower compared to the vegetated areas of Hyde Park.

Based on these findings, the first key lesson from the study is the crucial significance
of incorporating and conserving suitable urban greenery, particularly trees, to establish
climate resilience of city parks. Trees play an essential role in creating cool oases, even
amidst extreme temperatures, through their shading and transpiration cooling effects. This
contributes to the preservation of recreational areas for city residents even during the
hottest hours of the day. A successful implementation, however, relies on the selection
of heat- and drought-resistant tree species, to ensure long-term health and survival of
vegetation. The examined London plane and small-leaved lime are already among the best
options, while oaks—currently 5% of all park trees [76]—should be a viable alternative [82].
Equally important is the implementation of targeted irrigation measures to support trees
during challenging dry periods. This proactive approach to water management plays a
key role in sustaining healthy urban ecosystems. However, that is, of course, a critical
point during droughts and also not a cost-effective solution as long as there is no automatic
irrigation system available.

Whenever conflicting usage does not allow for static vegetational measures, alternative
artificial solutions can be beneficial in mitigating human thermal stress. For instance, the
sun sails integrated at Parade Ground have demonstrated partial effectiveness in alleviating
intense heat and enhancing thermal comfort in areas previously lacking shade. These
nonpermanent structures offer a suitable solution, providing a way to address heat-related
challenges and create more comfortable environments for people in urban spaces. This site-
specific measure should be minimally invasive for the park, providing an efficient, feasible,
and relatively unexpensive solution for improving outdoor thermal comfort. However,
it comes with more maintenance costs than the current situation without the temporary
sun sails, which would have to be assembled or disassembled depending on prevailing
weather conditions.

In general, there are a few study limitations and simplifications that have to be stated
to allow a reasonable interpretation of the presented results. The observed modeling results
are quite site-specific and are likely different for other climate zones or even other parts
of London. Only two tree species of different age groups have been examined, resulting
in a total of six trees. Due to the large variation of trees and their specific locations within
Hyde Park, they can only be seen as exemplary study objects and their behavior cannot
be transferred to all other trees in the model area. Furthermore, the study is solely based
on microclimate modeling with ENVI-met, while the usage of other microclimate models,
mesoscale models, or on-site measurements might have given deeper, or at least different,
insights into the topic. Modeling in general always involves a trade-off between large
model area dimensions and fine resolutions on one hand, and computational limitations on
the other hand, making it necessary to use parametrizations and simplifications.

In addition to these study limitations, the presented findings do not represent only
local heat mitigation measures. Moreover, the most important keynote is that park
vegetation—although playing a significant role in mitigating the urban climate and offering
recreational spaces –is not sufficient to fully address the challenges cities face because of
extreme heat events. The study’s results indicate that the impact of park vegetation during
the severe conditions in 2022 is highly localized, resulting in limited cooling potential on
adjacent built-up areas. Therefore, it becomes imperative to implement in situ measures
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to effectively cope with these challenges. In this regard, façade greening emerges as a
crucial solution, offering localized remedies to densely built areas. By incorporating green
elements on building exteriors, such as climbing plants or green walls, façade greening
can help cool the urban environment, mitigate the UHI effect, and enhance overall climate
resilience in densely populated urban areas. Moreover, this approach has the potential
for further extension through a complete reimagining of urban design. By opening up the
conventional dense urban fabric of cities, ample space can be created for pocket parks or
community gardens to further enhance the positive impacts of urban greening. In any case,
combining the benefits of park vegetation and façade greening creates a more comprehen-
sive approach to address extreme climate impacts in urban settings. The disadvantages
regarding costs and maintenance effort therefore have to be evaluated against the possible
gains for the urban population.

In conclusion, the study emphasized that achieving climate resilience in cities is a
highly intricate challenge that requires the consideration of multiple factors. The analysis of
mitigation strategies revealed that there is unlikely to be a universal solution to address all
issues. Instead, a network of diverse measures needs to be implemented to effectively tackle
the challenges posed by climate change. In this context, microclimate simulations emerge
as a crucial tool, enabling both the identification of thermal hazards and the design and
evaluation of countermeasures. Further studies regarding the 2022 heatwave in London
and possible heat mitigation measures are strongly needed to further improve thermal
comfort conditions for the urban population. A shifted focus from micro- to mesoscale
would represent an appealing option to be able to fully investigate the impact of the entire
Hyde Park on the surrounding built-up area.
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