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Abstract: The continuous growth in the production, unsustainable use, and disposal of plastics in
recent decades has led to the emergence of a new type of pollutant, microplastics (MPs). In this
article, the focus is on the form of MPs, which are produced by the fragmentation of textile fibres
during washing processes. The problems associated with the characterisation and quantification
of MPs in this type of sample are related to the wide range of concentrations, forms, and degree of
degradation as well as physico-chemical and biological properties. Although the basic principles for
the analysis of microplastics present in the environmental samples are known, there is the lack of
standardised methods for the analysis of MPs in laundry effluents and domestic washing. Therefore,
the continuous development of sophisticated analytical techniques and methodologies is required for
the reliable collection and isolation, quantification, and characterisation of one of the most challenging
analytes. The aim of this review is to outline the key steps of MPs analysis in laundry effluents
and domestic washing, focusing on those steps that are underestimated in the current literature:
sampling and sample preparation for analysis. Precisely these analytical steps, which can become
the main source of analytical measurement system errors, ensure the quality of the analysis. This
paper emphasises the importance of monitoring background contamination and presents guidelines
to ensure quality control specifically for this type of analyte.

Keywords: water; sampling; sample preparation; density separation; digestion; textile wastewater;
quality control

1. Introduction

According to the latest standards, the term microplastics (MPs) encompasses any solid,
water-insoluble plastic particle with dimension between 1 µm and 1000 µm in size. Those
that are smaller than 5 mm are then referred to as large microplastics. [1]. Small pieces of
floating plastic material on the ocean surface were first reported in the early 1970s, but
the possible harmful effects attracted minimal attention from the scientific community [2].
It took almost 30 years to define the term microplastics as smaller fragments of plastic
material whose dimensions are less than a millimetre [3].

Microplastic particles are now considered a new type of hazardous contaminant of
anthropogenic origin. This type of environmental pollutant is a growing global problem
for several reasons:

(1) Plastics are characterised by a complex chemical structure and high molecular mass,
which makes them less susceptible to degradation [4];

(2) Atmospheric conditions (solar radiation, water temperature, and abrasion processes)
lead to photo-induced cleavage and cross-linking of the polymer chain as well as to
thermally induced degradation of the polymer chain [5], releasing potentially toxic
additives (brominated flame retardants, antioxidants, light stabilisers, plasticisers,
and pigments) [6,7];
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(3) Fragmentation leads to an increase in the specific surface area and hydrophobicity of
MPs [8], making them a good medium for various types of pollutants, such as persis-
tent, bio-accumulative, and toxic chemicals (PBTCs) [9–11]. These particles absorb not
only persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs)
and polycyclic aromatic hydrocarbons (PAHs) [12] but also heavy metals [13,14],
pharmaceuticals [15], and pathogenic organisms [16].

In addition, studies have shown that due to their small size, MPs are transported long
distances by wind and water currents. The presence of MPs in the Antarctic is evidence of
microplastics as a ubiquitous pollutant in the air [17]. The geometric parameters (size, shape,
and density) of MPs have a major influence on their dry deposition and residence time in the
atmosphere. Due to their elongated shape, fibre fragments have a smaller aerodynamic size
than spherical particles with the same volume. This applies in particular to flat fibres, which
cannot be transported over such large distances as cylindrical fibres [18]. MPs are often
ingested by organisms because they mistake them for food [11,19]. Therefore, the combined
effect of microplastics with adsorbed pollutants could seriously harm environment [20] but
also human health [21]. In addition, fibre fragments have a more negative impact on the
health of organisms due to their abundance and longer retention time after consumption by
the biota. In order to reduce the use of microplastics, the European Commission adopted
Regulation 2023/2055 [22], which restricts the use of microplastics intentionally added to
products. Restrictions are applied for concentrations of MPs in a product limited to ≤0.01%
by weight.

Regardless of the origin of MPs, monitoring the amount of MPs present in the envi-
ronment is of a great importance. MPs have spread very extensively in the environment,
so they are now found in almost every part of the biosphere: from seas and oceans [23],
freshwater [24,25], wastewater [26], and sediment [27] to soil [28] and air [29]. Given the
confirmed presence of microplastics of all types and sizes in surface-, underground-, and
wastewater [30], the question arises as to what extent drinking water is contaminated with
MPs and how this affects human health [31,32]. Numerous studies provide information on
the content of MPs, but the methods for sampling, isolation, purification, and identification
of microplastics differ greatly. Although recommendations and principles for the analysis of
microplastics in the environment have been published [1], the lack of standardised methods
prevents a comprehensive interpretation and comparison of results from different research
groups. The development of standardised methods for identification and classification
is necessary in order to detect possible weak points in the production and life cycle of
synthetic textile materials but also to carry out effective and sustainable remediation of
water resources. The expression and representativeness of the results when measuring
microplastics largely depend on the methodology itself. Results are usually expressed as
total microplastics per unit of sample (e.g., L−1 in water), sometimes providing detailed
classifications of size classes, colour, and shape (e.g., fibre, particle, and fragment) [21].
With increasing numbers of scientific publications on MPs contamination in environmental
matrices as well as in food and drinking water, the calls for harmonised methods are
becoming louder [33].

Microplastic fibres (MPFs) are the main components of microplastic pollution in the
aquatic environment, which are mainly released during the entire life cycle of textiles
(production, use, and disposal) [34]. It is estimated that 2 × 105 m3 effluent is discharged
from WWTP per year, and with an average emission of 60 MPF L−1, the total amount
of MPF released would be around 18 billion particles [35]. They are also referred to as
fibre fragments to distinguish them from microfibers. “Microfibers” is an established term
in the field of textile technology, as it refers to fibres with a linear density of less than
1 dtex [36]. Therefore, the American Association of Textile Chemists and Colorists (AATCC)
has suggested using the term “fibre fragments” instead [37].

As one of the most important manufacturing industries, the textile industry is an im-
portant component of the global economy. Globalisation processes have led to a significant
increase in the production and consumption of affordable textile products. The extremely
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rapid development of the textile industry is leading to the depletion of natural resources as
well as a dangerous deterioration of the natural environment and the associated extreme
weather events. At the same time, more and more textile waste is being produced, which is
the main source of microplastics in the form of fibre fragments. Current scientific research
in the field of textile technologies is focused on the search for new processes and materials
for the development of advanced and multifunctional textile products that could com-
pletely transform textile technology into a sustainable system in which the generation of
this type of pollutant would not occur. In addition, it is necessary to develop technologies
for wastewater treatment that specifically target the removal of microplastics. For the
development of such technologies, it is imperative to monitor the amount of microplastics
in wastewater, especially in laundries. An imperative for the development of standardised
methods is the development of a suitable methodology for the collection and preparation of
samples. The development of such a method will make a significant contribution to various
SDGs. In particular, the development of a standardised methodology for monitoring MPs
content and the associated development of technologies for water purification will enable
the conservation of marine resources (SDG 14). In addition, the MP particles present enter
the food chain via drinking water (SDG 6), which can consequently affect human health
(SDG 3). Due to the dispersion of MP particles through air currents, they enter global
ecosystems via environmental transport (SDG 15) and can consequently contribute to
climate change (SDG 13). In order to address the problem of MPs sample preparation, this
article provides a critical overview of the currently known methods for the collection and
preparation of composite samples with the aim of determining MPs in laundry wastewater
systems, and at the same time, it offers perspectives for future developments. Finally, given
the ubiquity of fibre fragments in the surrounding atmosphere, guidelines for the control
of background contamination are given.

2. Textiles as a Main Source of Fibre Fragments

Generally, a distinction is made between MP particles that either enter the environment
directly, such as products of daily use (e.g., facial cleansers [38], toothpaste [39]), and
abrasive cleaners [40]), or are formed by the fragmentation of larger plastics into smaller
fragments through photo-oxidation, mechanical, chemical, or biological action [41]. One of
the most common types of MPs are fibre fragments, which, according to the International
Union for Conservation of Nature (IUCN) [42], are mainly released from garments made
from synthetic fibres (35%), as shown in Figure 1.
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The growing concern about environmental pollution has led to an exponential increase
in the number of scientific publications attempting to estimate the amount of MP particles
in the environment and their effects on living organisms. Figure 2 shows the number
of published articles related to the analysis of microplastics in various environmental
samples between 2013 and 2023. According to the data available in the “Web of Science
Core Collection” database with the keywords microplastic(s), in contrast to the numerous
scientific studies dealing with pollution of the marine environment and sediments, the
pollution of wastewater by microplastics has so far only been studied to a limited extent.
As part of wastewater, effluents from laundry and domestic washing are distinguished.
Considering that synthetic textiles are one of the most important sources of MPs (Figure 1),
laundry effluents samples containing fibre fragments were almost not examined at all until
2017 and still not sufficiently.
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Figure 2. Publications in the field of microplastics research in different environmental samples from
2013 to 2023 (data collected from the Web of Science Core Collection).

Wastewater treatment plants (WWTPs) are one of the most important transport routes
and entry points for MPs into aquatic ecosystems, with rates ranging from 0.93 × 10−6 MP
per day [26] to 1.4 × 108 MP per day [43]. Although the removal efficiency of WWTP is more
that 98%, large quantities of MPs enter WWTP every day, and a considerable amount of MPs
pass through the filters and are discharged into natural waters [44]. The fibre fragments
released from textiles can be differentiated according to their origin. Natural (cotton,
wool, and silk) and man-made cellulosic fibres are found in wastewater in much higher
concentrations than synthetic fibres [45]. Nevertheless, they are biodegradable, which is not
a major ecological problem. This only applies to standard materials. Cellulose fibres treated
with dyes or additives (organic compounds for the functionalisation of textiles, polymer
films, etc.) are leached out by fibre fragmentation and enter aquatic ecosystems [46,47]. The
fibre fragments are mainly released into the wastewater during the washing process, which
then enters the municipal wastewater via the sewer system [48]. The estimated number of
fibres released is 1.2 × 107 per wash cycle and kilogram of clothing [49].

It is assumed that most of the fibre fragments released from the surface of synthetic
textile materials enter water bodies via the drainage pipes of the washing machines. During
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each washing process, textile materials are exposed to chemicals and mechanical agitation.
The tendency to release these particles depends firstly on the characteristics of the textile
materials (construction characteristics, texture, and type of fabric, yarn, and fibres) as
well as on the factors of the “Sinner’s circle” in the washing process (chemicals—use of
detergent, washing temperature, duration of the process, and mechanical agitation) [50].
The detergents are often alkali-based, which in turn facilitate release of fibre fragments
through migration of oligomers formed by hydrolysis [51]. Furthermore, it has been
confirmed that powder detergent formulations enhance the emission of fibre fragments due
to more mechanical friction between the material and the machine drum [49]. The ageing
process of textiles themselves should also be taken into account, as the fibre structure is
damaged by wear and UV radiation. It has been shown that older textiles release up to 25%
more fibre fragments compared to newer materials [52,53].

3. Challenges in the Analysis of Microplastic Particles in Environmental Samples

Generally, environmental samples consist of the analyte (the species of interest) in a
matrix most often rich in unwanted substances that may interfere with further analysis.
Before analysing MPs in the laboratory, the sample must be collected, stored, transported,
and processed appropriately. The process of analysing MPs in environmental samples can
be roughly divided into five main steps, which are shown in Figure 3.
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The process of sampling and isolation of MPS as well as MPs analysis and data
interpretation is, overall, time-consuming. It is well known that sampling is one of the most
time-consuming steps in the whole analytical procedure and depends on the water body.

The main problem regarding the methodology of sampling, isolation, and characterisa-
tion of MPs is reflected in their inconsistency, and often, the methods used have limitations
in terms of accuracy and detection limits [54]. Different research groups use different
sampling equipment, which differ mainly in the pore size, which ultimately determines the
lower limit of the particle size. Furthermore, different analytical techniques determine the
maximum particle size that can be detected. Finally, the accuracy of the analysis depends
on the efficiency of the isolation methods but also on whether the processing of the sample
and leads to a deterioration of the material.

Since sampling involves taking only a small portion of the total material to be analysed,
the samples taken must be representative. Therefore, researchers are limited in the amount
of a taken sample. Furthermore, conclusions based on the results of the most careful
analysis may be invalid due to inadequate sampling. It should be borne in mind that MPs
represent a group of polymeric materials of different shapes and chemical composition
(including synthetic and biopolymers), which also contain various additives and adsorbed
pollutants in their structure and exhibit different stages of ageing. It is not surprising that
many of the sampling methods currently in use are unsuitable for analysing MP, as most
methods are derived from standard water sampling methods that are not adapted to the
physico-chemical properties of MPs. Therefore, we emphasise that representativity is only
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a concept, and the obtained results of MPs analysis should be subject to statistical analysis
in order to determine their significance.

Although plastic materials do not degrade over time in a controlled environment,
improper storage of samples can lead to changes in MPs size distribution. Therefore, the
collected samples must be stored in an appropriate manner to minimise possible physico-
chemical and biological changes due to sample storage. The samples can be preserved
by refrigeration, the use of a suitable sample container, or the addition of preservative
chemicals [55]. The samples are usually stored in a refrigerator at 4 ◦C [56] or deep-
frozen at below −20 ◦C [57] until they are analysed. In some cases, the identification
and characterisation of the biological substance may be relevant for other aspects of the
research, which is why different fixation solutions are used (70–80% ethanol [58] or 4–5%
formalin [59]). Regardless of the sampling strategy, the collected wastewater samples must
be further processed in the laboratory due to their heterogeneous composition (e.g., density
separation or removal of organic matrices) before MPs identification can be performed.

The extraction of microplastics from any environmental matrix is the most important
step, as it is influenced by the size, shape, and density of the type of matrix and MPs present.
It follows that a possible differentiation of the extraction process can be based on the type
of matrix to be analysed. Finally, the choice of method for analysing MPs strictly depends
on the type of acquired data (mass, number, shape, size of particles, chemical composition
of MP, degree of degradation and chemical composition of degradation products, surface
properties, chemical composition of additives and absorbed pollutants, etc.) [1]. Moreover,
depending on the chosen methods for MPs analysis but also the complexity of the sample
matrix, appropriate collection and preparation techniques are selected. Thermal analysis
techniques, for example, do not require a prior sample preparation step, as the pyrolysis
of the matrix components and polymer materials takes place at different temperatures. In
contrast, microspectroscopy requires isolation of the MPs so that interfering compounds
do not completely mask the characteristic signal of the MPs. With these techniques, the
MPs content can be expressed by the total number of particles, whereas thermal analysis
techniques provide mass data.

Various analytical techniques are currently used for MPs identification, characterisa-
tion, and quantification, including Fourier transform infrared spectroscopy (FTIR) [60],
Raman microscopy [61], scanning electron microscopy (SEM) [62] with energy-dispersive
X-ray (EDX) [63], particle size distribution (PSD) [64], chromatographic techniques [65],
and thermal analysis [66]. Of all available methods, IR spectroscopy, especially in combina-
tion with microscopy (µ-FTIR), currently offers the best prospects for standardisation. In
addition to chemical identification, this method also provides information on the number,
size, and shape distribution of the particles with a resolution of up to 10 µm [67].

Due to the above-mentioned factors, a variety of methods and techniques have been
proposed for the analysis of MPs in different environmental samples [1], making it nec-
essary to develop an absolutely standardised methodological approach in the shortest
possible time.

4. Sampling Strategies for Wastewater Samples

Water is a complex matrix with characteristic physico-chemical properties, according
to which a suitable sampling method is selected. It has been shown that sediments in
particular, as an inseparable part of water, serve as a sink for many anthropogenic com-
pounds and that they contain increased amounts of MPs, especially in the vicinity of urban
centres [68], which is why they must also be sampled to estimate MPs pollution.

The choice of sampling strategy is determined by the research objective and the
assumed distribution of MPs in the field. Different polymeric materials are distributed
differently in the water column. MPs with low density, such as PP and PE, are mainly
found in the surface layers of the water [69], while plastics with a higher density (PET,
PVC, PC, and PU), which have settled in the sediments and are embedded there, are
not sufficiently represented in the surface water samples [70]. The spatial distribution of
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microplastic particles in water is primarily influenced by the properties of the MP material,
such as density, shape, size, and adsorption of chemicals but also the tendency to form
agglomerates and consequently the formation of biofilms [71], as well as by the type of
water. In addition, the distribution also depends on temporal-geographical factors such as
wind, water currents, and waves, as turbulence can lead to resuspension.

Several parameters must be considered when selecting sampling equipment: price,
ease of use, sampling location, and compatibility of analytes and cleanliness of equipment.
When selecting a suitable container and sampling equipment, particular attention should
be paid to the compatibility of the analyte with the materials of the sampling equipment,
as the sample may be additionally contaminated during sampling. The use of worn sam-
pling equipment (nylon nets, pump systems, etc.) made of polymer materials such as
PVC, PTFE, PE, PP, and PVDF leads to the release of MPs from the equipment into the
sample [72,73]. It is necessary to perform field and procedural blanks to assess the effect of
cross-contamination on the final test result. The use of equipment such as metal sieves and
glass bottles is recommended. However, the minimisation of possible contamination then
leads to a reduction in the representativeness of the sample. It is therefore necessary to
optimise the amount of the sample. When analysing the WWTP influent, where the concen-
tration often exceeds 100 MP dm−3, it is advisable to take a smaller sample volume so that
the identification of plastic particles by infrared spectroscopy does not take too long [74].

When talking about sampling wastewaters, there are two main strategies: (1) bulk
sampling and (2) volume-reduced sampling. Bulk sampling involves taking the entire
volume of the sample without subsequent reduction, which is the most frequently used
method in sampling textile wastewater. Grab samples are single water samples, which are
most commonly taken with stainless steel buckets and then stored in glass containers [75].
The main advantage of this method is that, theoretically, all MPs present in the environmen-
tal matrix can be sampled without size limitation. In addition, this type of sampling is fast
and can reduce the risk of contamination by reducing exposure time in the environment.

Due to the relatively low concentrations of microplastics but also their uneven temporal–
spatial distribution [76], the question of the representativeness of the sample arises. It is
therefore recommended that instead of taking a single sample, the wastewater should be
sampled repeatedly at regular intervals over a certain period of time [77–79]. The time
intervals between sampling vary between 15 min [43] and 2 h [80] over a total period of
24 h, and the total volumes of composite samples can also vary.

Volume-reduced samples are those whose volume is usually reduced during sampling
so that only the part of the sample that is of interest for further processing is retained,
whereby the representativeness of the sample is guaranteed without the entire sample
having to be transported to the laboratory. This sampling approach is rarely used in WWTP,
but the contamination of natural recipient waters with MPs from the surrounding WWTP
is monitored in this way [16,81]. For sludge, the samples are sieved through sieves [82],
while for water, the samples are collected by filtering with nets [83].

The most important characteristic of the sampling nets is the mesh size, which varies
in a wide range from 50 to 3000 µm, consequently affecting the volume of samples collected
and the amount of isolated MPs. So far, the pore sizes used in different studies have not
been standardised, so the amount of MPs found varies, making it impossible to compare
the results (Figure 4).



Sustainability 2024, 16, 3401 8 of 25

Sustainability 2024, 16, 3401 8 of 27 
 

When talking about sampling wastewaters, there are two main strategies: (1) bulk 
sampling and (2) volume-reduced sampling. Bulk sampling involves taking the entire vol-
ume of the sample without subsequent reduction, which is the most frequently used 
method in sampling textile wastewater. Grab samples are single water samples, which are 
most commonly taken with stainless steel buckets and then stored in glass containers [75]. 
The main advantage of this method is that, theoretically, all MPs present in the environ-
mental matrix can be sampled without size limitation. In addition, this type of sampling 
is fast and can reduce the risk of contamination by reducing exposure time in the environ-
ment.  

Due to the relatively low concentrations of microplastics but also their uneven tem-
poral–spatial distribution [76], the question of the representativeness of the sample arises. 
It is therefore recommended that instead of taking a single sample, the wastewater should 
be sampled repeatedly at regular intervals over a certain period of time [77–79]. The time 
intervals between sampling vary between 15 min [43] and 2 h [80] over a total period of 
24 h, and the total volumes of composite samples can also vary. 

Volume-reduced samples are those whose volume is usually reduced during sam-
pling so that only the part of the sample that is of interest for further processing is retained, 
whereby the representativeness of the sample is guaranteed without the entire sample 
having to be transported to the laboratory. This sampling approach is rarely used in 
WWTP, but the contamination of natural recipient waters with MPs from the surrounding 
WWTP is monitored in this way [16,81]. For sludge, the samples are sieved through sieves 
[82], while for water, the samples are collected by filtering with nets [83].  

The most important characteristic of the sampling nets is the mesh size, which varies 
in a wide range from 50 to 3000 µm, consequently affecting the volume of samples col-
lected and the amount of isolated MPs. So far, the pore sizes used in different studies have 
not been standardised, so the amount of MPs found varies, making it impossible to com-
pare the results (Figure 4).  

 
Figure 4. Correlation between the number of determined MPs in wastewater effluents and mesh size 
cut−off. The corresponding references from the figure botom upwards are: [84] [85], [86], [80], [87], 
[88], [89], [88], [57].  

An additional problem with sampling is the wide range of MP shapes [90]. Elongated 
fibre fragments can pass through pores with relatively small dimensions (much smaller 
than the maximum dimensions of an elongated shape) or remain in pores larger than their 
dimensions due to their irregular shape. As a result, there is an overestimation or loss of 

Figure 4. Correlation between the number of determined MPs in wastewater effluents
and mesh size cut−off. The corresponding references from the figure botom upwards
are: [84], [85], [86], [80], [87], [88], [89], [88], [57].

An additional problem with sampling is the wide range of MP shapes [90]. Elongated
fibre fragments can pass through pores with relatively small dimensions (much smaller
than the maximum dimensions of an elongated shape) or remain in pores larger than their
dimensions due to their irregular shape. As a result, there is an overestimation or loss
of some MPs whose one dimension is significantly larger than the others, which should
definitely be taken into account when interpreting the research results.

As nets and trawls are not sufficient to retain fibres from water samples, sampling is
approached with a (manual or motor) pump that filters large volumes of water through a
built-in filter [91], resulting in a more efficient sampling methodology of fibres compared
to nets. In addition, sampling with the pump allows for more accurate monitoring of
the sample volume, and it is also possible to choose a wide range of filters with different
properties. However, due to the lower sampling volume, it may be more suitable for
sampling in areas with higher contamination [92]. Moreover, treated water from a WWTP
with a low TS can be pumped at a high flow rate over a long period of time. The extended
sampling time makes it possible to estimate the time-dependent frequency of MPs in the
wastewater [93]. However, the influent or activated sludge contains a large amount of
suspended solids that clog the sieve, so a lower flow rate is then required. As an alternative,
the use of a sampling tank is recommended. Nowadays, autosamplers are receiving a lot of
attention due to their ability to fractionate the sample volume through a system of pumps
and filters [94].

Self-developed filtration devices are used most rarely. The devices usually consist
of an electric [95] or membrane pump [96], a unit consisting of a series of sieves [97] or
filters [94] with different hole/pore sizes mounted on a substrate and located in a housing
made of polymer material such as polycarbonate (PC [96]) or polyvinyl chloride (PVC [89]),
through which the sample water flows, and the flow meter [96].

Laundry Effluents Sampling

The methods used to take samples for analysing MPs in wastewater from the wash-
ing process differ depending on whether they are used to analyse commercial washing
machines or laboratory washing machines. In laboratory devices for washing simulation,
metal cuvettes are used, the contents of which are then transferred to glass bottles (sepa-
rately for each washing process [65] or assembled [98]). The MP particles themselves are
then isolated by filtration with a glass fibre filter [99] or a PVDF filter [49].
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In commercial washing machines, the washing process is carried out according to
the manufacturer’s instructions, and the collection of the released fibres is performed by
directly isolating the MPs by filtering the effluent using an external, adapted filtering
system. The filtration system usually consists of a drain hose connected to a peristaltic
pump with a Teflon tube and a membrane made of either PTFE [100], nylon fabric [101], or
stainless steel [102].

5. Sample Preparation and Isolation of Microplastic Particles

The biggest challenge in MPs analysis, especially with a complex matrix such as
laundry effluents, is the selection of a suitable and efficient method for isolating particles
from environmental samples. Due to their large specific surface area, plastics can serve as a
backbone for the adsorption of surfactants (the main component of industrial and domestic
detergents). The aggregates formed exhibit changed physico-chemical behaviour [103],
therefore leading to underestimation of the fibre fragments due to the insolubility of
inorganic substances and the entanglement of several fibre fragments [49].

Depending on the type, detergents differ considerably in their chemical composition.
In addition to organic components such as surfactants and builders, powder detergents
also contain inorganic, water-insoluble components (zeolites), which further complicates
the isolation of MPs [104].

Therefore, this type of matrix requires a different approach to find the optimal method
for particle extraction. This section gives a critical overview of the best-known methods of
MPs extraction from different environmental matrices that could be used in the future in
developing and optimising the extraction of fibre fragments from laundry effluent.

Determining the order and type of sample processing procedures used is extremely
important, as it ultimately affects the results of the analysis. For samples containing
high levels of mineral and organic matter, both digestion and density gradient separation
methods are used, with varying orders of processing. If organic digestion is carried out first,
a large amount of reagent is required, as wastewater and sediment samples contain a lot of
organic material. In addition, a considerable amount of foam is formed during oxidation
with H2O2, which leads to loss of the sample. On the other hand, if separation by density
is performed first, many impurities remain in the supernatant, leading to clogging of the
filter pores when collecting MPs and unremoved organic compounds. It is therefore very
important to optimise the sample processing sequence, taking into account the composition
of the matrix. In the following sections, the methods for particle isolation are divided into
three categories, depending on the properties by which the particles are separated:

(1) Particle size » size-based approach;
(2) Density of the particles » density-based approach;
(3) Chemical composition of the particles » chemical composition-based approach.

Table S1 summarises the main advantages and disadvantages of proposed methods
for MPs isolation, which can be found in Supplementary Materials.

5.1. Size-Based Approach

Particle size-based separation methods (sieving and filtration) are often used for the
isolation of microplastic particles from environmental samples to reduce the volume/mass
of the collected samples. Filtration is also the last step in sample preparation for analysing
MPs after density gradient separation or chemical digestion and also as a method for
sample concentration. Filters made of nylon [105], nitrocellulose [106], glass fibres [107],
and polycarbonate and aluminium oxide [108] are used. Certain wastewaters from WWTPs
and natural waters with low total solids content, including tap water and bottled water,
can be treated by direct filtration to concentrate and isolate MP particles. Immediately prior
to filtration, it is necessary to assess the organic and mineral content to avoid clogging the
filter while minimising the potential interference of organic material in the spectroscopic
characterisation of MPs. Seawater and freshwater samples differ in terms of salinity, which
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in turn can influence the distribution of the microplastic particles themselves. However,
differing sample preparation is not mentioned in the previous research.

The structure of the filter is an important parameter in filtration. For example, a PC
filter with circular, flat pores is ideal for isolating the MP fragment. Together with the
filter structure, the pore size of the filter determines the minimum size of the quantified
particles [109]. Filters with larger pores (300–350 µm) are also used to isolate MPs of larger
dimensions. However, in such filters, the passage of small particles and fibrils of different
lengths is allowed, resulting in a loss of some of the information [85]. Conversely, using
a filter with smaller pores (<1 mm) results in a wider range of isolated particle sizes but
can lead to the accumulation of suspended particles and the clogging of the filter. The
MPs are then covered with matrix residues, making them almost invisible on the filter
surface [109]. In this case, a compromise must be found between the ability to retain small
particles with small dimensions and the clogging of the filter. An alternative approach
would be sequential filtration with progressively smaller pore sizes [110].

The choice of filter material depends primarily on the analytical technique used. In
addition, the filter material must allow unhindered visual identification of the particles.
Some filters are made of plastic materials (e.g., PTFE or metal-coated PC membranes),
which can lead to contamination of the samples. When using such filters, it is necessary to
make an assessment of contamination by analysing blanks [111]. However, if possible, the
use of such filter materials should be avoided. For Raman microscopy, the use of silicon
filters or PC filters coated with metal (Au or Al) is recommended. The ideal solution is to
use PC membrane filters, which, unlike filters made of PTFE, silicon or cellulose, do not
have their own high-intensity Raman spectrum [112]. Glass fibre filters are suitable due to
their low cost and easy availability on the market. However, the recorded Raman spectra
result in a lower particle contrast compared to PC filters, which is primarily due to the white
colour of the filter and the high reflectance [113]. In IR spectroscopy, a distinction must
be made between the selection of the filter with regard to the reflection and transmission
mode of the image. Reflective surfaces are used for measurements in reflection mode,
the most common of which are gold-coated PC membranes [114]. For measurements in
transmission mode, the substrates must be permeable to IR radiation. Aluminium oxide
filters (anodisc) or silicone filters are most commonly used for this purpose. Anodisc
filters are only transparent for the range between 3600 and 1250 cm−1, which partially
obscures the footprint region [108]. Silicon filters, on the other hand, are permeable to the
mid-IR range (4000–600 cm−1) and allow the entire MIR spectrum of isolated particles to
be recorded [115].

5.2. Density-Based Approach

Density separation is the most commonly used technique to concentrate and isolate
MPs from samples whose matrix contains a high proportion of mineral matter. The density
separation using a saturated salt solution promotes the flotation of less dense particles (MP
in the supernatant), while mineral matter is retained in the form of precipitate. Finally, the
MPs are separated from the supernatant by filtration and then identified and analysed.

The density of MPs varies from 0.80 to 2.30 g cm−3 depending on the type of polymer
and the manufacturing process of plastics. The density values of the most commonly used
plastics are listed in the Table 1. The density values of plastics are generally lower than
those of most mineral materials (>2.6 g cm−3).

One of the biggest disadvantages of this method is that it is time-consuming. The
treatment itself takes 2–5 h, while the deposition time is 24–72 h [116,117]. If necessary, the
process can be carried out several times to ensure that all particles of mineral substances
are separated from the matrix [118,119].

Since the density values of polymers are in a wide range, the choice of ionic compound
plays a crucial role. That is, salt solutions of different densities differ in their ability to
separate and extract MP. Therefore, a higher-density salt solution prepared in this way will
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also isolate a greater number of particles of different polymer types. The key properties of
the most-used salt are presented in Table 2.

Table 1. Densities of most commonly used polymers.

Polymer Type Polymer Density (g cm−3) Polymer Type Polymer Density (g cm−3)

LDPE 0.89–0.93 PVAL 1.19–1.31
HDPE 0.94–0.98 PFTE 2.10–2.30

PP 0.85–0.92 PVC 1.16–1.58
PS 1.04–1.10 PMMA 1.17–1.20
PA 1.12–1.15 PET 1.37–1.45
PES 1.24–2.30 PC 1.20–1.22
PAN 1.09–1.20 PU 1.20–1.26
POM 1.41–1.61 CA 1.22–1.24

Table 2. Properties of density solutions for the separation of microplastic particles from mineral
matrices.

Water Solubility
at 25 ◦C (g dm−3) Density (g cm−3) Toxicity Price per 100 g

(EUR) References

Sodium chloride, NaCl 360 1.0–1.2 LOW 3.4 [118,120–122]

Sodium bromide, NaBr 943 1.37–1.4 LOW 18.77 [123]

Sodium tungstate dihydrate,
Na2WO4 x 2 H2O 742 1.4 LOW 58.4 [122]

Sodium polytungstate, 3
Na2WO4 x 9 WO3 x H2O 3100 1.4 LOW 332 [124]

Calcium chloride, CaCl2 811 1.30–1.35 LOW 43.2 [28,125]

Zinc chloride, ZnCl2 4320 1.5–1.8 HIGH 17.24 [126–128]

Zinc bromide, ZnBr2 4470 1.71 HIGH 34.4 [122]

Sodium iodide, NaI 1842 1.6–1.8 HIGH 108 [118,125,126,129]

Of the salts shown, sodium chloride (NaCl) and sodium tungstate dihydrate
(Na2WO4 * 2 H2O) are inexpensive but non-toxic and environmentally friendly. How-
ever, by using saturated solutions of these salts, it is possible to isolate only low-density
MP, while high-density MPs such as PVC, PET, PC, or PU remain in the sediment [116,120].
In addition, NaCl easily crystalises on the walls of the glassware, which can lead to mate-
rial loss.

The optimum density of solutions for isolating particles of higher densities is
1.6–1.8 g cm−3, which applies to solutions of zinc chloride and sodium iodide. How-
ever, these substances can be expensive and hard to handle. The use of zinc chloride is
considered the most effective and cheapest method, but it is very dangerous. ZnCl2 is a
toxic and corrosive substance, mostly used in combination with acid, which can affect the
chemical and morphological structure of the particles [130]. However, these disadvantages
can be overcome by careful use, continuous reuse, and proper waste disposal (Table S2 in
Supplementary Materials). The use of calcium chloride has proven to be a safer alternative.
However, it is not suitable for samples with a high content of organic substances, as a floc-
culation occurs in the presence of Ca2+ ions [28]. NaI solutions separate oleophobic fibres
with high efficiency (93%) [125]. However, NaI reacts with cellulose filters, creating a black
film and making visual identification difficult. However, the use of NaI is recommended
because it is environmentally friendly and can be recycled several times [131], which in
turn lowers the price, under the condition, however, that it is not used in combination with
a cellulose filter.

The distribution of the particles in the environmental samples is extremely heteroge-
neous. To ensure the representativeness of the sample, it is therefore desirable to take as
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large a sample as possible. Increasing the sample volume also increases the amount of
reagents required, hence the high cost of the analytical procedures. In addition, highly
soluble salts such as ZnCl2 and NaI require larger amounts of reagent to obtain saturated
solutions compared to NaCl (Table 2 and Figure 5). Sodium iodide (NaI) solution, which
is quite expensive, is often used at low concentrations. A more favourable approach is an
adapted gradient separation method involving a fluidisation step in a sodium chloride
(NaCl) solution, which reduces the sample mass by up to 80%, and then, the flotation pro-
cess is carried out in a significantly reduced volume of salt solutions used for the separation
of the heavier polymers [126,132].
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Figure 5. Diagram illustrating the possibility of using different salt solutions to extract different types
of MPs.

In addition, the most suitable reagent is selected taking into account the structure
and shape of the MP. Salt solutions with a higher density separate MP fibres with a higher
density more effectively. However, they are ineffective for particles or fragments floating in
low-density solutions due to their larger specific surface area [133].

The density gradient separation method may seem like a simple approach, but the
efficiency of extraction can be affected by a number of factors:

(1) Plastics contain various additives in their structure, which in turn affect their density
and subsequent separation and significantly reduce buoyancy [123,134];

(2) Some fractions of microplastic particles, such as PET/PVC, LDPE/PP, and HDPE/PP,
cannot be separated and require additional processing, as their density ranges overlap;

(3) The efficiency of MPs isolation is inversely proportional to particle size; the smallest
proportion of isolated particles are those with smaller dimensions [135];
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(4) Due to their hydrophobic nature, the particles often coalesce into agglomerates to
which various pollutants and microorganisms are adsorbed and form biofilms [41].
Agglomerates exhibit altered specific density, which in turn alters their distribution
along the water column. As a result, incomplete isolation of the particles occurs, lead-
ing to an underestimation of the amount of MP particles present in the sample [136].
The separation is then carried out over several cycles and with an extended flotation
time [116] but also in combination with peroxide digestion [133].

Each density separation protocol has potential advantages and disadvantages with
respect to the analyte and the associated matrix. Ultimately, the most suitable technique
is selected through a trade-off between particle yield, purchase price, and environmental
impact.

5.3. Chemical Composition-Based Approach

Although density separation has been shown to be effective for the removal of inor-
ganic substances, studies have shown that it is not sufficient for the efficient extraction of
MPs for samples with a high organic content [137]. This is because the density of most
microplastic particles (ϱ = 0.9–1.6 g cm−3) is approximately equal to the density of the
organic species, so they will float on the surface of the saturated salt solution together
with the separated MP. Organic compounds interfere with the isolation by influencing the
physical behaviour of the polymer particles, especially during density separation. At the
same time, the remaining matrix components lead to false-positive results and thus hinder
the detection and characterisation of the MPs [138].

This section presents the most commonly used digestion protocols. Taking into account
all possible digestion methods, the favoured method should be the one compatible with the
composition of the matrix. In addition, for samples with a complex matrix, it is necessary
to perform several digestions to completely remove the organic species present. Although
the order of application of extraction methods has no influence on the efficiency of MPs
isolation, pre-digestion of laundry wastewater samples can lead to a higher yield if MPs
are trapped in formed aggregates with detergent components.

To obtain the highest extraction yield, the following factors must be optimised:

(1) Type of reagent (acids, bases, and oxidising agents or enzymes);
(2) Reagent concentration;
(3) Processing temperature (room temperature or elevated temperature);
(4) Duration of digestion (from a few hours to days);
(5) Successive treatments.

In addition to effectively destroying the organic substance, the agents used must leave
the polymer particles unchanged in terms of weight, volume, shape, and colour [139]. It is
always possible that the surface structure and morphology of the particles are damaged
during digestion by mechanical friction [140], degraded by the use of an aggressive chemical
reagent [141], and damaged by heating [142]. As the size range of MPs varies, particles with
smaller dimensions and a larger specific surface area are more susceptible to degradation. In
addition, the fact that microplastics in environmental samples have typically been exposed
to the abrasive influence of atmospheric conditions and photodegradation over a long
period of time before potential sampling and isolation is likely to make them less chemically
resistant than the MPs standards used to assess the degradation effects of treatment [139].
Therefore, the data obtained for the digested samples should be interpreted with caution.

In order to test the efficiency and the potential effects of the methodology used to
isolate MPs, a digestion experiment can be carried out under controlled conditions. This
is performed by preparing a blank sample consisting of a sample matrix to which known
amounts of fibres or granules are added [142]. Polymer resistance is tested by exposing
the blank to a digestion mixture. The structural integrity and chemical composition of the
polymer are assessed using optical and spectroscopic analysis techniques [141,143]. In any
case, one should bear in mind that any method that involves the use of aggressive reagents
at high temperatures over a long period of time will damage the MPs. The following
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text presents the main advantages and disadvantages of digestion reagents in relation to
efficiency for selected matrices and preservation of MPs morphology.

Acids break down organic substances such as proteins, carbohydrates, and fats quickly
and efficiently. Acid treatment of the sample is most commonly carried out with nitric acid
(HNO3) [142] or perchloric acid (HClO4) [144]. Acid mixture of HNO3 and HClO4 [145,146]
has exceptional oxidising and corrosive properties. It is also possible to use other acids such
as the peroxosulphic acid (H2SO5 [128]), but they result in lower efficiency. Acid treatment
has the advantage of removing inorganic particles such as carbonates, which is common in
laundry detergents.

The most common plastic materials on the market (PE, PP, PET, PVC, and PS) have
proven to be resistant to a 5% HCl solution [146]. However, processing with strong acids
(HNO3 or HClO4) affects the morphology of the MP, as these polymers are sensitive
to pH changes and are not resistant to strong acids. Some materials (PA, PU, and PS)
are completely degraded [139,147,148], while PET, PVC, and PMMA partially dissolve
and agglutinate together [147,149]. The sensitivity of MPs to strong acids prevents the
applicability of sample treatment with acids. In addition, processing takes quite a long time,
and various undesirable reaction intermediates can be released during digestion, which
can interfere with the spectroscopic identification of MP particles.

Alkaline digestion (usually with NaOH or KOH solutions) achieves an efficiency of
up to 90% [150]. Results may vary depending on the type and concentration of reagent
used and the incubation temperature. Alkaline treatment is effective for the hydrolysis
and degradation of proteins and is therefore often used to remove MPs from biological
samples [151]. Temperature plays an important role in alkaline treatment. For example,
the use of 10 M NaOH at 60 ◦C leads to more efficient digestion [145]. In general, when
choosing a reagent for alkaline treatment, KOH solution is preferred, which acts faster than
NaOH and requires the use of a smaller amount of reagent.

Although alkaline digestion is effective in protein degradation, it is not as effective
when water samples contain a large amount of enzymes. However, alkaline treatment has
been shown to partially degrade certain polymer species such as CA, PVC, and PET [149],
which make up the majority of fibres found in environmental samples. This effect can
be reduced by using lower concentrations of NaOH (1M) but with the appearance of a
“peeling” effect on the surface of PET due to its hydrolysis [152], which increases the
possibility of the migration of oligomers formed by hydrolysis and further degradation
and fragmentation of the polymer [51].

Oxidising agents degrade fat, calcareous substances, cellulose, lignin, tannin, humic
substances, and chitin, which ensures highly efficient digestion of various matrices of
environmental samples [153]. Oxidative digestion protocols mostly use hydrogen peroxide
(H2O2) with a different concentration range (15–35%), temperature (25–70 ◦C), and reaction
time (several hours to several weeks) [154].

However, the overall efficiency of H2O2 as an oxidising agent is questioned. Temper-
ature regulation plays an important role in the digestion. For example, if the sample is
incubated with 35% H2O2 (at room temperature) for 7 days, only 25% of the organics are
removed [150], while increasing the temperature to 70 ◦C with a lower concentration of
H2O2 increases the efficiency and shortens the reaction time while preserving the chemical
structure of the MPs [155]. Studies have shown that peroxide digestion does not affect
the chemical structure of various polymer types (PVC, PET, PA 6.6, ABS, PC, PU, PP,
LDPE, LLDPE, and HPDE) [126]. However, there may be a change in physical properties
(colour, shape, and particle size), but such effects are not an obstacle to the identification
of microplastics by spectroscopic methods [128,142,147,152,156]. Although it has been
shown that the use of H2O2 has no damaging effect on particles, the effects on plastics
previously exposed to atmospheric conditions [125] have not yet been fully investigated.
The main disadvantage of peroxide digestion is that at elevated temperatures and high
concentrations (30%), foam forms, and the polymer suspension floats on top of the foam.
Consequently, the polymer material sticks to the surface of the container, resulting in the
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loss of the MPs [126,148]. Sodium hypochlorite (NaClO) is also used, whose efficiency
(77%) is much lower than that of hydrogen peroxide (97%) [143].

The decomposition process by wet peroxide oxidation in the presence of Fe ions as
a catalyst (better known as Fenton’s reagent) has proven to be the optimal alternative.
Fe(III)/Fe(II) ions catalyse the decomposition of hydrogen peroxide with the formation
of radical species, which decompose organic material. Fenton’s reagent provides high
digestion efficiency with minimal effect on microplastics tested for a wide range of different
matrices [152]. The effects of Fenton’s reagent are controlled by pH (~3.0) and reaction
temperature (<40 ◦C). For matrices rich in organic material, the temperature of the reaction
mixture rises above 70 ◦C due to the exothermic reaction. In this case, it is advisable to use
Fenton’s reagent in lower concentrations or to carry out the reaction in waste baths [153].
Optimising the sample preparation also involves regulating the processing time because if
the sample is exposed for a long time at an elevated temperature, the degree of solubility of
the polymer increases, especially in the case of PA and PET [154]. In addition, compared
to the previously described methods of sample preparation with the aim of extracting
microplastic particles, Fenton’s reagent offers a significant reduction in the time required to
prepare the sample (up to 10 min) [157].

Enzymatic digestion is a promising method for removing organic matter, especially
cellulose, proteins, and fats, which are commonly found in soil and sediments [158] but
also in laundry effluents. In contrast to the chemical digestion methods mentioned above,
sample preparation with enzymes takes place at a neutral pH value and moderate tem-
perature, which ensures the preservation of the chemical and morphological structure of
the MPs [159]. In addition, a digestion efficiency of over 97% can be achieved with a short
incubation time (2 h) [150].

As enzymatic treatments have no significant effect on the structure of particles, it
would be an ideal method for sample preparation. However, for samples with a larger mass,
the efficiency of enzymatic digestion is relatively low, and the financial outlay is high [152].
To date, enzymatic treatments have been used exclusively for the isolation of plastic
particles from biological samples [159,160]. In the context of wastewater and sediments, the
complete removal of organic matter requires the use of different enzyme mixtures (cellulase,
chitinase, lipase, protease, and proteinase) [96], which limits the applicability of such
protocols. Therefore, a combination of enzymatic and chemical digestion is recommended
for the implementation of enzymatic digestion for the processing of environmental samples,
which leads to an increase in speed and a reduction in the economic costs of the applied
protocols [161].

5.4. Advanced Techniques for the Isolation of Microplastic Particles

There are other, less common methods for isolating microplastic particles that have
arisen from a desire to improve on the shortcomings of conventional methods. However,
the limitations of these methods include the availability of specialised equipment, the
processing time, the inability to characterise a specific polymer type and the change in
surface charge after using these techniques. Advanced MPs isolation techniques include
elutriation, pressurised liquid extraction, magnetic separation, electrostatic separation, and
oil extraction. The oil extraction protocol (OEP) is presented in this section as the most
important representative with numerous advantages.

The density separation of MPs, which is based precisely on the inherent density of the
particles, does not lead to complete isolation of all types of plastics. The observed effect
is a consequence of the change in their density due to the presence of additives [134] and
the ageing of polymeric materials [162] as well as the adsorption of pollutants [41]. The
MPs isolation protocol by oil extraction has proven to be one of the ways to overcome
this problem. Crichton et al. showed that the efficiency of this extraction is higher than
the separation in NaI and ZnCl2 gradient with up to 93% [125]. During extraction, the
lipophilic long-chain fatty acids present in the oils bind the hydrocarbon component of the
synthetic polymers and form a micelle-like supramolecular unit. Even with high-density
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polymers, the clusters formed have a lower overall density than water, making them easy to
isolate. The MPs are extracted into the oil phase, while the minerals remain in the aqueous
layer. The oil layer is filtered, and the filters are treated with alcohol to remove any oil
residues that could interfere with further characterisation of the isolated MP particles.

OEP is a relatively inexpensive technique that requires only a minimal amount of
reagents and simple laboratory equipment. It is also compatible with vibrational spec-
troscopy techniques and allows the identification of isolated polymer species. However,
OEP has several limitations that lead to underestimation of the amount of MPs in the sample:

(1) Individual particles with a partially hydrophilic character may remain in the aque-
ous phase;

(2) For samples with a high content of organic substances, it is necessary to carry out a
digestion beforehand;

(3) When mixing a sample containing surface-active substances (e.g., wastewater from
laundry), partial emulsification of the oil may occur;

(4) Some particles may remain in the oil during the washing process.

Despite the disadvantages, the combination of the non-toxicity of the oil, independence
from the specific MPs density, and high efficiency makes this approach more favourable
than density-based separation methods.

6. Internal Quality Control

In the development of a standardised protocol for sampling, extraction, and identifica-
tion of microplastics, quality assurance (QA/QC) plays a key role in assessing the sources
of variability in the experimental data. Fibre fragments are one of the most common forms
of microplastics, and due to their low density and size, they can be easily transported
by air [163]. Samples can always be contaminated with fibres, whether through abrasion
from synthetic clothing, improperly cleaned laboratory equipment, or poor sealing of
samples with the ambient air. Without any precautions against possible contamination, the
objectivity of the analysis results becomes highly questionable.

One of the most common and reliable methods of internal quality control is the use
of certified reference materials (CRMs) and reference materials (RMs). Today, various
CRMs and RMs are being developed that differ in appearance and chemical structure. For
example, there are currently RMs in the form of spheres or foils [164,165], but at the time of
writing, none have been found in fibrillar form that would be most suitable for assessing
water pollution from textile industry effluents or laundry effluents.

One of the most important steps to monitor and minimise contamination of samples is
to perform blanks during sampling and sample processing. Blanks are samples that have
undergone all manipulations and contain all reagents that a typical sample has, but they do
not contain the analyte. They are used to determine in which step of the MPs analysis that
sample contamination occurs. A field blank is collected by subjecting containers filled with
Milli-Q or filtered DI water to the same collection procedures as the samples. For example,
the container is opened at the same time as the container used for sampling, or the Milli-Q
water is passed through the set of sampling sieves or nets used to assess contamination
from the sampling equipment. The collected blanks are transported to the laboratory and
analysed in the same way as the real samples to assess the contribution of contaminating
materials. The amount of MPs is determined after vacuum filtration of the contents of the
sample container [166].

Procedural (laboratory) blanks are performed to assess contamination during sample
processing with MP particles present in the air. During processing, the blank is subjected to
the same processing steps as the other samples (filtration, digestion, and density gradient
separation) [167]. As with field blanks, the container is opened when the sample is exposed
to air and closed when the sample is not exposed to air. Additional blanks for general
contamination monitoring in the laboratory are performed by placing moistened filters in
glass Petri dishes on common laboratory surfaces. The moistened filter paper is later analysed
using microscopic or spectroscopic methods, just like environmental samples [168,169].



Sustainability 2024, 16, 3401 17 of 25

When processing the test results, the results of the blanks can be subtracted from
those of the sample. If the particles found in the blank samples match those of the sample,
subtraction is performed according to their shape and colour for the samples processed
in the same batch. Since the particles obtained by monitoring the blank sample do not
always match the particles of the sample, it is not possible to perform this procedure. Then,
the number of particles in the blank sample is used as indicated in the information, and
all samples containing a lower number of MPs than those found in the blank sample are
considered undetectable [170]. Unfortunately, due to high heterogeneity of the samples
containing MPs with different physico-chemical properties, it is almost impossible to
compare blank controls. To ensure the accuracy of the experiments, the results of the MPs
analysis and the blank samples should therefore be statistically analysed.

Mitigation of Cross-Contamination

Potential cross-contamination is further minimised by a series of prescribed recom-
mendations to avoid contamination during sample collection and processing. In laboratory
practices, it is common to use glassware and metalware [171], wear cotton clothing [172],
handle samples in clean rooms with controlled air circulation, clean work areas and tools
with 70% ethanol and wipe with cotton cloths [173], and clean equipment with acid fol-
lowed by ultrapure water [168]. Sample bottles and used nets and sieves should be rinsed
with water before sampling, and all working solutions should be filtered [174]. Plastic
equipment used in the laboratory should be replaced with non-plastic material, or contact
with plastic equipment should be avoided [175,176]. To ensure that the filter media are not
contaminated, a visual inspection with an optical microscope is usually not carried out
immediately before filtration [177].

It has been shown that fibre contamination is reduced when processing takes place
under clean air conditions such as clean air flow chambers [178], laminar flow cabi-
nets [168,177], or fume hoods [146]. In cases where it is not possible to ensure clean
air conditions, it has been shown that covering the samples during processing and analysis
can significantly reduce contamination [179]. Special attention should also be paid to
the protective materials used to ensure that the sample is not contaminated [150]. Some
researchers even exclude fibre fragments from the results and consider all fibres as artefacts
of sample processing [178,180]. However, this approach is no longer appropriate, especially
when analysing laundry effluent, as it distorts the actual results of contamination and thus
affects the interpretation of the impact of microplastic pollution [171].

7. Conclusions

Sensitive and sophisticated methods for the identification, characterisation, and quan-
tification of MPs are a prerequisite for monitoring MPs pollution. Research shows that it is
extremely difficult to develop a standardised method for monitoring MP particles, which
cover a wide range of concentrations and are of very different chemical composition, shape,
size, density, colour, and degree of degradation. It is very likely that in the future, there will
not be only one standardised method but several. Depending on the purpose of the research
(chemical characterisation of the polymer; size distribution of the particles; qualitative
information: shape, morphology, and degree of degradation of the particles; chemical
characterisation of bound additives and contaminants), the most suitable (combination)
method will be used for the analysis. Although microspectroscopy techniques are favoured,
thermal analysis techniques must also be considered, which not only allow for monitoring
of MPs content by mass but also do not require time-consuming sample preparation.

The main problem in the quantification and characterisation of MPs is the lack of
CRMs and RMs to ensure traceability of the method, especially in the context of fibre
fragments. In addition, fibre fragments are ubiquitous and can be found in the atmosphere,
which very often leads to cross-contamination of the sample. For this reason, none of the
currently available methods for analysing MPs can provide sufficiently reproducible results.



Sustainability 2024, 16, 3401 18 of 25

In the absence of such methods, field and procedural blanks and statistical analyses are
usually used, which ultimately do not provide satisfactory results.

In order to approach the characterisation and quantification of particles with so-
phisticated analytical techniques, it is also necessary to collect and prepare the samples
appropriately, which is also an aim of this work. The laundry effluents sample presents a
particular challenge, as it contains a high content of inorganic and organic substances. The
only correct way to collect such a heterogeneous sample is a composite sampling, which
is also time-consuming. In addition, fibre fragments have excellent adsorption properties
due to their large specific surface area, so they often bind detergent components and form
aggregates. Therefore, this sample requires the use of a combination of several separation
techniques in multiple steps to isolate particles. When selecting the optimal methods and
reagents for the isolation of microplastic particles, it is particularly important that the
structural integrity of the particles is not damaged during the treatment of the sample.
This means that the particles must remain unchanged in terms of weight, volume, shape,
and colour. Density separation is most commonly used to isolate microplastic particles
from samples with a high content of suspended solids. For this purpose, solutions of
different salts (NaCl, NaBr, NaI, ZnCl2, ZnBr2, etc.) are used, which differ from each other
in terms of solubility, density, toxicity, and price and are selected with regard to the intrinsic
density of the particles. The density separation technique is ineffective for the removal of
organic species from detergent suspensions (surfactants, builders, enzymes, etc.). Various
reagents (e.g., acids, bases, oxidising agents, etc.) and advanced extraction technologies (oil
extraction protocol, microwave extraction, etc.) can be used to remove the organic matrix.
The most promising technique is use of the Fenton reagent, which achieves an organic
matrix removal efficiency of >85% under appropriately optimised reaction conditions. In
combination with density separation, this enables an almost complete extraction of the
MP particles and thus a more accurate MPs analysis. Finally, the filtration step follows, in
which the particles are isolated for further analysis. An additional problem arises from the
pronounced linearity of one dimension of the fibre fragment, which leads to the particles
being ingratiated in the pores of the filter and consequently underestimated. Nowadays,
there is a growing concern about the generation of textile waste and thus the release of fibre
fragments into the environment. In order to address the development of technologies for
their effective and sustainable removal, standardised methods for their monitoring need to
be developed, to which this work ultimately aims to contribute.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su16083401/s1, Table S1: Summation of the main advantages
and disadvantages of proposed methods for MPs isolation; Table S2: Health and safety aspects for
the salts used in density separation method.
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